• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification and Characterization of the Populus AREB/ABF Subfamily

    2013-11-22 03:38:22LexiangJiJiaWangMeixiaYeYingLiBinGuoZhongChenHaoLiandXinminAn
    Journal of Integrative Plant Biology 2013年2期

    Lexiang Ji,Jia Wang,Meixia Ye,Ying Li,Bin Guo,Zhong Chen,Hao Li and Xinmin An

    National Engineering Laboratory for Tree Breeding,NDRC;Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants,MOE;The Tree and Ornamental Plant Breeding and Biotechnology Laboratory,SFA,College of Biological Sciences and Biotechnology,Beijing Forestry University,Beijing 100083,China

    Introduction

    Abscisic acid(ABA)is a major plant hormone that plays a fundamental role in vegetative tissue responses and adaptation to abiotic and biotic stresses,such as drought,high salinity,seed maturation,and dormancy(Bray et al.2000;Shinozaki et al.2003).However,the mechanism of ABA in cold-stressresponse gene expression remains unclear(Yamaguchi-Shinozaki and Shinozaki 2006).Previous research has suggested that genes that are induced by dehydration and cold stresses are unresponsive to exogenous application of ABA(Zhu 2002;Shinozaki et al.2003;Yamaguchi-Shinozaki and Shinozaki 2005),implying the existence of both ABA-independent and-dependent pathways.

    Most ABA-induced genes contain the cis-acting ABA-responsive element(ABRE;PyACGTGGC)in their promoter regions(Bray 1994;Busk and Pages 1998).Researchers have found that ABA-responsive gene expression requires multiple ABREs or the combination of an ABRE with a coupling element(CE)as a functional promoter(Shen et al.1996;Hobo et al.1999;Narusaka et al.2003).Furthermore,ABREs control gene expression via bZIP-type ABA-responsive element binding protein/ABRE-binding factor(AREB/ABF)transcription factors(Yoshida et al.2010).The ABRE-binding(AREB)proteins,or ABRE-binding factors(ABFs),of Arabidopsis thaliana have been isolated using the yeast one-hybrid screening method(Choi et al.2000;Uno et al.2000).The ABF1 protein is induced by cold but not by osmotic stress(Kim et al.2004;Fujita et al.2005).AREB1/ABF2,AREB2/ABF4,and ABF3 are induced by dehydration,high salinity,or ABA treatment in vegetative tissue(Fujita et al.2005).These three proteins are primary transcription factors that cooperatively regulate ABRE-dependent gene expression for ABA signaling under conditions of water stress(Yoshida et al.2010).AREB3 was not detected in either stressed or unstressed plants(Uno et al.2000).

    Populus trichocarpa is a species of deciduous broadleaf tree that is highly valued for conservation and timber production.P.trichocarpa also has great potential as a sustainable and renewable cellulose-based biofuel and is regarded as an alternative to fossil fuels in the future(Nieminen et al.2012).However,the growth and productivity of Populus are substantially affected by abiotic stresses,including drought,high salinity,and low temperature(Zhuang et al.2008).

    The full genome sequence of P.trichocarpa was published in 2006(Tuskan et al.2006),allowing genome-wide analyses of the AREB/ABF subfamily.In the present study,we performed a comprehensive bioinformatics analysis of the Populus AREB/ABF subfamily.Tissue-specific expression profiles were investigated in eight tissue types.Furthermore,we analyzed member transcript patterns under ABA treatment.Both in silico analysis and tissue-specific and induced-expression patterns provided an integrated perspective on this protein subfamily.

    Table 1.AREB/ABF subfamily in Populus trichocarpa

    Results

    Isolation of the AREB/ABF subfamily in Populus trichocarpa

    From the genome of A.thaliana,five AREB/ABF members were selected as bait:ABF1,AREB1/ABF2,ABF3,AREB2/ABF4,and AREB3.We applied a comprehensive two-step search process,because splicing isoforms existed at four loci.First,we used the five primary gene models(sensu TAIR)corresponding to the Arabidopsis AREB/ABF members to search within the database,and found 14 distinct genes.Second,all gene models from Arabidopsis were used in the database search query,with results similar to step one.Finally,the 14 genes were identified as putative members of the Populus AREB/ABF subfamily(Table 1).Locus POPTR_0004s14790 contained a splicing isoform that reached the E-value threshold.For more comprehensive results,we used this isoform in the subsequent analysis.Based on the functional annotations in Phytozome v8.0(Goodstein et al.2012),each of the 15 protein sequences had a basic leucine zipper(bZIP),which is characteristic of bZIP transcription factors.Six members had orthologues defined as ABA-responsive element binding factors(Table 1).

    Protein structure in the Populus AREB/ABF subfamily

    Multiple protein sequence alignments of the 15 amino-acid sequences were performed in BioEdit,as shown in Figure 1.The length of the aligned sequences was 526 amino acids,with 141 sites identified as relatively conserved(threshold of 50%).Thirty-eight sites were completely conserved.All five Arabidopsis AREB/ABF members contained the bZIP domain,which consisted of two motifs:a leucine zipper responsible for TF(transcription factor)dimerization and a basic region involved in the specific binding of the TF to its target DNA(Fujita et al.2011).Whole-region analysis of the 15 Populus sequences showed that each contained a bZIP domain(Figure 1,circled by a dotted line),with lengths from 54 to 58 amino acids.Within the bZIP region,39 amino acids,occupying 70.5%of the total region,were relatively conserved and 19(34.3%)were completely conserved.Our results indicate the existence of high levels of protein similarity in the Populus AREB/ABF subfamily,especially in the bZIP domain region.As previously described,the gene PtAREB4 contains a splicing isoform at the same locus(Figure 1).In comparing the two sequences,we found that 19 amino acids present in PtAREB4.1 were not translated in PtAREB4.2,suggesting that a sequence deletion occurred in the transformation of mRNA from pre-mRNA.

    Phylogenetic relationships and gene structure

    To verify and elucidate the relationships between P.trichocarpa and A.thaliana AREB/ABF members,we constructed a phylogenetic tree of AREB/ABF proteins.Figure 2 shows that AREB1/ABF2,ABF3,AREB2/ABF4,and ABF1 are relatively closely related compared to AREB3.Eight of the 14 Populus members were shown to have relatively high similarities to AREB3.The other six members have high genetic similarities to AREB1/ABF2.

    Figure 2.Neighbor-joining tree of AREB/ABF proteins from Populus trichocarpa and Arabidopsis thaliana.The gene structure of each AREB/ABF gene in P.trichocarpa is shown.The blocks and lines represent exons and introns,respectively.The numbers above and below the exons and intron are sizes(bp).

    To further classify and analyze the relationships of the Populus AREB/ABF subfamily,we constructed gene structures for this subfamily(Figure 2).The genomic sequence lengths ranged from 1,426 to 4,680 base pairs(bp),with a maximum of seven exons in PtAREB6 and a minimum of three exons in PtAREB3.This indicated high variability of sequence lengths within this subfamily.A combined analysis of the phylogenetic linkage and gene structure indicated a homologous relationship.Three member proteins,PtAREB7,PtAREB11,and PtAREB12,were closely related on the tree.Furthermore,these three genes had similar structures to four of their exons in the gene sequences.Their genes were short,ranging from 3,274 to 3,682 bp,with each of their third exons being 1,011 bp long.The 11 other genes all contained an exon that was 72 bp long.Six of the genes had a 30-bp exon adjacent to the 72-bp exon.

    Locations of the Populus AREB/ABF subfamily

    All 14 Populus AREB/ABF genes were located on nine of the 19 chromosome scaffolds(Figure 3).Four scaffolds contained more than one locus,with PtAREB2 and PtAREB3 on Scaffold 2,PtAREB5 and PtAREB6 on Scaffold 6,PtAREB8,PtAREB9,and PtAREB10 on Scaffold 9,and PtAREB11 and PtAREB12 on Scaffold 10.The two genes on Scaffold 10 were relatively closely related and had a similar gene structure(Figure 2).

    Expression patterns of the AREB/ABF genes

    To identify the tissue-specific expression profiles of the Populus AREB/ABF subfamily,we performed qRT-PCR on eight different tissue types for 14 selected genes(Figure 4).Because the transcript levels of the 14 Populus AREB members varied so widely relative to each other,they were graphed on different scales.Based on normalized gene expression levels,young and mature leaf tissues had the most abundant transcripts of eleven genes(PtAREB1,3,4,5,6,7,9,10,11,12,and 13),while root tissue had the highest transcript levels of two genes(PtAREB8 and 14).Previous studies indicated that ABA regulates many crucial processes,including control of stomatal closure and adaptive responses to various abiotic stresses(Finkelstein et al.2002;Yamaguchi-Shinozaki and Shinozaki 2006).These tissue-specific patterns of Populus AREB members agree with the known functions of ABA.Three genes(PtAREB6,10,and 14)were detected in some,but not all,of the eight tissue types,and one additional gene(PtAREB8)had relatively weak transcript levels.In contrast,PtAREB13 had much higher expression levels than all other subfamily members in young and mature leaves.

    With exogenous application of ABA,eight genes(PtAREB2,3,5,6,7,8,10,and 14)were upregulated;the expressions of seven of them reached maximum levels after 12 h,then gradually decreased(Figure 5).Three members,PtAREB1,PtAREB11,and PtAREB12,were constantly downregulated under ABA stress,while the expressions of PtAREB4,PtAREB9,and PtAREB13 decreased rapidly during the initial 4 h,then gradually increased.

    Figure 3.Physical locations of Populus AREB/ABF genes on the scaffolds.The scale bar represents 2.0 Mb.Scaffold numbers and sizes(Mb)are indicated below each scaffold.

    Discussion

    The first complete plant genome sequenced was that of A.thaliana,which has one of the smallest plant genomes,with about 125 Mb pairs and five chromosomes(Swarbreck et al.2008).In contrast,the P.trichocarpa genome has about 485 Mb pairs and 19 chromosomes(Tuskan et al.2006),and is four times larger than that of Arabidopsis.To avoid false positives in the identification of putative members of the Populus AREB/ABF subfamily,we used an E-value threshold of 1e-30.This E value was small compared with previous studies on P.trichocarpa,such as those by Zhuang et al.(2008)and Shao et al.(2011).Only 14 genes met this threshold;all of them contained bZIP domains and were either upregulated or downregulated under ABA stress.We propose that the combination of in silico screens and qRT-PCR is a feasible method for genome-wide analysis of the Populus AREB/ABF subfamily.

    Figure 4.Expression analyses of 14 Populus AREB/ABF genes using qRT-PCR.The endogenous reference gene was poplar ACTIN.Error bars represent the standard deviation(SD)of three technical repeats.Letters on the x-axis are:R,root;S,stem;LB,leaf bud;L,leaf;ML,mature leaf;F,female floral bud;M,male floral bud;C,female catkin.

    Gene duplication is common in biological evolution.Previous reports showed that many mutations in functional genes had little or no phenotypic effects,suggesting that these mutations could be partly or completely compensated for by the activity of other genes;this process is called redundant genetic function(Lambie and Kimble 1991;Pickett and Meeks-Wagner 1995).Genes within a family of duplicates may have similar structures and functions,and partial redundancy is often seen among gene family members(Pickett and Meeks-Wagner 1995;Shao et al.2011).In this study,four scaffolds each contained more than one member of the AREB/ABF subfamily.Scaffolds 2,6,and 9 each contained AREB/ABF genes with partially or completely different gene structures and amino acid sequences,as well as different tissue-specific expression patterns.However,all of those members were upregulated under ABA stress except PtAREB9.On Scaffold 10,PtAREB11 and PtAREB12 had a relatively close phylogenetic relationship and similar gene structures;they also showed similar expression profiles in all eight tissues,and their expression levels decreased with the application of exogenous ABA.Only three genes were constantly suppressed under ABA stress.These data suggest that PtAREB11 and PtAREB12 may share some overlapping functions and compensate for one another.

    Figure 5.Expression profiles of Populus AREB/ABF members under Abscisic Acid(ABA)stress.The leaves were collected after 0(CK),4,8,12,or 24 h of exogenous 100μM ABA treatment.Poplar ACTIN was used as an endogenous reference gene.Error bars represent the standard deviation(SD)of three technical repeats.The normalized mRNA levels at 0 h were arbitrarily set to 1.

    The AREB3 gene was first cloned using yeast one-hybrid screening with the RD29B promoter,and it was undetected in both unstressed and stressed plants(Uno et al.2000).Of the 75 members of the bZIP family in the Arabidopsis genome,nine are considered to be involved in ABA signaling(Bensmihen et al.2002).Based on phylogenetic relationships and functional analyses,AREB3 was classified into the ABI5/AtDPBF subfamily,which also includes ABI5,EEL,DPBF2/AtbZIP67,and DPBF4.This family is mainly expressed in seeds and appears to play vital roles in seed maturation and development(Fujita et al.2011).In this study,we found that eight Populus AREB/ABF members were relatively closely related to AREB3.Interestingly,none of them were expressed like AREB3 in A.thaliana.All were detected in unstressed tissues;four were upregulated and four were downregulated by the ABA treatment.Hoth et al.(2010)identified the relatively closely related AREB3 and ABI5 as potential interactors.Other researchers also suggested that ABI5 was upregulated under abiotic stresses(Nakashima et al.2006).These cited studies may partially explain the expression profiles of the Populus AREB/ABF members.

    The other four AREB/ABF members,including AREB1/ABF2,AREB2/ABF4,ABF1,and ABF3,are mainly expressed in vegetative tissues under abiotic stress conditions(Fujita et al.2011).ABF1 is not induced by osmotic stress,including ABA treatment(Fujita et al.2005).In this study,all 14 AREB/ABF members were either enhanced or repressed by exogenous ABA.The responses of these genes to ABA may be species-specific and may imply complex ABA transcriptional regulatory networks in Populus.

    Many abiotic stress-related transcription factors can be activated or repressed by WRKY proteins.The AtWRKY40-ABI5-AtWRKY63 module is part of the ABA-signaling network.In this module,AtWRKY40 is upstream of ABI5,and it represses the expression of ABI5 under unstressed conditions.As ABA accumulates,AtWRKY40 moves out of the nucleus,which de-represses ABI5 at the transcriptional level.Activation of ABI5 induces the downstream AtWRKY63,which then activates further downstream target genes such RD29A and ABF2(Rushton et al.2012).In this study,we found that six AREB/ABF members were downregulated under ABA stress,and three were constantly repressed under the stress.They may act as the upstream genes that repress ABA-induced genes in unstressed conditions,and may de-repress with when ABA is perceived by receptors.

    In summary,we performed a relatively complete bioinformatics analysis of the Populus AREB/ABF subfamily.We identified 14 genes as putative AREB/ABF genes and assessed their expressions in eight different tissue types via qRT-PCR.Eight were upregulated by ABA treatment,whereas six decreased in expression under the stress.These data indicated the complexity of Populus ABA-mediated transcriptional regulation networks.Our results will help elucidate the functions of the Populus AREB/ABF subfamily,providing clues for the identification of candidate genes involved in abiotic stress responses in plants.

    Materials and Methods

    Database search and sequence retrieval

    We obtained the Arabidopsis thaliana L.AREB/ABF sequences from The Arabidopsis Information Resource(TAIR)(Swarbreck et al.2008).To anchor the Populus AREB/ABF subfamily,the amino acid sequences of the Arabidopsis AREB/ABF members were used in our BLAST search using the Joint Genome Institute(JGI)Phytozome portal(Goodstein et al.2012).This search enabled us to identify sequence similarities using the latest(v2.2)JGI gene annotation of the v.2 Populus trichocarpa Torr.&Gray.assembly.We applied an E-value of 1e-30 to reduce false positives.

    Construction of the protein alignment

    The amino acid sequences retrieved from Phytozome were aligned using BioEdit 7.0.9 software(Hall 1999).We used a 50%threshold to define the relatively conserved regions of the amino-acid sequence.

    Phylogenetic tree and gene structure

    We constructed a neighbor-joining(NJ)tree with genetic distance matrices of protein sequences using the Poisson model,pairwise deletion,and the bootstrap method with 1000 replications in MEGA v.5.0 software(Tamura et al.2011).We used exon/intron data to build the gene structure for this study.

    Physical position of the AREB/ABF genes

    The physical locations of Populus AREB/ABF subfamily were analyzed using the JGI Populus v2.2 gene annotation.This annotation covered 403 Mb-pairs of the genome with an average assembled read depth of 7.45×,and assembled into 2,518 scaffolds(Goodstein et al.2012).The first 19 scaffolds from the assembly corresponded to the 19 poplar chromosomes that were formerly used to describe the P.trichocarpa genome(Tuskan et al.2006).However,more than 2,000 scaffolds remained unassembled to corresponding chromosomes;therefore,to characterize the physical locations of the genes,we used scaffolds rather than chromosomes,as described in Phytozome.

    Plant materials and treatment

    We selected eight different tissue types from Populus tomentosa Carr.for analysis.We collected female catkins,female floral buds,male floral buds,vegetative buds,and mature leaves from adult female(5082)and male(LM50)trees growing in the Beijing Forestry University nursery.Tissues were immediately placed in liquid nitrogen and stored at-80°C until RNA extraction.We collected samples of root,stem,and young leaf tissue from one-m-old tissue-cultured plantlets and extracted total RNA immediately after sampling.To test the effects of ABA treatment,roots of one-m-old tissue-cultured plantlets were submerged in a 100μM ABA solution(Choi et al.2000;Fujita et al.2005;Shao et al.2011),and leaves were harvested for immediate RNA extraction after 0,4,8,12,and 24 h.

    RNA isolation and qRT-PCR

    Total RNAs were extracted from combined samples of each tissue from multiple individuals using a modified CTAB method(Chang et al.1993).The mRNA was then pretreated with RQ1 DNase(Promega,Madison,WI,USA)to remove genomic DNA contaminants.Subsequently,first-strand cDNA was synthesized using mRNA as a template using the Reverse Transcription System(Promega).

    Quantitative real-time PCR(qRT-PCR)was performed in an ABI PRISM 7500 Fast Real-time PCR System(Applied Biosystems,Foster City,CA,USA)using the SYBR Premix Ex TaqTMKit(TaKaRa,Kyoto,Japan)with amplification conditions as recommended by TaKaRa.All reactions were run in triplicate for each sample,and the poplar ACTIN gene(Accession:AY261523.1)was selected as the endogenous control gene for normalization(An et al.2011).All primers are listed in Table S1.

    This work was supported by the Major State Basic Research Development Program(2012CB114505),the National Natural Science Foundation of China(31170631),and the National Hightech Research and Development Program(2011AA100201)of China.

    An X,Ye M,Wang D,Wang Z,Cao G,Zheng H,Zhang Z(2011)Ectopic expression of a poplar APETALA3-like gene in tobacco causes early flowering and fast growth.Biotechnol.Lett.33,1239–1247.

    Bensmihen S,Rippa S,Lambert G,Jublot D,Pautot V,Granier F,Giraudat J,Parcy F(2002)The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis.Plant Cell 14,1391–1403.

    Bray EA(1994)Alterations in gene expression in response to water deficit.In:Basra AS,ed.Stress-Induced Gene Expression in Plants.Amsterdam:273Harwood Academic,India.pp.1–23.

    Bray EA,Bailey-Serres J,Weretilnyk E(2000)Responses to abiotic stresses.In:Gruissem W,Buchannan B,Jones R,eds.Biochemistry and Molecular Biology of Plants.Amer.Soc.Plant Physiol.,Rockville,MD.pp.1158–1203.

    Busk PK,Pages M(1998)Regulation of abscisic acid-induced transcription.Plant Mol.Biol.37,425–435.

    Chang S,Puryear J,Cairney J(1993)A simple and efficient method for isolating RNA from pine trees.Plant Mol.Biol.Rep.11,113–116.

    Choi H,Hong J,Ha J,Kang J,Kim SY(2000)ABFs,a family of ABA-responsive element binding factors.J.Biol.Chem.275,1723–1730.

    Finkelstein RR,Gampala SS,Rock CD(2002)Abscisic acid signaling in seeds and seedlings.Plant Cell 14 Suppl,S15–45.

    Fujita Y,Fujita M,Satoh R,Maruyama K,Parvez MM,Seki M,Hiratsu K,Ohme-Takagi M,Shinozaki K,Yamaguchi-Shinozaki K(2005)AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis.Plant Cell 17,3470–3488.

    Fujita Y,Fujita M,Shinozaki K,Yamaguchi-Shinozaki K(2011)ABA-mediated transcriptional regulation in response to osmotic stress in plants.J.Plant Res.124,509–525.

    Goodstein DM,Shu S,Howson R,Neupane R,Hayes RD,Fazo J,Mitros T,Dirks W,Hellsten U,Putnam N,Rokhsar DS(2012)Phytozome:A comparative platform for green plant genomics.Nucleic Acids Res.40,D1178–1186.

    Hall TA(1999)BioEdit:A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.Nucl.Acids Symp.Ser.41,95–98.

    Hobo T,Kowyama Y,Hattori T(1999)A bZIP factor,TRAB1,interacts with VP1 and mediates abscisic acid-induced transcription.Proc.Natl.Acad.Sci.USA 96,15348–15353.

    Hoth S,Niedermeier M,Feuerstein A,Hornig J,Sauer N(2010)An ABA-responsive element in the AtSUC1 promoter is involved in the regulation of AtSUC1 expression.Planta 232,911–923.

    Kim S,Kang JY,Cho DI,Park JH,Kim SY(2004)ABF2,an ABRE-binding bZIP factor,is an essential component of glucose signaling and its overexpression affects multiple stress tolerance.Plant J.40,75–87.

    Lambie EJ,Kimble J(1991)Two homologous regulatory genes,lin-12 and glp-1,have overlapping functions.Development 112,231–240.

    Nakashima K,Fujita Y,Katsura K,Maruyama K,Narusaka Y,Seki M,Shinozaki K,Yamaguchi-Shinozaki K(2006)Transcriptional regulation of ABI3-and ABA-responsive genes including RD29B and RD29A in seeds,germinating embryos,and seedlings of Arabidopsis.Plant Mol.Biol.60,51–68.

    Narusaka Y,Nakashima K,Shinwari ZK,Sakuma Y,Furihata T,Abe H,Narusaka M,Shinozaki K,Yamaguchi-Shinozaki K(2003)Interaction between two cis-acting elements,ABRE and DRE,in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses.Plant J.34,137–148.

    Nieminen K,Robischon M,Immanen J,Helariutta Y(2012)Towards optimizing wood development in bioenergy trees.New Phytol.194,46–53.

    Pickett FB,Meeks-Wagner DR(1995)Seeing double:Appreciating genetic redundancy.Plant Cell 7,1347–1356.

    Rushton DL,Tripathi P,Rabara RC,Lin J,Ringler P,Boken AK,Langum TJ,Smidt L,Boomsma DD,Emme NJ,Chen X,Finer JJ,Shen QJ,Rushton PJ(2012)WRKY transcription factors:Key components in abscisic acid signalling.Plant Biotechnol.J.10,2–11.

    Shao Y,Wei G,Wang L,Dong Q,Zhao Y,Chen B,Xiang Y(2011)Genome-wide analysis of BURP domain-containing genes in Populus trichocarpa.J.Integr.Plant Biol.53,743–755.

    Shen Q,Zhang P,Ho TH(1996)Modular nature of abscisic acid(ABA)response complexes:Composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley.Plant Cell 8,1107–1119.

    Shinozaki K,Yamaguchi-Shinozaki K,Seki M(2003)Regulatory network of gene expression in the drought and cold stress responses.Curr.Opin.Plant Biol.6,410–417.

    Swarbreck D,Wilks C,Lamesch P,Berardini TZ,Garcia-Hernandez M,Foerster H,Li D,Meyer T,Muller R,Ploetz L,Radenbaugh A,Singh S,Swing V,Tissier C,Zhang P,Huala E(2008)The Arabidopsis Information Resource(TAIR):Gene structure and function annotation.Nucleic Acids Res.36,D1009–1014.

    Tamura K,Peterson D,Peterson N,Stecher G,Nei M,Kumar S(2011)MEGA5:Molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods.Mol.Biol.Evol.28,2731–2739.

    Tuskan GA,Difazio S,Jansson S,Bohlmann J,Grigoriev I,Hellsten U,Putnam N,Ralph S,Rombauts S,Salamov A,Schein J,Sterck L,Aerts A,Bhalerao RR,Bhalerao RP,Blaudez D,Boerjan W,Brun A,Brunner A,Busov V,Campbell M,Carlson J,Chalot M,Chapman J,Chen GL,Cooper D,Coutinho PM,Couturier J,Covert S,Cronk Q,Cunningham R,Davis J,Degroeve S,Dejardin A,Depamphilis C,Detter J,Dirks B,Dubchak I,Duplessis S,Ehlting J,Ellis B,Gendler K,Goodstein D,Gribskov M,Grimwood J,Groover A,Gunter L,Hamberger B,Heinze B,Helariutta Y,Henrissat B,Holligan D,Holt R,Huang W,Islam-Faridi N,Jones S,Jones-Rhoades M,Jorgensen R,Joshi C,Kangasjarvi J,Karlsson J,Kelleher C,Kirkpatrick R,Kirst M,Kohler A,Kalluri U,Larimer F,Leebens-Mack J,Leple JC,Locascio P,Lou Y,Lucas S,Martin F,Montanini B,Napoli C,Nelson DR,Nelson C,Nieminen K,Nilsson O,Pereda V,Peter G,Philippe R,Pilate G,Poliakov A,Razumovskaya J,Richardson P,Rinaldi C,Ritland K,Rouze P,Ryaboy D,Schmutz J,Schrader J,Segerman B,Shin H,Siddiqui A,Sterky F,Terry A,Tsai CJ,Uberbacher E,Unneberg P,Vahala J,Wall K,Wessler S,Yang G,Yin T,Douglas C,Marra M,Sandberg G,Van de Peer Y,Rokhsar D(2006)The genome of black cottonwood,Populus trichocarpa(Torr.&Gray).Science 313,1596–1604.

    Uno Y,Furihata T,Abe H,Yoshida R,Shinozaki K,Yamaguchi-Shinozaki K(2000)Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions.Proc.Natl.Acad.Sci.USA 97,11632–11637.

    Yamaguchi-Shinozaki K,Shinozaki K(2005)Organization of cisacting regulatory elements in osmotic-and cold-stress-responsive promoters.Trends Plant Sci.10,88–94.

    Yamaguchi-Shinozaki K,Shinozaki K(2006)Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses.Annu.Rev.Plant Biol.57,781–803.

    Yoshida T,Fujita Y,Sayama H,Kidokoro S,Maruyama K,Mizoi J,Shinozaki K,Yamaguchi-Shinozaki K(2010)AREB1,AREB2,and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation.Plant J.61,672–685.

    Zhu JK(2002)Salt and drought stress signal transduction in plants.Annu.Rev.Plant Biol.53,247–273.

    Zhuang J,Cai B,Peng RH,Zhu B,Jin XF,Xue Y,Gao F,Fu XY,Tian YS,Zhao W,Qiao YS,Zhang Z,Xiong AS,Yao QH(2008)Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa.Biochem.Biophys.Res.Commun.371,468–474.

    Supporting Information

    Additional Supporting Information may be found in the online version of this article:

    Table S1.Primers used for qRT-PCR analysis.

    超色免费av| 欧美黑人精品巨大| www.999成人在线观看| 人成视频在线观看免费观看| 欧美日韩亚洲国产一区二区在线观看 | 纵有疾风起免费观看全集完整版| 男女之事视频高清在线观看| 蜜桃在线观看..| netflix在线观看网站| 久久久国产成人免费| 亚洲精品一二三| 国产成人系列免费观看| 久久久水蜜桃国产精品网| 母亲3免费完整高清在线观看| 久久久久国内视频| 中文欧美无线码| 亚洲精品美女久久久久99蜜臀| 一本综合久久免费| 人妻 亚洲 视频| 亚洲国产欧美日韩在线播放| 在线观看舔阴道视频| 国产精品久久久久成人av| 韩国精品一区二区三区| 精品少妇黑人巨大在线播放| 国产精品美女特级片免费视频播放器 | 久久久国产欧美日韩av| 国产亚洲欧美98| 美女午夜性视频免费| 又紧又爽又黄一区二区| h日本视频在线播放| 久久国产乱子伦精品免费另类| 亚洲国产欧洲综合997久久,| 成人av在线播放网站| 国产高清三级在线| 亚洲熟女毛片儿| 99久久精品热视频| 亚洲五月天丁香| 老司机福利观看| 久久久精品大字幕| 成人一区二区视频在线观看| 国产人伦9x9x在线观看| a在线观看视频网站| 琪琪午夜伦伦电影理论片6080| 国产一区二区三区在线臀色熟女| 久久久水蜜桃国产精品网| 变态另类丝袜制服| 久久九九热精品免费| 午夜久久久久精精品| 国产精品1区2区在线观看.| 色av中文字幕| 亚洲av五月六月丁香网| 欧美一区二区精品小视频在线| www日本黄色视频网| 亚洲自拍偷在线| 两性午夜刺激爽爽歪歪视频在线观看| 男女视频在线观看网站免费| 久久精品国产清高在天天线| 欧美在线黄色| 成年女人永久免费观看视频| 淫秽高清视频在线观看| 久久久精品欧美日韩精品| 在线观看66精品国产| 99热这里只有是精品50| 啦啦啦韩国在线观看视频| 老司机福利观看| 国产精品99久久久久久久久| 一级a爱片免费观看的视频| 在线观看美女被高潮喷水网站 | 日韩欧美 国产精品| 一进一出抽搐gif免费好疼| 精品久久久久久久人妻蜜臀av| 日韩有码中文字幕| 国产高清有码在线观看视频| av在线天堂中文字幕| x7x7x7水蜜桃| 天天一区二区日本电影三级| 不卡一级毛片| 国产三级中文精品| 在线十欧美十亚洲十日本专区| 国产人伦9x9x在线观看| 男人和女人高潮做爰伦理| 欧美黑人巨大hd| 校园春色视频在线观看| 成人特级黄色片久久久久久久| 成人三级黄色视频| 宅男免费午夜| 1024香蕉在线观看| 亚洲熟女毛片儿| 91九色精品人成在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲精华国产精华精| 亚洲国产中文字幕在线视频| 亚洲欧美精品综合一区二区三区| 一进一出抽搐gif免费好疼| 久久久国产欧美日韩av| 欧美日韩综合久久久久久 | 变态另类成人亚洲欧美熟女| 婷婷精品国产亚洲av在线| 国产精品自产拍在线观看55亚洲| 又爽又黄无遮挡网站| 久久久久国产精品人妻aⅴ院| 国产真人三级小视频在线观看| 两个人视频免费观看高清| 特大巨黑吊av在线直播| 亚洲一区二区三区色噜噜| 女生性感内裤真人,穿戴方法视频| 操出白浆在线播放| 不卡av一区二区三区| 美女免费视频网站| a级毛片a级免费在线| 亚洲精品中文字幕一二三四区| 琪琪午夜伦伦电影理论片6080| 日日干狠狠操夜夜爽| 亚洲av电影不卡..在线观看| 精品一区二区三区视频在线观看免费| 亚洲精品国产精品久久久不卡| 老司机午夜十八禁免费视频| 三级男女做爰猛烈吃奶摸视频| 国产私拍福利视频在线观看| 免费在线观看亚洲国产| 成年版毛片免费区| 99在线人妻在线中文字幕| 很黄的视频免费| 又黄又粗又硬又大视频| 久久99热这里只有精品18| 俺也久久电影网| 高潮久久久久久久久久久不卡| 成年女人看的毛片在线观看| 久久久精品欧美日韩精品| 91麻豆av在线| 一区二区三区高清视频在线| 嫩草影院精品99| 成年女人毛片免费观看观看9| 亚洲av五月六月丁香网| 久久香蕉国产精品| 久久草成人影院| 激情在线观看视频在线高清| 久久香蕉国产精品| 亚洲国产中文字幕在线视频| 男人舔女人的私密视频| 亚洲五月天丁香| 夜夜躁狠狠躁天天躁| 精品电影一区二区在线| 男女视频在线观看网站免费| 成人精品一区二区免费| 国产不卡一卡二| 中国美女看黄片| 免费在线观看日本一区| 国产一区二区在线观看日韩 | 一本一本综合久久| 欧美乱色亚洲激情| 日韩欧美三级三区| 成年免费大片在线观看| 手机成人av网站| 18禁国产床啪视频网站| bbb黄色大片| 熟妇人妻久久中文字幕3abv| 丰满的人妻完整版| 国产成人av教育| 又黄又粗又硬又大视频| 免费电影在线观看免费观看| 亚洲五月天丁香| 99久久综合精品五月天人人| 真实男女啪啪啪动态图| 男女午夜视频在线观看| 国产精品免费一区二区三区在线| 亚洲精品国产精品久久久不卡| 国产亚洲av嫩草精品影院| 99热精品在线国产| 又粗又爽又猛毛片免费看| 极品教师在线免费播放| 久久久国产成人精品二区| 国产精品国产高清国产av| 草草在线视频免费看| 久久久久九九精品影院| 欧美大码av| av天堂中文字幕网| 国产极品精品免费视频能看的| 亚洲精品在线美女| 亚洲真实伦在线观看| 国产私拍福利视频在线观看| 色播亚洲综合网| 好男人在线观看高清免费视频| 老司机午夜福利在线观看视频| 少妇的逼水好多| 日韩欧美国产一区二区入口| 18美女黄网站色大片免费观看| 亚洲人成网站高清观看| 亚洲精品在线美女| 免费电影在线观看免费观看| 天天添夜夜摸| 久久精品影院6| 国产精品九九99| 欧美日韩乱码在线| 日本免费a在线| 成人av在线播放网站| 99热这里只有是精品50| 人人妻,人人澡人人爽秒播| av在线天堂中文字幕| 国产97色在线日韩免费| 丁香六月欧美| 搞女人的毛片| 久久精品91蜜桃| www.自偷自拍.com| 国产又色又爽无遮挡免费看| 国产三级黄色录像| 亚洲欧美一区二区三区黑人| 99热6这里只有精品| 亚洲午夜理论影院| 他把我摸到了高潮在线观看| 欧美黄色淫秽网站| 999久久久国产精品视频| 亚洲av第一区精品v没综合| 国产在线精品亚洲第一网站| 国产三级在线视频| 最近在线观看免费完整版| 国产人伦9x9x在线观看| 日本黄色视频三级网站网址| 色吧在线观看| ponron亚洲| 亚洲熟妇中文字幕五十中出| 国产日本99.免费观看| 成人高潮视频无遮挡免费网站| 久久人人精品亚洲av| 91久久精品国产一区二区成人 | 国产av不卡久久| 天天躁日日操中文字幕| 久久热在线av| 每晚都被弄得嗷嗷叫到高潮| 黄频高清免费视频| xxx96com| 身体一侧抽搐| or卡值多少钱| 特大巨黑吊av在线直播| 9191精品国产免费久久| 一区二区三区高清视频在线| 九色成人免费人妻av| 夜夜爽天天搞| 日韩精品青青久久久久久| 91麻豆精品激情在线观看国产| 色噜噜av男人的天堂激情| 18禁美女被吸乳视频| 国产成人aa在线观看| 国内久久婷婷六月综合欲色啪| 少妇的逼水好多| 九九在线视频观看精品| 国产一区在线观看成人免费| 露出奶头的视频| www.www免费av| 亚洲第一欧美日韩一区二区三区| 可以在线观看毛片的网站| 亚洲 欧美 日韩 在线 免费| 在线视频色国产色| 亚洲精品一区av在线观看| 国产精品香港三级国产av潘金莲| 色吧在线观看| 亚洲中文av在线| 亚洲五月天丁香| 日韩大尺度精品在线看网址| 国产精品久久久久久精品电影| 亚洲成人久久爱视频| 91在线观看av| 午夜福利18| 色综合亚洲欧美另类图片| 国产91精品成人一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 久久香蕉国产精品| 免费人成视频x8x8入口观看| 免费在线观看亚洲国产| 亚洲va日本ⅴa欧美va伊人久久| 日本精品一区二区三区蜜桃| 日本三级黄在线观看| 欧美日本亚洲视频在线播放| 99riav亚洲国产免费| 啦啦啦观看免费观看视频高清| 99久久久亚洲精品蜜臀av| 亚洲av成人不卡在线观看播放网| 中文字幕人成人乱码亚洲影| 欧美黑人欧美精品刺激| 欧美最黄视频在线播放免费| 国内久久婷婷六月综合欲色啪| 久久人人精品亚洲av| 久久性视频一级片| 国产激情偷乱视频一区二区| 亚洲av片天天在线观看| 国产精品1区2区在线观看.| 日日摸夜夜添夜夜添小说| 真人做人爱边吃奶动态| 99国产精品一区二区三区| 亚洲电影在线观看av| 亚洲精品一区av在线观看| 床上黄色一级片| 在线观看免费午夜福利视频| 制服人妻中文乱码| 亚洲国产精品合色在线| 黄色丝袜av网址大全| 国产精品国产高清国产av| 欧美黄色片欧美黄色片| 青草久久国产| 啦啦啦观看免费观看视频高清| 此物有八面人人有两片| 俄罗斯特黄特色一大片| 中文字幕av在线有码专区| 亚洲18禁久久av| 亚洲欧洲精品一区二区精品久久久| 亚洲国产精品sss在线观看| 熟女人妻精品中文字幕| 日本黄大片高清| 日韩高清综合在线| 三级男女做爰猛烈吃奶摸视频| 亚洲av熟女| 久久精品亚洲精品国产色婷小说| 亚洲av电影在线进入| 国产激情欧美一区二区| 老汉色av国产亚洲站长工具| 国产精品电影一区二区三区| 宅男免费午夜| 国产高清三级在线| 99精品欧美一区二区三区四区| 精品久久久久久久久久久久久| 少妇丰满av| 亚洲第一欧美日韩一区二区三区| 丁香欧美五月| 老司机福利观看| 精品久久久久久,| 国产美女午夜福利| 97碰自拍视频| 黄色片一级片一级黄色片| 亚洲一区二区三区色噜噜| 男人的好看免费观看在线视频| av福利片在线观看| 精品久久久久久久末码| 亚洲精品一卡2卡三卡4卡5卡| 99国产精品一区二区蜜桃av| 免费无遮挡裸体视频| 一个人免费在线观看电影 | 午夜福利欧美成人| 成人三级做爰电影| 美女午夜性视频免费| www国产在线视频色| 亚洲美女黄片视频| 成人鲁丝片一二三区免费| 国产精品影院久久| 99久久精品国产亚洲精品| 神马国产精品三级电影在线观看| 亚洲人与动物交配视频| 午夜免费成人在线视频| 亚洲一区高清亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| 婷婷丁香在线五月| 少妇丰满av| 欧美另类亚洲清纯唯美| 国产免费av片在线观看野外av| 欧美中文综合在线视频| 丰满的人妻完整版| 99热这里只有是精品50| 床上黄色一级片| 脱女人内裤的视频| 九九热线精品视视频播放| 亚洲av中文字字幕乱码综合| 中文字幕熟女人妻在线| 国产精品99久久久久久久久| 成人午夜高清在线视频| 激情在线观看视频在线高清| 18美女黄网站色大片免费观看| av天堂中文字幕网| 国产亚洲av嫩草精品影院| 动漫黄色视频在线观看| 国产真实乱freesex| 一区二区三区高清视频在线| 午夜激情福利司机影院| 亚洲成人精品中文字幕电影| www国产在线视频色| 亚洲国产精品sss在线观看| 狂野欧美激情性xxxx| 久久国产乱子伦精品免费另类| 性欧美人与动物交配| 亚洲国产精品999在线| 国产69精品久久久久777片 | 午夜精品一区二区三区免费看| 亚洲熟妇中文字幕五十中出| 一级毛片高清免费大全| 偷拍熟女少妇极品色| 亚洲成av人片在线播放无| 久久中文字幕人妻熟女| 久久精品亚洲精品国产色婷小说| 99国产精品一区二区蜜桃av| 在线观看免费视频日本深夜| 1024手机看黄色片| av福利片在线观看| 两性夫妻黄色片| 精品一区二区三区视频在线观看免费| 欧美日韩一级在线毛片| 日本五十路高清| 又爽又黄无遮挡网站| www日本黄色视频网| 亚洲男人的天堂狠狠| av欧美777| 在线播放国产精品三级| 亚洲熟妇中文字幕五十中出| 看黄色毛片网站| av在线天堂中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 日本 欧美在线| 久久国产精品影院| 亚洲成av人片免费观看| 日韩精品青青久久久久久| av片东京热男人的天堂| 国产精品久久久av美女十八| 蜜桃久久精品国产亚洲av| 国产精品久久久久久精品电影| 观看免费一级毛片| 久久精品综合一区二区三区| 久久精品国产综合久久久| 观看美女的网站| 不卡av一区二区三区| 欧美黑人巨大hd| 夜夜看夜夜爽夜夜摸| 麻豆成人午夜福利视频| 男女午夜视频在线观看| 美女扒开内裤让男人捅视频| 久久精品国产清高在天天线| 国产精品电影一区二区三区| 国产精品女同一区二区软件 | 欧美成狂野欧美在线观看| 国产精品综合久久久久久久免费| 精品一区二区三区四区五区乱码| 人人妻人人澡欧美一区二区| 国产精品久久电影中文字幕| 欧美黑人欧美精品刺激| 亚洲av成人一区二区三| 搡老妇女老女人老熟妇| 又紧又爽又黄一区二区| 在线观看日韩欧美| 亚洲真实伦在线观看| 精品日产1卡2卡| 男女做爰动态图高潮gif福利片| 最新美女视频免费是黄的| АⅤ资源中文在线天堂| 亚洲一区二区三区不卡视频| 亚洲精华国产精华精| 999久久久精品免费观看国产| 黄色片一级片一级黄色片| 亚洲自拍偷在线| 国产成人啪精品午夜网站| 97超视频在线观看视频| 成人欧美大片| 亚洲精品粉嫩美女一区| 国产伦精品一区二区三区四那| 一个人免费在线观看的高清视频| 欧美日韩瑟瑟在线播放| 国产亚洲av嫩草精品影院| 日韩人妻高清精品专区| 国内久久婷婷六月综合欲色啪| 美女黄网站色视频| 精品久久久久久久人妻蜜臀av| 免费观看人在逋| 欧美不卡视频在线免费观看| tocl精华| 亚洲自拍偷在线| 成人18禁在线播放| 免费高清视频大片| 亚洲专区字幕在线| 亚洲av第一区精品v没综合| av天堂中文字幕网| 熟女人妻精品中文字幕| 啦啦啦免费观看视频1| 久久午夜综合久久蜜桃| 女生性感内裤真人,穿戴方法视频| 国产亚洲精品av在线| 免费人成视频x8x8入口观看| 老汉色∧v一级毛片| 桃色一区二区三区在线观看| 久久久成人免费电影| 欧美一级a爱片免费观看看| 成在线人永久免费视频| 老熟妇乱子伦视频在线观看| 香蕉国产在线看| 99国产极品粉嫩在线观看| 精品久久久久久成人av| 18禁国产床啪视频网站| 亚洲国产欧美网| 欧美成人性av电影在线观看| 全区人妻精品视频| 国产视频内射| 国产蜜桃级精品一区二区三区| 天堂网av新在线| 叶爱在线成人免费视频播放| 国产亚洲av高清不卡| 国产麻豆成人av免费视频| 国产真人三级小视频在线观看| xxx96com| 叶爱在线成人免费视频播放| 黑人巨大精品欧美一区二区mp4| 熟女人妻精品中文字幕| 一a级毛片在线观看| 天堂网av新在线| 久久久久久大精品| 成人国产综合亚洲| 99精品久久久久人妻精品| 一级a爱片免费观看的视频| 日韩欧美国产在线观看| 欧美性猛交黑人性爽| 757午夜福利合集在线观看| 午夜免费激情av| 日韩精品青青久久久久久| 亚洲男人的天堂狠狠| 亚洲熟妇熟女久久| 欧美日韩瑟瑟在线播放| 久久久国产成人免费| 一级a爱片免费观看的视频| 国产在线精品亚洲第一网站| 我要搜黄色片| 精品一区二区三区视频在线观看免费| 国产精品亚洲av一区麻豆| 免费av毛片视频| 天堂av国产一区二区熟女人妻| 国产成人精品无人区| 999久久久精品免费观看国产| 国产97色在线日韩免费| 岛国视频午夜一区免费看| 99久久99久久久精品蜜桃| 久久精品91无色码中文字幕| 日韩欧美国产一区二区入口| 国产激情久久老熟女| 老汉色av国产亚洲站长工具| 久久久久国产精品人妻aⅴ院| 欧美色视频一区免费| 色在线成人网| 亚洲在线观看片| 亚洲欧美一区二区三区黑人| 黄色 视频免费看| www国产在线视频色| 中文字幕人妻丝袜一区二区| 亚洲欧美日韩东京热| 久9热在线精品视频| 国产一区在线观看成人免费| 窝窝影院91人妻| 国产精品久久久久久人妻精品电影| 一进一出抽搐gif免费好疼| 亚洲av电影不卡..在线观看| 国产精品九九99| 国语自产精品视频在线第100页| 午夜精品久久久久久毛片777| 午夜福利欧美成人| 成人精品一区二区免费| 这个男人来自地球电影免费观看| 欧美日本亚洲视频在线播放| 91老司机精品| 欧美激情在线99| 18禁观看日本| www.精华液| 久久久久久久午夜电影| 婷婷亚洲欧美| 中文字幕精品亚洲无线码一区| 草草在线视频免费看| 欧美高清成人免费视频www| 18禁裸乳无遮挡免费网站照片| 人人妻人人澡欧美一区二区| 久久午夜综合久久蜜桃| 国产黄色小视频在线观看| 1000部很黄的大片| 欧洲精品卡2卡3卡4卡5卡区| 色综合站精品国产| 久久国产精品影院| 国产精品亚洲av一区麻豆| 长腿黑丝高跟| 亚洲午夜精品一区,二区,三区| 午夜精品久久久久久毛片777| av欧美777| netflix在线观看网站| 毛片女人毛片| 最新中文字幕久久久久 | 十八禁网站免费在线| 日韩精品中文字幕看吧| 美女 人体艺术 gogo| 黄片小视频在线播放| 国产精品99久久久久久久久| 国产真实乱freesex| 久久精品国产亚洲av香蕉五月| 在线观看舔阴道视频| 久久午夜亚洲精品久久| www日本黄色视频网| 美女被艹到高潮喷水动态| 久久亚洲真实| 精品人妻1区二区| 国产成人av激情在线播放| 欧美在线一区亚洲| 久久久久久九九精品二区国产| www.精华液| 极品教师在线免费播放| 1000部很黄的大片| 高清在线国产一区| 制服丝袜大香蕉在线| 一区二区三区高清视频在线| 黄色丝袜av网址大全| 国产黄色小视频在线观看| 999久久久国产精品视频| 久久午夜综合久久蜜桃| 欧美成人性av电影在线观看| www.自偷自拍.com| 亚洲人成网站高清观看| 国产精品久久久久久人妻精品电影| 日本五十路高清| 免费观看精品视频网站| 18美女黄网站色大片免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 99久久精品一区二区三区| 久久天躁狠狠躁夜夜2o2o| 美女大奶头视频| 久久久久久久久中文| 男人和女人高潮做爰伦理| 久久精品国产亚洲av香蕉五月| 久久久久免费精品人妻一区二区| 国产真实乱freesex|