• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification and Characterization of the Populus AREB/ABF Subfamily

    2013-11-22 03:38:22LexiangJiJiaWangMeixiaYeYingLiBinGuoZhongChenHaoLiandXinminAn
    Journal of Integrative Plant Biology 2013年2期

    Lexiang Ji,Jia Wang,Meixia Ye,Ying Li,Bin Guo,Zhong Chen,Hao Li and Xinmin An

    National Engineering Laboratory for Tree Breeding,NDRC;Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants,MOE;The Tree and Ornamental Plant Breeding and Biotechnology Laboratory,SFA,College of Biological Sciences and Biotechnology,Beijing Forestry University,Beijing 100083,China

    Introduction

    Abscisic acid(ABA)is a major plant hormone that plays a fundamental role in vegetative tissue responses and adaptation to abiotic and biotic stresses,such as drought,high salinity,seed maturation,and dormancy(Bray et al.2000;Shinozaki et al.2003).However,the mechanism of ABA in cold-stressresponse gene expression remains unclear(Yamaguchi-Shinozaki and Shinozaki 2006).Previous research has suggested that genes that are induced by dehydration and cold stresses are unresponsive to exogenous application of ABA(Zhu 2002;Shinozaki et al.2003;Yamaguchi-Shinozaki and Shinozaki 2005),implying the existence of both ABA-independent and-dependent pathways.

    Most ABA-induced genes contain the cis-acting ABA-responsive element(ABRE;PyACGTGGC)in their promoter regions(Bray 1994;Busk and Pages 1998).Researchers have found that ABA-responsive gene expression requires multiple ABREs or the combination of an ABRE with a coupling element(CE)as a functional promoter(Shen et al.1996;Hobo et al.1999;Narusaka et al.2003).Furthermore,ABREs control gene expression via bZIP-type ABA-responsive element binding protein/ABRE-binding factor(AREB/ABF)transcription factors(Yoshida et al.2010).The ABRE-binding(AREB)proteins,or ABRE-binding factors(ABFs),of Arabidopsis thaliana have been isolated using the yeast one-hybrid screening method(Choi et al.2000;Uno et al.2000).The ABF1 protein is induced by cold but not by osmotic stress(Kim et al.2004;Fujita et al.2005).AREB1/ABF2,AREB2/ABF4,and ABF3 are induced by dehydration,high salinity,or ABA treatment in vegetative tissue(Fujita et al.2005).These three proteins are primary transcription factors that cooperatively regulate ABRE-dependent gene expression for ABA signaling under conditions of water stress(Yoshida et al.2010).AREB3 was not detected in either stressed or unstressed plants(Uno et al.2000).

    Populus trichocarpa is a species of deciduous broadleaf tree that is highly valued for conservation and timber production.P.trichocarpa also has great potential as a sustainable and renewable cellulose-based biofuel and is regarded as an alternative to fossil fuels in the future(Nieminen et al.2012).However,the growth and productivity of Populus are substantially affected by abiotic stresses,including drought,high salinity,and low temperature(Zhuang et al.2008).

    The full genome sequence of P.trichocarpa was published in 2006(Tuskan et al.2006),allowing genome-wide analyses of the AREB/ABF subfamily.In the present study,we performed a comprehensive bioinformatics analysis of the Populus AREB/ABF subfamily.Tissue-specific expression profiles were investigated in eight tissue types.Furthermore,we analyzed member transcript patterns under ABA treatment.Both in silico analysis and tissue-specific and induced-expression patterns provided an integrated perspective on this protein subfamily.

    Table 1.AREB/ABF subfamily in Populus trichocarpa

    Results

    Isolation of the AREB/ABF subfamily in Populus trichocarpa

    From the genome of A.thaliana,five AREB/ABF members were selected as bait:ABF1,AREB1/ABF2,ABF3,AREB2/ABF4,and AREB3.We applied a comprehensive two-step search process,because splicing isoforms existed at four loci.First,we used the five primary gene models(sensu TAIR)corresponding to the Arabidopsis AREB/ABF members to search within the database,and found 14 distinct genes.Second,all gene models from Arabidopsis were used in the database search query,with results similar to step one.Finally,the 14 genes were identified as putative members of the Populus AREB/ABF subfamily(Table 1).Locus POPTR_0004s14790 contained a splicing isoform that reached the E-value threshold.For more comprehensive results,we used this isoform in the subsequent analysis.Based on the functional annotations in Phytozome v8.0(Goodstein et al.2012),each of the 15 protein sequences had a basic leucine zipper(bZIP),which is characteristic of bZIP transcription factors.Six members had orthologues defined as ABA-responsive element binding factors(Table 1).

    Protein structure in the Populus AREB/ABF subfamily

    Multiple protein sequence alignments of the 15 amino-acid sequences were performed in BioEdit,as shown in Figure 1.The length of the aligned sequences was 526 amino acids,with 141 sites identified as relatively conserved(threshold of 50%).Thirty-eight sites were completely conserved.All five Arabidopsis AREB/ABF members contained the bZIP domain,which consisted of two motifs:a leucine zipper responsible for TF(transcription factor)dimerization and a basic region involved in the specific binding of the TF to its target DNA(Fujita et al.2011).Whole-region analysis of the 15 Populus sequences showed that each contained a bZIP domain(Figure 1,circled by a dotted line),with lengths from 54 to 58 amino acids.Within the bZIP region,39 amino acids,occupying 70.5%of the total region,were relatively conserved and 19(34.3%)were completely conserved.Our results indicate the existence of high levels of protein similarity in the Populus AREB/ABF subfamily,especially in the bZIP domain region.As previously described,the gene PtAREB4 contains a splicing isoform at the same locus(Figure 1).In comparing the two sequences,we found that 19 amino acids present in PtAREB4.1 were not translated in PtAREB4.2,suggesting that a sequence deletion occurred in the transformation of mRNA from pre-mRNA.

    Phylogenetic relationships and gene structure

    To verify and elucidate the relationships between P.trichocarpa and A.thaliana AREB/ABF members,we constructed a phylogenetic tree of AREB/ABF proteins.Figure 2 shows that AREB1/ABF2,ABF3,AREB2/ABF4,and ABF1 are relatively closely related compared to AREB3.Eight of the 14 Populus members were shown to have relatively high similarities to AREB3.The other six members have high genetic similarities to AREB1/ABF2.

    Figure 2.Neighbor-joining tree of AREB/ABF proteins from Populus trichocarpa and Arabidopsis thaliana.The gene structure of each AREB/ABF gene in P.trichocarpa is shown.The blocks and lines represent exons and introns,respectively.The numbers above and below the exons and intron are sizes(bp).

    To further classify and analyze the relationships of the Populus AREB/ABF subfamily,we constructed gene structures for this subfamily(Figure 2).The genomic sequence lengths ranged from 1,426 to 4,680 base pairs(bp),with a maximum of seven exons in PtAREB6 and a minimum of three exons in PtAREB3.This indicated high variability of sequence lengths within this subfamily.A combined analysis of the phylogenetic linkage and gene structure indicated a homologous relationship.Three member proteins,PtAREB7,PtAREB11,and PtAREB12,were closely related on the tree.Furthermore,these three genes had similar structures to four of their exons in the gene sequences.Their genes were short,ranging from 3,274 to 3,682 bp,with each of their third exons being 1,011 bp long.The 11 other genes all contained an exon that was 72 bp long.Six of the genes had a 30-bp exon adjacent to the 72-bp exon.

    Locations of the Populus AREB/ABF subfamily

    All 14 Populus AREB/ABF genes were located on nine of the 19 chromosome scaffolds(Figure 3).Four scaffolds contained more than one locus,with PtAREB2 and PtAREB3 on Scaffold 2,PtAREB5 and PtAREB6 on Scaffold 6,PtAREB8,PtAREB9,and PtAREB10 on Scaffold 9,and PtAREB11 and PtAREB12 on Scaffold 10.The two genes on Scaffold 10 were relatively closely related and had a similar gene structure(Figure 2).

    Expression patterns of the AREB/ABF genes

    To identify the tissue-specific expression profiles of the Populus AREB/ABF subfamily,we performed qRT-PCR on eight different tissue types for 14 selected genes(Figure 4).Because the transcript levels of the 14 Populus AREB members varied so widely relative to each other,they were graphed on different scales.Based on normalized gene expression levels,young and mature leaf tissues had the most abundant transcripts of eleven genes(PtAREB1,3,4,5,6,7,9,10,11,12,and 13),while root tissue had the highest transcript levels of two genes(PtAREB8 and 14).Previous studies indicated that ABA regulates many crucial processes,including control of stomatal closure and adaptive responses to various abiotic stresses(Finkelstein et al.2002;Yamaguchi-Shinozaki and Shinozaki 2006).These tissue-specific patterns of Populus AREB members agree with the known functions of ABA.Three genes(PtAREB6,10,and 14)were detected in some,but not all,of the eight tissue types,and one additional gene(PtAREB8)had relatively weak transcript levels.In contrast,PtAREB13 had much higher expression levels than all other subfamily members in young and mature leaves.

    With exogenous application of ABA,eight genes(PtAREB2,3,5,6,7,8,10,and 14)were upregulated;the expressions of seven of them reached maximum levels after 12 h,then gradually decreased(Figure 5).Three members,PtAREB1,PtAREB11,and PtAREB12,were constantly downregulated under ABA stress,while the expressions of PtAREB4,PtAREB9,and PtAREB13 decreased rapidly during the initial 4 h,then gradually increased.

    Figure 3.Physical locations of Populus AREB/ABF genes on the scaffolds.The scale bar represents 2.0 Mb.Scaffold numbers and sizes(Mb)are indicated below each scaffold.

    Discussion

    The first complete plant genome sequenced was that of A.thaliana,which has one of the smallest plant genomes,with about 125 Mb pairs and five chromosomes(Swarbreck et al.2008).In contrast,the P.trichocarpa genome has about 485 Mb pairs and 19 chromosomes(Tuskan et al.2006),and is four times larger than that of Arabidopsis.To avoid false positives in the identification of putative members of the Populus AREB/ABF subfamily,we used an E-value threshold of 1e-30.This E value was small compared with previous studies on P.trichocarpa,such as those by Zhuang et al.(2008)and Shao et al.(2011).Only 14 genes met this threshold;all of them contained bZIP domains and were either upregulated or downregulated under ABA stress.We propose that the combination of in silico screens and qRT-PCR is a feasible method for genome-wide analysis of the Populus AREB/ABF subfamily.

    Figure 4.Expression analyses of 14 Populus AREB/ABF genes using qRT-PCR.The endogenous reference gene was poplar ACTIN.Error bars represent the standard deviation(SD)of three technical repeats.Letters on the x-axis are:R,root;S,stem;LB,leaf bud;L,leaf;ML,mature leaf;F,female floral bud;M,male floral bud;C,female catkin.

    Gene duplication is common in biological evolution.Previous reports showed that many mutations in functional genes had little or no phenotypic effects,suggesting that these mutations could be partly or completely compensated for by the activity of other genes;this process is called redundant genetic function(Lambie and Kimble 1991;Pickett and Meeks-Wagner 1995).Genes within a family of duplicates may have similar structures and functions,and partial redundancy is often seen among gene family members(Pickett and Meeks-Wagner 1995;Shao et al.2011).In this study,four scaffolds each contained more than one member of the AREB/ABF subfamily.Scaffolds 2,6,and 9 each contained AREB/ABF genes with partially or completely different gene structures and amino acid sequences,as well as different tissue-specific expression patterns.However,all of those members were upregulated under ABA stress except PtAREB9.On Scaffold 10,PtAREB11 and PtAREB12 had a relatively close phylogenetic relationship and similar gene structures;they also showed similar expression profiles in all eight tissues,and their expression levels decreased with the application of exogenous ABA.Only three genes were constantly suppressed under ABA stress.These data suggest that PtAREB11 and PtAREB12 may share some overlapping functions and compensate for one another.

    Figure 5.Expression profiles of Populus AREB/ABF members under Abscisic Acid(ABA)stress.The leaves were collected after 0(CK),4,8,12,or 24 h of exogenous 100μM ABA treatment.Poplar ACTIN was used as an endogenous reference gene.Error bars represent the standard deviation(SD)of three technical repeats.The normalized mRNA levels at 0 h were arbitrarily set to 1.

    The AREB3 gene was first cloned using yeast one-hybrid screening with the RD29B promoter,and it was undetected in both unstressed and stressed plants(Uno et al.2000).Of the 75 members of the bZIP family in the Arabidopsis genome,nine are considered to be involved in ABA signaling(Bensmihen et al.2002).Based on phylogenetic relationships and functional analyses,AREB3 was classified into the ABI5/AtDPBF subfamily,which also includes ABI5,EEL,DPBF2/AtbZIP67,and DPBF4.This family is mainly expressed in seeds and appears to play vital roles in seed maturation and development(Fujita et al.2011).In this study,we found that eight Populus AREB/ABF members were relatively closely related to AREB3.Interestingly,none of them were expressed like AREB3 in A.thaliana.All were detected in unstressed tissues;four were upregulated and four were downregulated by the ABA treatment.Hoth et al.(2010)identified the relatively closely related AREB3 and ABI5 as potential interactors.Other researchers also suggested that ABI5 was upregulated under abiotic stresses(Nakashima et al.2006).These cited studies may partially explain the expression profiles of the Populus AREB/ABF members.

    The other four AREB/ABF members,including AREB1/ABF2,AREB2/ABF4,ABF1,and ABF3,are mainly expressed in vegetative tissues under abiotic stress conditions(Fujita et al.2011).ABF1 is not induced by osmotic stress,including ABA treatment(Fujita et al.2005).In this study,all 14 AREB/ABF members were either enhanced or repressed by exogenous ABA.The responses of these genes to ABA may be species-specific and may imply complex ABA transcriptional regulatory networks in Populus.

    Many abiotic stress-related transcription factors can be activated or repressed by WRKY proteins.The AtWRKY40-ABI5-AtWRKY63 module is part of the ABA-signaling network.In this module,AtWRKY40 is upstream of ABI5,and it represses the expression of ABI5 under unstressed conditions.As ABA accumulates,AtWRKY40 moves out of the nucleus,which de-represses ABI5 at the transcriptional level.Activation of ABI5 induces the downstream AtWRKY63,which then activates further downstream target genes such RD29A and ABF2(Rushton et al.2012).In this study,we found that six AREB/ABF members were downregulated under ABA stress,and three were constantly repressed under the stress.They may act as the upstream genes that repress ABA-induced genes in unstressed conditions,and may de-repress with when ABA is perceived by receptors.

    In summary,we performed a relatively complete bioinformatics analysis of the Populus AREB/ABF subfamily.We identified 14 genes as putative AREB/ABF genes and assessed their expressions in eight different tissue types via qRT-PCR.Eight were upregulated by ABA treatment,whereas six decreased in expression under the stress.These data indicated the complexity of Populus ABA-mediated transcriptional regulation networks.Our results will help elucidate the functions of the Populus AREB/ABF subfamily,providing clues for the identification of candidate genes involved in abiotic stress responses in plants.

    Materials and Methods

    Database search and sequence retrieval

    We obtained the Arabidopsis thaliana L.AREB/ABF sequences from The Arabidopsis Information Resource(TAIR)(Swarbreck et al.2008).To anchor the Populus AREB/ABF subfamily,the amino acid sequences of the Arabidopsis AREB/ABF members were used in our BLAST search using the Joint Genome Institute(JGI)Phytozome portal(Goodstein et al.2012).This search enabled us to identify sequence similarities using the latest(v2.2)JGI gene annotation of the v.2 Populus trichocarpa Torr.&Gray.assembly.We applied an E-value of 1e-30 to reduce false positives.

    Construction of the protein alignment

    The amino acid sequences retrieved from Phytozome were aligned using BioEdit 7.0.9 software(Hall 1999).We used a 50%threshold to define the relatively conserved regions of the amino-acid sequence.

    Phylogenetic tree and gene structure

    We constructed a neighbor-joining(NJ)tree with genetic distance matrices of protein sequences using the Poisson model,pairwise deletion,and the bootstrap method with 1000 replications in MEGA v.5.0 software(Tamura et al.2011).We used exon/intron data to build the gene structure for this study.

    Physical position of the AREB/ABF genes

    The physical locations of Populus AREB/ABF subfamily were analyzed using the JGI Populus v2.2 gene annotation.This annotation covered 403 Mb-pairs of the genome with an average assembled read depth of 7.45×,and assembled into 2,518 scaffolds(Goodstein et al.2012).The first 19 scaffolds from the assembly corresponded to the 19 poplar chromosomes that were formerly used to describe the P.trichocarpa genome(Tuskan et al.2006).However,more than 2,000 scaffolds remained unassembled to corresponding chromosomes;therefore,to characterize the physical locations of the genes,we used scaffolds rather than chromosomes,as described in Phytozome.

    Plant materials and treatment

    We selected eight different tissue types from Populus tomentosa Carr.for analysis.We collected female catkins,female floral buds,male floral buds,vegetative buds,and mature leaves from adult female(5082)and male(LM50)trees growing in the Beijing Forestry University nursery.Tissues were immediately placed in liquid nitrogen and stored at-80°C until RNA extraction.We collected samples of root,stem,and young leaf tissue from one-m-old tissue-cultured plantlets and extracted total RNA immediately after sampling.To test the effects of ABA treatment,roots of one-m-old tissue-cultured plantlets were submerged in a 100μM ABA solution(Choi et al.2000;Fujita et al.2005;Shao et al.2011),and leaves were harvested for immediate RNA extraction after 0,4,8,12,and 24 h.

    RNA isolation and qRT-PCR

    Total RNAs were extracted from combined samples of each tissue from multiple individuals using a modified CTAB method(Chang et al.1993).The mRNA was then pretreated with RQ1 DNase(Promega,Madison,WI,USA)to remove genomic DNA contaminants.Subsequently,first-strand cDNA was synthesized using mRNA as a template using the Reverse Transcription System(Promega).

    Quantitative real-time PCR(qRT-PCR)was performed in an ABI PRISM 7500 Fast Real-time PCR System(Applied Biosystems,Foster City,CA,USA)using the SYBR Premix Ex TaqTMKit(TaKaRa,Kyoto,Japan)with amplification conditions as recommended by TaKaRa.All reactions were run in triplicate for each sample,and the poplar ACTIN gene(Accession:AY261523.1)was selected as the endogenous control gene for normalization(An et al.2011).All primers are listed in Table S1.

    This work was supported by the Major State Basic Research Development Program(2012CB114505),the National Natural Science Foundation of China(31170631),and the National Hightech Research and Development Program(2011AA100201)of China.

    An X,Ye M,Wang D,Wang Z,Cao G,Zheng H,Zhang Z(2011)Ectopic expression of a poplar APETALA3-like gene in tobacco causes early flowering and fast growth.Biotechnol.Lett.33,1239–1247.

    Bensmihen S,Rippa S,Lambert G,Jublot D,Pautot V,Granier F,Giraudat J,Parcy F(2002)The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis.Plant Cell 14,1391–1403.

    Bray EA(1994)Alterations in gene expression in response to water deficit.In:Basra AS,ed.Stress-Induced Gene Expression in Plants.Amsterdam:273Harwood Academic,India.pp.1–23.

    Bray EA,Bailey-Serres J,Weretilnyk E(2000)Responses to abiotic stresses.In:Gruissem W,Buchannan B,Jones R,eds.Biochemistry and Molecular Biology of Plants.Amer.Soc.Plant Physiol.,Rockville,MD.pp.1158–1203.

    Busk PK,Pages M(1998)Regulation of abscisic acid-induced transcription.Plant Mol.Biol.37,425–435.

    Chang S,Puryear J,Cairney J(1993)A simple and efficient method for isolating RNA from pine trees.Plant Mol.Biol.Rep.11,113–116.

    Choi H,Hong J,Ha J,Kang J,Kim SY(2000)ABFs,a family of ABA-responsive element binding factors.J.Biol.Chem.275,1723–1730.

    Finkelstein RR,Gampala SS,Rock CD(2002)Abscisic acid signaling in seeds and seedlings.Plant Cell 14 Suppl,S15–45.

    Fujita Y,Fujita M,Satoh R,Maruyama K,Parvez MM,Seki M,Hiratsu K,Ohme-Takagi M,Shinozaki K,Yamaguchi-Shinozaki K(2005)AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis.Plant Cell 17,3470–3488.

    Fujita Y,Fujita M,Shinozaki K,Yamaguchi-Shinozaki K(2011)ABA-mediated transcriptional regulation in response to osmotic stress in plants.J.Plant Res.124,509–525.

    Goodstein DM,Shu S,Howson R,Neupane R,Hayes RD,Fazo J,Mitros T,Dirks W,Hellsten U,Putnam N,Rokhsar DS(2012)Phytozome:A comparative platform for green plant genomics.Nucleic Acids Res.40,D1178–1186.

    Hall TA(1999)BioEdit:A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.Nucl.Acids Symp.Ser.41,95–98.

    Hobo T,Kowyama Y,Hattori T(1999)A bZIP factor,TRAB1,interacts with VP1 and mediates abscisic acid-induced transcription.Proc.Natl.Acad.Sci.USA 96,15348–15353.

    Hoth S,Niedermeier M,Feuerstein A,Hornig J,Sauer N(2010)An ABA-responsive element in the AtSUC1 promoter is involved in the regulation of AtSUC1 expression.Planta 232,911–923.

    Kim S,Kang JY,Cho DI,Park JH,Kim SY(2004)ABF2,an ABRE-binding bZIP factor,is an essential component of glucose signaling and its overexpression affects multiple stress tolerance.Plant J.40,75–87.

    Lambie EJ,Kimble J(1991)Two homologous regulatory genes,lin-12 and glp-1,have overlapping functions.Development 112,231–240.

    Nakashima K,Fujita Y,Katsura K,Maruyama K,Narusaka Y,Seki M,Shinozaki K,Yamaguchi-Shinozaki K(2006)Transcriptional regulation of ABI3-and ABA-responsive genes including RD29B and RD29A in seeds,germinating embryos,and seedlings of Arabidopsis.Plant Mol.Biol.60,51–68.

    Narusaka Y,Nakashima K,Shinwari ZK,Sakuma Y,Furihata T,Abe H,Narusaka M,Shinozaki K,Yamaguchi-Shinozaki K(2003)Interaction between two cis-acting elements,ABRE and DRE,in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses.Plant J.34,137–148.

    Nieminen K,Robischon M,Immanen J,Helariutta Y(2012)Towards optimizing wood development in bioenergy trees.New Phytol.194,46–53.

    Pickett FB,Meeks-Wagner DR(1995)Seeing double:Appreciating genetic redundancy.Plant Cell 7,1347–1356.

    Rushton DL,Tripathi P,Rabara RC,Lin J,Ringler P,Boken AK,Langum TJ,Smidt L,Boomsma DD,Emme NJ,Chen X,Finer JJ,Shen QJ,Rushton PJ(2012)WRKY transcription factors:Key components in abscisic acid signalling.Plant Biotechnol.J.10,2–11.

    Shao Y,Wei G,Wang L,Dong Q,Zhao Y,Chen B,Xiang Y(2011)Genome-wide analysis of BURP domain-containing genes in Populus trichocarpa.J.Integr.Plant Biol.53,743–755.

    Shen Q,Zhang P,Ho TH(1996)Modular nature of abscisic acid(ABA)response complexes:Composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley.Plant Cell 8,1107–1119.

    Shinozaki K,Yamaguchi-Shinozaki K,Seki M(2003)Regulatory network of gene expression in the drought and cold stress responses.Curr.Opin.Plant Biol.6,410–417.

    Swarbreck D,Wilks C,Lamesch P,Berardini TZ,Garcia-Hernandez M,Foerster H,Li D,Meyer T,Muller R,Ploetz L,Radenbaugh A,Singh S,Swing V,Tissier C,Zhang P,Huala E(2008)The Arabidopsis Information Resource(TAIR):Gene structure and function annotation.Nucleic Acids Res.36,D1009–1014.

    Tamura K,Peterson D,Peterson N,Stecher G,Nei M,Kumar S(2011)MEGA5:Molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods.Mol.Biol.Evol.28,2731–2739.

    Tuskan GA,Difazio S,Jansson S,Bohlmann J,Grigoriev I,Hellsten U,Putnam N,Ralph S,Rombauts S,Salamov A,Schein J,Sterck L,Aerts A,Bhalerao RR,Bhalerao RP,Blaudez D,Boerjan W,Brun A,Brunner A,Busov V,Campbell M,Carlson J,Chalot M,Chapman J,Chen GL,Cooper D,Coutinho PM,Couturier J,Covert S,Cronk Q,Cunningham R,Davis J,Degroeve S,Dejardin A,Depamphilis C,Detter J,Dirks B,Dubchak I,Duplessis S,Ehlting J,Ellis B,Gendler K,Goodstein D,Gribskov M,Grimwood J,Groover A,Gunter L,Hamberger B,Heinze B,Helariutta Y,Henrissat B,Holligan D,Holt R,Huang W,Islam-Faridi N,Jones S,Jones-Rhoades M,Jorgensen R,Joshi C,Kangasjarvi J,Karlsson J,Kelleher C,Kirkpatrick R,Kirst M,Kohler A,Kalluri U,Larimer F,Leebens-Mack J,Leple JC,Locascio P,Lou Y,Lucas S,Martin F,Montanini B,Napoli C,Nelson DR,Nelson C,Nieminen K,Nilsson O,Pereda V,Peter G,Philippe R,Pilate G,Poliakov A,Razumovskaya J,Richardson P,Rinaldi C,Ritland K,Rouze P,Ryaboy D,Schmutz J,Schrader J,Segerman B,Shin H,Siddiqui A,Sterky F,Terry A,Tsai CJ,Uberbacher E,Unneberg P,Vahala J,Wall K,Wessler S,Yang G,Yin T,Douglas C,Marra M,Sandberg G,Van de Peer Y,Rokhsar D(2006)The genome of black cottonwood,Populus trichocarpa(Torr.&Gray).Science 313,1596–1604.

    Uno Y,Furihata T,Abe H,Yoshida R,Shinozaki K,Yamaguchi-Shinozaki K(2000)Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions.Proc.Natl.Acad.Sci.USA 97,11632–11637.

    Yamaguchi-Shinozaki K,Shinozaki K(2005)Organization of cisacting regulatory elements in osmotic-and cold-stress-responsive promoters.Trends Plant Sci.10,88–94.

    Yamaguchi-Shinozaki K,Shinozaki K(2006)Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses.Annu.Rev.Plant Biol.57,781–803.

    Yoshida T,Fujita Y,Sayama H,Kidokoro S,Maruyama K,Mizoi J,Shinozaki K,Yamaguchi-Shinozaki K(2010)AREB1,AREB2,and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation.Plant J.61,672–685.

    Zhu JK(2002)Salt and drought stress signal transduction in plants.Annu.Rev.Plant Biol.53,247–273.

    Zhuang J,Cai B,Peng RH,Zhu B,Jin XF,Xue Y,Gao F,Fu XY,Tian YS,Zhao W,Qiao YS,Zhang Z,Xiong AS,Yao QH(2008)Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa.Biochem.Biophys.Res.Commun.371,468–474.

    Supporting Information

    Additional Supporting Information may be found in the online version of this article:

    Table S1.Primers used for qRT-PCR analysis.

    蜜桃久久精品国产亚洲av| 久久久精品大字幕| av福利片在线观看| 亚洲色图av天堂| 999久久久精品免费观看国产| 国产精品国产高清国产av| 日韩免费av在线播放| 亚洲片人在线观看| 亚洲精华国产精华精| 亚洲欧美激情综合另类| 麻豆一二三区av精品| 又紧又爽又黄一区二区| 国产真人三级小视频在线观看| 亚洲中文av在线| 午夜免费激情av| 蜜桃久久精品国产亚洲av| 成人永久免费在线观看视频| 亚洲国产精品999在线| 长腿黑丝高跟| 久久久精品欧美日韩精品| 国产一区二区激情短视频| 床上黄色一级片| 露出奶头的视频| 日本免费a在线| 精品久久久久久久末码| 18禁黄网站禁片午夜丰满| 99热6这里只有精品| 成熟少妇高潮喷水视频| www.熟女人妻精品国产| 国产成人啪精品午夜网站| 久久人妻av系列| 精品高清国产在线一区| 亚洲国产日韩欧美精品在线观看 | 久久天躁狠狠躁夜夜2o2o| 国产精华一区二区三区| 午夜老司机福利片| 特大巨黑吊av在线直播| 久久久久久久久免费视频了| 一级毛片精品| 国产伦在线观看视频一区| 欧美日韩瑟瑟在线播放| 久久久久久免费高清国产稀缺| av天堂在线播放| 国产不卡一卡二| 国产成年人精品一区二区| 久久人妻福利社区极品人妻图片| av视频在线观看入口| 免费看十八禁软件| 18禁黄网站禁片午夜丰满| 一卡2卡三卡四卡精品乱码亚洲| 99精品在免费线老司机午夜| 两个人的视频大全免费| 哪里可以看免费的av片| 亚洲欧美激情综合另类| 欧美日韩瑟瑟在线播放| 国产91精品成人一区二区三区| 国产乱人伦免费视频| 97碰自拍视频| 99国产综合亚洲精品| 99热6这里只有精品| 国产成人精品久久二区二区免费| 伊人久久大香线蕉亚洲五| 久久久久久久午夜电影| 国内精品久久久久久久电影| 亚洲自偷自拍图片 自拍| 亚洲成人精品中文字幕电影| 国产精品久久久久久人妻精品电影| 久久草成人影院| 亚洲自偷自拍图片 自拍| 天天躁狠狠躁夜夜躁狠狠躁| 啪啪无遮挡十八禁网站| 亚洲欧洲精品一区二区精品久久久| 一二三四在线观看免费中文在| 男女做爰动态图高潮gif福利片| 国产成人精品无人区| 成人三级做爰电影| 国产精品一区二区三区四区免费观看 | 国产片内射在线| 国产精品免费视频内射| 亚洲男人天堂网一区| 男人的好看免费观看在线视频 | 淫秽高清视频在线观看| 最新在线观看一区二区三区| 成年版毛片免费区| 国产欧美日韩精品亚洲av| 久9热在线精品视频| 黄色a级毛片大全视频| 久久久久久免费高清国产稀缺| 一二三四社区在线视频社区8| 一本一本综合久久| 色综合婷婷激情| 久久久久亚洲av毛片大全| 国产一区二区三区在线臀色熟女| 老司机午夜福利在线观看视频| 亚洲最大成人中文| 草草在线视频免费看| 一级片免费观看大全| 国产久久久一区二区三区| 欧美日韩精品网址| 五月玫瑰六月丁香| 老司机午夜十八禁免费视频| 国产精品99久久99久久久不卡| 久久精品国产亚洲av香蕉五月| a级毛片在线看网站| 久久人妻av系列| 麻豆久久精品国产亚洲av| 亚洲自拍偷在线| 亚洲无线在线观看| 色综合欧美亚洲国产小说| 手机成人av网站| 丰满的人妻完整版| 免费在线观看黄色视频的| 精品高清国产在线一区| 久久这里只有精品中国| 欧美色视频一区免费| 天堂av国产一区二区熟女人妻 | 国产欧美日韩一区二区精品| 又黄又粗又硬又大视频| av欧美777| 一本久久中文字幕| 看黄色毛片网站| 亚洲乱码一区二区免费版| 亚洲欧美一区二区三区黑人| 欧美一级毛片孕妇| 久久久久久免费高清国产稀缺| 亚洲国产欧美人成| 人妻久久中文字幕网| 变态另类成人亚洲欧美熟女| 欧美性猛交黑人性爽| e午夜精品久久久久久久| 特级一级黄色大片| 久久精品aⅴ一区二区三区四区| 桃红色精品国产亚洲av| 久久精品国产综合久久久| 成人三级黄色视频| 在线观看免费日韩欧美大片| 午夜日韩欧美国产| 久久精品夜夜夜夜夜久久蜜豆 | 婷婷亚洲欧美| 一二三四社区在线视频社区8| 午夜老司机福利片| 亚洲色图av天堂| 99精品欧美一区二区三区四区| 日本一区二区免费在线视频| 成人国产综合亚洲| 亚洲精品粉嫩美女一区| 国产激情久久老熟女| 一区二区三区激情视频| videosex国产| √禁漫天堂资源中文www| 一区二区三区激情视频| 一个人免费在线观看电影 | 日本成人三级电影网站| 久久久国产精品麻豆| 精品午夜福利视频在线观看一区| 不卡一级毛片| 男女之事视频高清在线观看| 国产高清videossex| 我的老师免费观看完整版| 国产精品爽爽va在线观看网站| 老司机午夜福利在线观看视频| 麻豆成人av在线观看| 亚洲18禁久久av| 国产日本99.免费观看| 欧美激情久久久久久爽电影| 国产亚洲欧美在线一区二区| 法律面前人人平等表现在哪些方面| 日韩中文字幕欧美一区二区| 国内毛片毛片毛片毛片毛片| 人妻丰满熟妇av一区二区三区| 久久久久亚洲av毛片大全| 免费搜索国产男女视频| 日日夜夜操网爽| 美女免费视频网站| 久9热在线精品视频| 国产成+人综合+亚洲专区| 欧美午夜高清在线| 久久久久久亚洲精品国产蜜桃av| 精品国产超薄肉色丝袜足j| 九九热线精品视视频播放| 欧美另类亚洲清纯唯美| 91字幕亚洲| 成人午夜高清在线视频| 亚洲 欧美一区二区三区| 国产三级在线视频| 亚洲成av人片免费观看| 曰老女人黄片| 淫秽高清视频在线观看| 在线播放国产精品三级| 亚洲 国产 在线| 大型av网站在线播放| 精品一区二区三区av网在线观看| av在线播放免费不卡| 亚洲五月婷婷丁香| 欧美日韩瑟瑟在线播放| 露出奶头的视频| 国内久久婷婷六月综合欲色啪| 国产成人精品久久二区二区免费| 国产主播在线观看一区二区| 午夜老司机福利片| 全区人妻精品视频| 成在线人永久免费视频| 夜夜躁狠狠躁天天躁| 欧美日本亚洲视频在线播放| 午夜精品久久久久久毛片777| 又黄又粗又硬又大视频| 久久久水蜜桃国产精品网| 欧美中文日本在线观看视频| 中文亚洲av片在线观看爽| 国产一区二区在线av高清观看| 精品久久蜜臀av无| 97碰自拍视频| 青草久久国产| 曰老女人黄片| 免费观看人在逋| 成人18禁高潮啪啪吃奶动态图| 黄色 视频免费看| 亚洲七黄色美女视频| 精品一区二区三区av网在线观看| 欧美日本亚洲视频在线播放| 婷婷精品国产亚洲av在线| 欧美黑人巨大hd| 国产1区2区3区精品| 午夜a级毛片| 国产麻豆成人av免费视频| 国产精品一区二区精品视频观看| 国产精品av久久久久免费| 中文字幕最新亚洲高清| 99re在线观看精品视频| 国产成人aa在线观看| 777久久人妻少妇嫩草av网站| 久久久久久大精品| 精品久久久久久久久久免费视频| 国产高清激情床上av| 黄色片一级片一级黄色片| 一二三四在线观看免费中文在| 天天添夜夜摸| 免费在线观看日本一区| 久久精品aⅴ一区二区三区四区| 国产成人一区二区三区免费视频网站| 亚洲国产高清在线一区二区三| 俄罗斯特黄特色一大片| 可以在线观看毛片的网站| av在线播放免费不卡| 三级毛片av免费| 国产视频一区二区在线看| 俄罗斯特黄特色一大片| 波多野结衣巨乳人妻| 少妇被粗大的猛进出69影院| 久久精品国产99精品国产亚洲性色| 日韩中文字幕欧美一区二区| 岛国在线免费视频观看| 看黄色毛片网站| 黄片小视频在线播放| 又爽又黄无遮挡网站| 两个人的视频大全免费| a级毛片在线看网站| 国产亚洲精品一区二区www| 美女高潮喷水抽搐中文字幕| 国产久久久一区二区三区| 久久久久亚洲av毛片大全| 禁无遮挡网站| 老熟妇乱子伦视频在线观看| 91av网站免费观看| 国产成人精品久久二区二区免费| 国产精品一区二区三区四区久久| 中文字幕最新亚洲高清| 男女做爰动态图高潮gif福利片| 97超级碰碰碰精品色视频在线观看| 一区二区三区激情视频| 母亲3免费完整高清在线观看| 午夜日韩欧美国产| 久久久久久国产a免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产看品久久| 久久久国产成人精品二区| 亚洲成人久久性| 亚洲精品久久国产高清桃花| 国产精品一区二区三区四区免费观看 | 12—13女人毛片做爰片一| 老鸭窝网址在线观看| 日韩欧美在线乱码| 色综合站精品国产| 欧美最黄视频在线播放免费| 亚洲激情在线av| 狂野欧美激情性xxxx| 久久久久久九九精品二区国产 | 此物有八面人人有两片| 在线观看免费午夜福利视频| 亚洲一区二区三区色噜噜| 久久亚洲真实| 国产伦一二天堂av在线观看| 欧美性猛交╳xxx乱大交人| 人妻丰满熟妇av一区二区三区| 国产精品久久久人人做人人爽| 国产v大片淫在线免费观看| 国产精品影院久久| 狂野欧美白嫩少妇大欣赏| 夜夜看夜夜爽夜夜摸| 免费搜索国产男女视频| 激情在线观看视频在线高清| 18禁美女被吸乳视频| 波多野结衣巨乳人妻| 亚洲18禁久久av| 高清在线国产一区| 国产精品久久久久久精品电影| 色综合欧美亚洲国产小说| 国产三级在线视频| 十八禁人妻一区二区| 欧美最黄视频在线播放免费| 搡老岳熟女国产| 1024手机看黄色片| 亚洲专区字幕在线| 天堂√8在线中文| 特大巨黑吊av在线直播| 熟女电影av网| 欧美一区二区国产精品久久精品 | 757午夜福利合集在线观看| 色噜噜av男人的天堂激情| 国产亚洲av嫩草精品影院| 波多野结衣巨乳人妻| 精华霜和精华液先用哪个| 母亲3免费完整高清在线观看| 黑人操中国人逼视频| 哪里可以看免费的av片| 日日爽夜夜爽网站| 色综合站精品国产| 色综合婷婷激情| 国产一区二区在线av高清观看| 精品久久久久久久久久免费视频| 国产高清视频在线观看网站| 啦啦啦观看免费观看视频高清| 国产精品久久久久久精品电影| 国产激情久久老熟女| 国产真人三级小视频在线观看| 欧美黄色淫秽网站| 色在线成人网| 两人在一起打扑克的视频| 亚洲专区中文字幕在线| 黄色片一级片一级黄色片| 12—13女人毛片做爰片一| 制服诱惑二区| 色哟哟哟哟哟哟| 一本久久中文字幕| 欧美日韩黄片免| 日韩高清综合在线| 国产亚洲av高清不卡| 麻豆av在线久日| 黄色成人免费大全| 久久久久久久精品吃奶| 国产精品一区二区精品视频观看| 欧美黑人巨大hd| 亚洲午夜精品一区,二区,三区| 两个人视频免费观看高清| 国产伦在线观看视频一区| av在线天堂中文字幕| 男女视频在线观看网站免费 | 18禁裸乳无遮挡免费网站照片| 亚洲欧美日韩东京热| 黄色视频不卡| 久久久久久久久中文| 视频区欧美日本亚洲| 免费一级毛片在线播放高清视频| 九九热线精品视视频播放| 真人做人爱边吃奶动态| 亚洲性夜色夜夜综合| 精品高清国产在线一区| av在线天堂中文字幕| 一级毛片精品| 久久久精品欧美日韩精品| 中文字幕高清在线视频| 精品国产乱码久久久久久男人| 亚洲专区字幕在线| 99国产精品一区二区蜜桃av| 国产精品一区二区精品视频观看| www.www免费av| 在线观看66精品国产| 在线观看午夜福利视频| 在线观看66精品国产| www.www免费av| 亚洲成人免费电影在线观看| 最近在线观看免费完整版| 在线观看www视频免费| 91国产中文字幕| 精品国产超薄肉色丝袜足j| 一本一本综合久久| 久久精品人妻少妇| 国产亚洲欧美98| 欧美av亚洲av综合av国产av| 精品日产1卡2卡| av国产免费在线观看| 午夜福利成人在线免费观看| 两个人免费观看高清视频| 国产久久久一区二区三区| 色综合亚洲欧美另类图片| 国产av一区在线观看免费| 宅男免费午夜| 精品国产乱子伦一区二区三区| 亚洲精品美女久久av网站| 看片在线看免费视频| 久久精品综合一区二区三区| 国产亚洲精品综合一区在线观看 | 午夜激情av网站| 麻豆av在线久日| 一区二区三区激情视频| 久99久视频精品免费| 国产精品久久久久久亚洲av鲁大| 成年免费大片在线观看| 日韩精品免费视频一区二区三区| 最近最新中文字幕大全电影3| 18禁国产床啪视频网站| 窝窝影院91人妻| 久久久久久大精品| 欧美性长视频在线观看| 日本 欧美在线| 亚洲成人免费电影在线观看| 在线观看免费午夜福利视频| 久久久国产欧美日韩av| svipshipincom国产片| 色综合亚洲欧美另类图片| 国产精品一区二区免费欧美| 国产一区二区在线av高清观看| 亚洲av片天天在线观看| 精品免费久久久久久久清纯| 国产乱人伦免费视频| 日韩大码丰满熟妇| 久久婷婷成人综合色麻豆| bbb黄色大片| 亚洲乱码一区二区免费版| 特大巨黑吊av在线直播| 国产精品,欧美在线| 精品久久久久久久久久免费视频| 亚洲无线在线观看| 国内精品一区二区在线观看| 日韩大码丰满熟妇| 国产爱豆传媒在线观看 | 一进一出好大好爽视频| 欧美最黄视频在线播放免费| 久久中文字幕人妻熟女| 欧美日韩瑟瑟在线播放| 嫁个100分男人电影在线观看| 亚洲精品久久成人aⅴ小说| 欧美国产日韩亚洲一区| 国产av不卡久久| 亚洲av片天天在线观看| 久久久久久久精品吃奶| 精品国产超薄肉色丝袜足j| 可以在线观看的亚洲视频| 国产三级在线视频| 色尼玛亚洲综合影院| 亚洲国产欧洲综合997久久,| 看黄色毛片网站| 亚洲精品中文字幕一二三四区| 色老头精品视频在线观看| www.www免费av| 成人av一区二区三区在线看| 桃色一区二区三区在线观看| 婷婷六月久久综合丁香| 亚洲在线自拍视频| 99国产综合亚洲精品| 曰老女人黄片| 1024手机看黄色片| 无遮挡黄片免费观看| 欧洲精品卡2卡3卡4卡5卡区| 哪里可以看免费的av片| 亚洲自偷自拍图片 自拍| 久久精品91无色码中文字幕| 人妻夜夜爽99麻豆av| 99久久国产精品久久久| av在线播放免费不卡| 久久热在线av| 亚洲av电影在线进入| 国产精品国产高清国产av| 国产精华一区二区三区| 亚洲真实伦在线观看| 校园春色视频在线观看| 深夜精品福利| 韩国av一区二区三区四区| 夜夜爽天天搞| 亚洲成人久久性| 欧美3d第一页| 久久中文看片网| 国产成人精品久久二区二区免费| 色播亚洲综合网| 不卡一级毛片| 久久久国产成人精品二区| 精品国产美女av久久久久小说| 成人欧美大片| 大型av网站在线播放| 999久久久精品免费观看国产| 在线看三级毛片| 国产精品av视频在线免费观看| 亚洲av成人精品一区久久| 天天添夜夜摸| 精品不卡国产一区二区三区| 狂野欧美白嫩少妇大欣赏| 国产一区在线观看成人免费| 国内精品久久久久精免费| 日韩欧美免费精品| 熟女电影av网| 国产日本99.免费观看| 国产av一区二区精品久久| 欧美最黄视频在线播放免费| 欧美成人性av电影在线观看| 身体一侧抽搐| 亚洲一区高清亚洲精品| 香蕉av资源在线| 黄色毛片三级朝国网站| 免费人成视频x8x8入口观看| 老熟妇仑乱视频hdxx| 色av中文字幕| 长腿黑丝高跟| 又黄又爽又免费观看的视频| 别揉我奶头~嗯~啊~动态视频| 亚洲自拍偷在线| 观看免费一级毛片| 亚洲九九香蕉| 熟女电影av网| 欧美丝袜亚洲另类 | 日本 欧美在线| 午夜视频精品福利| 亚洲av电影不卡..在线观看| 久久精品影院6| 不卡av一区二区三区| 禁无遮挡网站| 日韩成人在线观看一区二区三区| 九色国产91popny在线| 国产精品自产拍在线观看55亚洲| 亚洲欧美精品综合一区二区三区| 久99久视频精品免费| 国产一区二区在线观看日韩 | 久久久国产成人免费| 国产成人系列免费观看| 淫妇啪啪啪对白视频| av在线天堂中文字幕| 在线观看免费视频日本深夜| 国产日本99.免费观看| 黄色女人牲交| 中文字幕高清在线视频| 色精品久久人妻99蜜桃| 999久久久国产精品视频| 欧美另类亚洲清纯唯美| 亚洲精品国产精品久久久不卡| 欧美激情久久久久久爽电影| 别揉我奶头~嗯~啊~动态视频| 国产真人三级小视频在线观看| 高潮久久久久久久久久久不卡| 国产精品av久久久久免费| 国产亚洲精品久久久久久毛片| 热99re8久久精品国产| 久久精品国产亚洲av香蕉五月| 99国产精品99久久久久| 男女视频在线观看网站免费 | 99热这里只有精品一区 | 日日干狠狠操夜夜爽| 精品一区二区三区视频在线观看免费| 女人被狂操c到高潮| 国产精品免费一区二区三区在线| 欧美日韩国产亚洲二区| 久久久久九九精品影院| 无遮挡黄片免费观看| 亚洲av中文字字幕乱码综合| 精品免费久久久久久久清纯| 少妇粗大呻吟视频| 国产久久久一区二区三区| 一个人免费在线观看的高清视频| 午夜两性在线视频| 成年女人毛片免费观看观看9| 天堂√8在线中文| 成年版毛片免费区| 免费在线观看亚洲国产| 亚洲,欧美精品.| 一本大道久久a久久精品| 麻豆国产av国片精品| 日本 av在线| 国产亚洲精品综合一区在线观看 | av中文乱码字幕在线| 99热这里只有是精品50| 亚洲一码二码三码区别大吗| 又粗又爽又猛毛片免费看| 一本精品99久久精品77| 搡老妇女老女人老熟妇| 日韩免费av在线播放| 成人三级做爰电影| 久久久久久大精品| 日本黄色视频三级网站网址| 老司机福利观看| 国产一区二区激情短视频| 又紧又爽又黄一区二区| 国产成人欧美在线观看| 天堂√8在线中文| 亚洲精品一卡2卡三卡4卡5卡| 桃色一区二区三区在线观看| 亚洲精品美女久久久久99蜜臀| 欧美日韩精品网址| e午夜精品久久久久久久| 长腿黑丝高跟| 黄色成人免费大全| 成人国语在线视频| 久久香蕉国产精品| 久热爱精品视频在线9| 日本撒尿小便嘘嘘汇集6| 午夜福利欧美成人| 看片在线看免费视频| 桃红色精品国产亚洲av| 亚洲国产看品久久| 中文字幕av在线有码专区| 给我免费播放毛片高清在线观看| 男人舔女人下体高潮全视频| 欧美日本视频| 午夜精品久久久久久毛片777| 色综合亚洲欧美另类图片| 欧美绝顶高潮抽搐喷水| 狂野欧美白嫩少妇大欣赏| 国产高清激情床上av|