• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Targeting and Regulation of Cell Wall Synthesis During Tip Growth in Plants

    2013-11-22 03:38:10FangweiGuandErikNielsen
    Journal of Integrative Plant Biology 2013年9期

    Fangwei Gu and Erik Nielsen

    Department of Molecular,Cellular,and Developmental Biology,University of Michigan,Ann Arbor,Michigan 48109,USA

    Introduction

    Plant cells are surrounded by a rigid extracellular matrix,the plant cell wall,a unique structure that not only defines cell shape but also provides sufficient tensile strength to support plant tissues and organs.During cell growth,cellular expansion is determined by the targeted deposition of newly synthesized cell wall components,which is thought to occur in one of two distinct,generalized mechanisms.During diffuse growth,new cell wall components are uniformly deposited along one or more entire cell surfaces(Nielsen 2009).However,in tip growth,new cell wall component secretion occurs in a strictly controlled fashion,and deposition of these components occurs in a limited region of the cell surface(Carol and Dolan 2002;Cosgrove 2005;Cheung and Wu 2008;Lee and Yang 2008;Nielsen 2009).

    Root hairs and pollen tubes are two well‐characterized tip growth models in Arabidopsis.Root hairs are long tubular structures that extend from the basal ends of epidermal cells and can achieve lengths of 1 mm before growth stops(Carol and Dolan 2006).The growth and elongation of the tubular hair element in these cells occurs primarily by tip‐restricted expansion(Tominaga‐Wada et al.2011).Root hairs function in water and nutrient uptake and participate in nodule organogenesis in legumes(Patriarca et al.2004;Tominaga‐Wada et al.2011).However,in laboratory conditions,root hairs appear to be dispensable for Arabidopsis growth and reproduction.This has resulted in the identification of a large set of Arabidopsis root hair mutants in which normal tip growth has been abolished or altered(Schiefelbein and Somerville 1990;Parker et al.2000).Pollen tubes germinate from pollen grains and in response to directional cues,traverse floral tissues to fertilize the female gametophyte(Cheung and Wu 2008).Both root hairs and pollen tubes display rapid,highly polarized growth that can be easily established in liquid culture medium conditions and measured using time‐lapse light microscopy,making root hairs and pollen tubes ideal tools for studying tip growth and the associated polarized membrane trafficking events that support this mode of plant cell expansion.In this review,we focus on some recent advances in our understanding of how this polarized cell expansion process is organized,and the mechanisms by which primary cell wall deposition occurs during tip growth.

    Table 1.Arabidopsis thaliana Gene Index(AGI)number for the genes mentioned in this review

    Subcellular Organization of Tip Growth in Plant Cells

    In Arabidopsis,root epidermal cells differentiate into two distinct cell types,root hair forming cells called trichoblasts,or non‐hair forming cells called atrichoblasts(Tominaga‐Wada et al.2011;Grebe 2012).Trichoblast cell fate is determined by its relative position to the underlying cortex cells,and our current understanding of this process was recently reviewed elsewhere(Grebe 2012;Ryu et al.2013).In both pollen and root hairs,initiation of tip growth is accompanied by accumulation of ROP GTPases in a plasma membrane domain that will become the future apex of the growing pollen tube or root hair(Fu et al.2001;Molendijk et al.2001;Jones et al.2002).In the case of root hairs,ROP2(At1g20090.Full list of the names and AGI numbers of the genes introduced in this review can be found in Table 1)triggers the formation of reactive oxygen species(ROS)in a process requiring the presence of RHD2(At5g51060),which encodes an nicotinamide adenine dinucleotide phosphate oxidase(Foreman et al.2003;Jones et al.2007).ROS accumulation in the tips of growing root hairs ultimately results in activation of calcium channels in these cells,and in turn the influx of Ca2+further activates RHD2 which produces more ROS(Takeda et al.2008).A tip‐focused calcium gradient is then thought to be formed through this positive feedback and the cytosolic Ca2+concentration reaches approximately 1 μM at the tip and 100–200 nM in the rest of the cell(Wymer et al.1997;Foreman et al.2003;Carol and Dolan 2006;Lee and Yang 2008).This tip‐focused Ca2+gradient is maintained as long as tip growth occurs in these cells,and disappears when these cells stop growing(Wymer et al.1997).

    In addition to tip‐focused Ca2+gradients,cytoskeleton dynamics play a particularly prominent role in the organization of the subapical cytoplasmic region in tip‐growing cells(Figure 1),and intact F‐actin networks are essential for the maintenance of tip growth in both pollen tubes and root hairs(Carol and Dolan 2002;Lee and Yang 2008).While microtubules are essential for determining the polarity of root hairs,vesicle delivery to the apical region was not blocked by depolymerization of microtubules,indicating they are not required for tip growth(Van Bruaene et al.2004;Preuss et al.2004).F‐actin accumulates in the tips of newly initiated root hair bulges,but treatment with latrunculin B,which interferes with F‐actin polymerization,did not block this process,indicating selection of sites for future root hair tip growth occurs in an actin independent process(Baluska et al.2000).Once tip‐restricted elongation of the root hair is initiated,secretory vesicles containing newly synthesized cell wall components are transported to the sub‐apical region along actin bundles(Pei et al.2012).Disruption of actin polymerization by treatment with latrunculin B blocks root hair and pollen tube growth(Gibbon et al.1999;Baluska et al.2000).At the tip region,the high calcium concentration increases the actin turnover rate and faciliates fusion of these vesicles with the the apical plasma membrane and the subsequent delivery of cell wall cargo to the expanding root hair cell wall(Figure 1;Pei et al.2012).In pollen tubes,initiation of F‐actin polymerization requires the involvement of several nucleating factors,including formins(Cheung and Wu 2004;Ye et al.2009;Cheung and Niroomand 2010).There are 21 formins found in Arabidopsis and 11 of these are classified as class I formins due to the presence of membrane insertion signals at the N‐terminus(Cvrcková et al.2004).Overexpression of Arabidopsis class I formins AFH1(At3g25500),AFH3(At4g15200),or AFH8(At1g70140)stimulates the formation of F‐actin and causes pollen tubes or root hairs to swell(Cheung and Wu 2004;Yi et al.2005;Ye et al.2009).Much less is known about the function of class II formins in tip‐growing cells,although one class II formin,AFH13(At5g58160),appears to be expressed selectively in pollen(Pina et al.2005).Additionally,the class II formin AFH19(At5g07780),appears to act in opposition to that of AFH1(Zheng et al.2012),although whether this antagonism plays important roles in tip‐growing cells remains unclear.F‐actin dynamics are also controlled by a pollen tube tip‐localized ROP GTPase,ROP1(At3g51300),and its two target proteins,RIC3(At1g04450)and RIC4(At5g16490)(Gu et al.2005).These two RIC proteins are thought to play antagonistic roles,with RIC3 disassembling F‐actin cables,and RIC4 stablizing them(Gu et al.2005).The counteracting effects of these two proteins are thought to be responsible for the oscillatory growth patterns observed during pollen tube elongation(Gu et al.2005;Cole and Fowler 2006;Lee et al.2008).Similarly in root hairs,disruption of F‐actin in pollen tubes affects the organization of the subapical cytoplasm,and interferes with efficient vesicle delivery in pollen(Lee et al.2008).These results showed that a precise regulation of tip growth can be accomplished through the dynamics of F‐actin polymerization and turnover,and that an imbalance in these dynamics causes defects in this process.

    RAB GTPases are key regulators of membrane trafficking and different RAB proteins target vesicles to different membranes(Nielsen 2006;Nielsen et al.2008).In tip growth,newly synthesized cell wall components are packaged in secretory vesicles and delivered to the apical plasma membrane region of elongating root hairs and pollen tubes,and the formation and delivery of these secretory vesicles is regulated by the specific recruitment of members of the RAB A family of plant RAB GTPases to these membrane compartments(Preuss et al.2004;Szumlanski and Nielsen 2009;Ovecka et al.2010).RAB‐A4B(At4g39990)recruits the lipid kinase,PI‐4Kβ1(At5g64070),and regulation of PI‐4P levels by this lipid kinase,and a PI‐4P phosphatase,RHD4(At3g51460),play important roles in regulation and delivery of secretory cargo to the tips of growing root hairs and pollen tubes(Preuss et al.2004,2006;Thole et al.2008;Szumlanski and Nielsen 2009).Likewise,enzymes that regulate the level of PI‐4,5P2are also essential for tip growth(Helling et al.2006;Kusano et al.2008;Sousa et al.2008).Disruption of two genes encoding key kinases that produce PI‐4,5P2,PIP5K3(At2g26420),and PIP5K4(At3g56960),caused various defects in root hairs and pollen tubes,respectively(Helling et al.2006;Kusano et al.2008;Sousa et al.2008).Both PIP5K4 and a dynamin‐related protein(DRP1C,At1g14830)were localized at the flanks of the apical zone in pollen tubes where endocytosis was inhibited in a pip5k4 mutant,indicating that PI‐4,5P2is essential for vesicle trafficking during tip growth(Konopka et al.2008;Sousa et al.2008).Members of the RAB B family,which show high sequence similarity to ER‐localized Rab2 in animal and yeast cells,are also thought to regulate endoplasmic reticulum (ER)‐to‐Golgi trafficking in plants.Arabidopsis RAB‐B1C (At4g17170,previously designated RAB2)is highly expressed in pollen and a dominant negative mutant of a tobacco RAB B homolog blocking pollen tube growth,highlighting the importance of secretory trafficking during polarized cell expansion observed in tip‐growing cells(Moore et al.1997;Cheung and Chen 2002).

    Cellulose

    Cellulose microfibrils are thought to be the primary element of plant cell walls that provide their mechanical strength(Cosgrove 2005).Cellulose differs from most other plant cell wall polysaccharides in that its site of synthesis occurs in plasma membrane‐localized multiprotein complexes,termed rosette terminal complexes(Mueller and Brown 1980;Brown et al.1996).According to current models,cell walls contain multiple layers of load‐bearing cellulose microfibrils that are deposited sequentially during cell growth and differentiation(Emons 1994;Emons and Mulder 2000;Somerville 2006).The catalytic subunits of the cellulose synthase complex,called CESA proteins,have been identified using a combination of genetic screens,and sequence similarity to bacterial cellulose synthases (Cosgrove 2005;Somerville 2006;Guerriero et al.2010;Endler and Persson 2011;Zhang and Zhou 2011).Each of the numerous CESA proteins that are thought to be present in a rosette terminal complex are thought to synthesize and extrude individual β‐1,4‐glucan polymers through the plasma membrane,and these polymers then assemble into paracrystalline cellulose microfibrils,which are then incorporated into the innermost layer of the plant cell wall(Emons and Mulder 2000;Cosgrove 2005;Guerriero et al.2010).In cells undergoing diffuse growth,the innermost layer of cellulose microfibrils is deposited transversely to the expansion axis of the cell,and this orientation is thought to provide the asymmetric expansion characteristics observed during this form of polarized cell growth(Green 1962;Baskin 2005).Co‐localization experiments showed the movement of functional fluorescently tagged CESA proteins in discrete particles within the plasma membrane,and these are co‐localized with underlying cortical microtubules in the cytoplasm(Paredez et al.2006).Although the existence of cellulose in root hairs has been postulated for decades(Newcomb and Bonnett 1965),until recently,the presence and possible role of cellulose during tip growth remained relatively unstudied.

    Early ultrastructural studies indicated that root hair cell walls were comprised of two distinct layers that appeared to be organized based on when and where they were deposited during root hair growth(Figure 1).Initial root hair cell walls are deposited during tip growth at the extreme apical region of the root hair cell,typically restricted to the apical 30–50 μm of the root hair(Newcomb and Bonnett 1965;Galway et al.1997).Fibrillar cell wall elements were observed in these primary root hair walls,but unlike in cells undergoing diffuse expansion,these appeared to be somewhat shorter in length,and were randomly oriented(Newcomb and Bonnett 1965;Emons and Mulder 2000).An additional inner cell wall layer containing parallel arrays of cellulose microfibrils appeared to be deposited later during root hair growth and differentiation,and these cellulose microfibril arrays were often organized in a helical orientation along the length of the root hair(Emons and Wolters‐Arts 1983;Emons 1994).Interestingly,the orientation of the cell wall fibrils and CESA6 movement in pollen tube plasma membranes were recently shown to occur in a longitudinal orientation to the pollen tube growth axis,a similar orientation to that observed earlier in root hairs(Chebli et al.2012).Additionally,several cesa mutants display significant defects in pollen germination and pollen tube growth suggesting important roles for cellulose in these tip‐growing cells(Persson et al.2007).More recent examination of the role of cellulose in root hair cells have determined that cellulose synthesis is also required for root hair tip growth(Galway et al.2011;Park et al.2011).Cellulose is enriched in the tip‐growing region,and treatment of growing root hairs with exogenous cellulase interferes with the integrity of these cell walls and induces rupture of growing root hair cells(Galway et al.2011;Park et al.2011).Examination of microarray‐based spatiotemporal root gene expression maps has indicated that only CESA genes implicated in primary cellulose synthesis are expressed in these cells(Brady et al.2007).Although the mutants of major primary cellulose synthases display root hair developmental defects to varying degrees,tip growth in these mutants was not abolished(Desnos et al.1996;Ca?o‐Delgado et al.2000)(Figure 2).Additionally,eYFP‐CESA3(At5g05170)and eGFP‐CESA6(At5g64740),two of the major primary cellulose synthases tagged with fluorescent proteins,did not display significant localization to the apical plasma membrane region of growing root hairs where new cellulose synthesis would occur(Park et al.2011).These results indicate that synthesis of cellulose,or cellulose‐like polysaccharides,in the tips of growing root hairs likely involves proteins other than those CESA subunits identified to be involved in cellulose synthesis in diffusely expanding cells.

    Interestingly,CSLD3(At3g03050),a member of the cellulose synthase‐like(CSL)super family,is required for root hair growth(Wang et al.2001;Bernal et al.2008;Galway et al.2011;Yin et al.2011).Both CSLD and CESA gene families display a higher degree of sequence similarity to each other than to the other CSL gene families(Richmond and Somerville 2000).CSLD5(At1g02730)and a combination of CSLD2(At5g16910)and CSLD3 displayed moderately increased mannan synthase activity when transiently overexpressed in tobacco leaves(Yin et al.2011).However,in a separate study a functional,N‐terminal tagged CSLD3 was enriched at the tips of growing root hairs(Park et al.2011).Further analysis showed that CSLD3 is a plasma membrane protein,and a CSLD3 chimera containing a CESA6 catalytic domain was able to rescue the root hair growth defects of a csld3 null mutant(Park et al.2011).These findings are consistent with a model in which CSLD3 provides the biosynthetic activity for cellulose or cellulose‐like β‐1,4‐glucan polysaccharide synthesis in tip‐growing root hairs.Further investigation will be required to unravel the precise biochemical activity of these CSLD proteins.Supporting a role for CSLD function during tip growth,mutations in four of the six Arabidopsis CSLD genes have been shown to affect tip growth in either root hairs or pollen(Figure 2).Both CSLD2 and CSLD3 play essential roles during root hair tip growth,with csld3 mutants displaying no root hairs and csld2 mutants displaying significantly shorter root hairs that often form abnormal bulges compared to wild type(Bernal et al.2008;Yoo et al.2012).The growth defects observed in csld2 root hairs are likely due to repeated cycles of cell rupture followed by re‐initiation of tip growth(Bernal et al.2008).Both csld1(At2g33100)and csld4(At4g38190)mutants show defects in pollen germination(Bernal et al.2008;Wang et al.2011),consistent with important roles for these pollen‐specific CSLDs in pollen tube tip growth.CSLD2 expressed under control of the constitutive 35S promoter was able to rescue the mutant phenotype of csld3 and vice versa(Yin et al.2011),but more recent analysis of the specific functions of these two CSLD genes revealed some level of divergence according to the difference of the phenotype when a single copy of CSLD2 or CSLD3 was interrupted(Yoo et al.2012).

    In addition to CESA proteins,which are thought to synthesize cellulose,a number of additional“accessory”genes have been identified whose products alter cellulose deposition by the plasma membrane‐localized rosette terminal complexes(Nicol et al.1998;Schindelman et al.2001;Pagant et al.2002;Gu et al.2010).Mutation of the KORRIGAN1(At5g49720),β‐1,4‐endo‐glucanase,results in defects in both primary and secondary cell wall deposition(Nicol et al.1998;Szyjanowicz et al.2004).KORRIGAN1(KOR1)is unique among a larger family of predicted β‐1,4‐endo‐glucan hydrolases,termed the GH9A family,in that this protein is predicted to contain an amino terminal transmembrane domain(Zuo et al.2000).It has been suggested that KOR1(also known as GH9A1)co‐localizes in the plasma membrane with CESA‐containing cellulose synthase complexes(Crowell et al.2010).Two other β‐1,4‐endo‐glucanases with predicted transmembrane domains,called KORRIGAN2(KOR2,At1g65610)and KORRIGAN3(KOR3,At4g24260),have been described in the Arabidopsis genome(M?lh?j et al.2001),and similar transmembrane GH9A1 sequences appear to be conserved in a number of sequenced genomes from both monocot and dicot plants(F.Gu,E.Nielsen,unpubl.data,2011).Expression pattern analysis has shown that KOR1 is broadly expressed throughout the plant,while KOR2 displays a more restricted root hair‐specific expression pattern,raising the possibility that KOR2 may function during root hair tip growth(M?lh?j et al.2001).Other members of the GH9 family of β‐1,4‐endo‐glucanases also have been implicated in the regulation of cell wall deposition in root hairs,and mutation of a member of the class C GH9 glucan hydrolases,ATGH9C1(At1g48930),displays severe root hair phenotype and only bulges are formed after root hair initiation(Del Campillo et al.2012).It has been hypothesized that endo‐glucanases like KORRIGAN1 may initiate cellulose synthesis or remove the synthesized cellulose from the synthase complex(Cosgrove 2005;Crowell et al.2010).However,the precise roles of these endo‐glucanases during cellulose synthesis and deposition remains a mystery.

    Xyloglucan

    Xyloglucan is the main form of hemicellulose found in primary cell walls of dicots,and these polysaccharides are thought to link and tether neighboring cellulose microfibrils(Cavalier et al.2008;Liepman et al.2010).This cross‐linking activity has been thought to provide overall integrity to the load‐bearing polysaccharide network of the plant cell wall(Somerville et al.2004;Cosgrove 2005).However,recent characterization of several xyloglucan xylosyltransferase mutants and examination of the effects of xyloglucan‐specific endoglucanases on isolated hypocotyl cell walls have revealed few apparent defects in overall cell wall integrity,leading to a re‐examination of the extent and roles of xyloglucan–cellulose interactions in plant cell walls(Cavalier et al.2008;Park and Cosgrove 2012;Zabotina et al.2012).

    The polysaccharide backbones of both cellulose and xyloglucan are comprised of β‐1,4‐linked glucan polymers.However,while the unmodified β‐1,4‐glucan polymers of cellulose assemble into higher order cellulose microfibrils,the glucan polymer backbone of xyloglucan is extensively modified with side‐chains containing xylose,galactose,and fucose sugars(Liepman et al.2010).Xylosyl residues are attached to the xyloglucan glucan backbone through the action of a series of xylosyltranferases,or XXTs.Surprisingly,Arabidopsis xxt1/xxt2(At3g62720,At4g02500)double mutants with undetectable xyloglucan levels grew normally,and significant morphological defects were mainly observed in root hairs,which were significantly shorter and often displayed bulges at root hair bases(Cavalier et al.2008).Mutation of a third AtXXT,AtXXT5(At1g74380),also displayed increased numbers of short,irregular,and tip‐bulging root hairs compared to wild‐type plants(Zabotina et al.2008).These effects appear to be additive,as xxt1/xx2/xxt5 triple mutants have even shorter root hairs and more extensive bulging defects than double or single xxt mutants(Zabotina et al.2012).Importantly,while overall length of these root hairs was affected,this did not appear to be reflected in decreased cell wall integrity as few of these shorter root hairs displayed evidence of cellular rupture(Cavalier et al.2008;Zabotina et al.2012).These results indicate that although xyloglucan is essential to root hair growth,tip growth is not abolished by the absence of xyloglucan in root hairs.

    Further highlighting root hair‐specific roles for xyloglucan,immunohistochemical studies using several monoclonal antibodies raised against distinct xyloglucan epitopes differentially labeled xyloglucan in root hair cell walls and cell walls of other root tissues(Zabotina et al.2012).An intriguing possibility for these differences was provided by the recent identification of a novel root hair‐specific acidic xyloglucan which incorporates galacturonic acid residues(Pe?a et al.2012).Disruption of ROOT HAIR‐SPECIFIC 8 or RHS8(At1g63450)eliminates the accumulation of this acidic xyloglucan,and the RHS8 gene has been renamed to XYLOGLUCAN‐SPECIFIC GALACTURONOSYLTRANSFERASE 1 or XUT1 to reflect this novel root hair‐specific xyloglucan enzyme activity(Won et al.2009;Pe?a et al.2012).

    Pectin

    Pectic polysaccharides comprise approximately 35–40%of Arabidopsis primary cell walls(Mohnen 2008;Liepman et al.2010).Homogalacturonan(HG),rhamnogalacturonan I(RG‐1),and rhamnogalacturonan II(RG‐II)are three major forms of pectin and they differ in their backbones and side‐chain residues(Mohnen 2008).Although a single α‐1,4‐galacturonosyltransferase(GAUT1,At3g61130)and two α‐1,3‐xylosyltransferases(RGXT1,At4g01770 and RGXT2,At4g01750)have been characterized as responsible for the synthesis of the HG and RG‐II backbone polymers,respectively,whether mutation of these enzymes affects root hair tip growth was not described(Egelund et al.2006;Sterling et al.2006).Nonetheless,disruption of UER1(At1g63000)or GAE6(At3g23820),two enzymes required for synthesis of pectin precursors,affected root hair length,suggesting that presence of these pectic polymers may play important roles during tip growth in root hairs(Pang et al.2010).

    Further evidence for roles of pectins in tip‐growing root hairs comes from the recent use of FucA1,a sugar analog fucose alkyne,to examine RG‐I synthesis and deposition in Arabidopsis(Anderson et al.2012).FucA1‐labeled RG‐1 accumulated in newly initiated root hair bulges,suggesting a prominent role for these polysaccharides during root hair initiation steps(Anderson et al.2012).However,in a separate study that used propidium iodide to visualize pectin distribution,pectin was primarily localized to more distal portions of the root hair(Rounds et al.2011).Alternatively,pectin polysaccharide incorporation into newly deposited cell walls has been more clearly established in the tips of growing pollen tubes,and the morphology of pollen tubes during elongation requires the involvement of pectin methylesterases(PMEs;Tian et al.2006;Rounds et al.2011).Knockout of a pollen‐specific PME,PPME1(At1g69940),caused a stunted pollen tube morphology(Tian et al.2006).Further,treatment of growing pollen tubes with exogenously added pectinases eliminated the apical accumulation of polysaccharides that could be labeled with cellulose‐specific stains,raising the possibility that cellulose networks are not stable without pectins in these tip‐growing cells(Chebli et al.2012).Whether pectin is also responsible for stabilizing cellulose in root hair cell walls is an intriguing area for future investigation.

    Cell Wall Proteins

    In addition to the major polysaccharide classes,numerous proteins are secreted and incorporated into growing plant cell walls.As discussed above,a number of these secreted proteins are extracellular enzymes that are responsible for various modifications of the cell wall that occur during cell wall deposition,cell expansion,and differentiation.However,diverse classes of structural cell wall proteins are also secreted and integrated into the plant cell wall(Cosgrove 2005;Cheung and Wu 2011).One class of these structural cell wall proteins,the“expansin”protein family,has been proposed to play key roles in wall‐loosening,and disruption of several expansin genes results in reduction of leaf size or plant height(Cho and Cosgrove 2000;Choi et al.2003).Expansins can be divided into two subgroups according to their specificity to distinct polysaccharide substrates,and four members of the expansin family(EXPA7,At1g12560;EXPA18,At1g62980;OsEXPB5,Os04g46650;HvEXPB1,AY351785)have been shown to be specifically expressed in root hairs(Cho and Cosgrove 2002;Won et al.2010).Treatment with exogenous expansin resulted in cucumber root hair swelling or rupture in a dose‐dependent manner(Cosgrove et al.2002).Disruption of Expansin A7 by RNAi also affected root hair elongation(Lin et al.2011),and reduced levels of EXPA7 transcription in these RNAi lines correlated with significantly shorter root hair lengths(Lin et al.2011).Therefore,an in vivo role for expansin proteins in tip growth is supported.

    Many hydroxyproline‐rich glycoproteins are found in cell walls,including “extensins”and proline‐rich proteins(Mohnen and Tierney 2011;Velasquez et al.2011).In Arabidopsis,the proline residues in these proteins are post‐translationally hydroxylated to form hydroxyproline,in a process catalyzed by membrane‐bound prolyl 4‐hydroxylases(P4Hs;Gorres and Raines 2010;Mohnen and Tierney 2011;Velasquez et al.2011).Elimination of the root‐expressed P4H genes,P4H2(At3g06300),P4H5(At2g17720),or P4H13(At2g23096),resulted in shortened root hairs,and yeast two‐hybrid analysis showed that P4H5 binds LRX3(At4g13340),a root hair‐specific extensin(Velasquez et al.2011).Although the functions of extensins are not well characterized,it was hypothesized that extensins in root hairs are modified by P4Hs prior to secretion into plant cell walls,and that incorporation of this class of cell wall proteins assists in the appropriate assembly of different polysaccharides into cell walls(Velasquez et al.2011).

    Receptor‐Like Kinases and Sensing of Cell Wall Integrity

    Recent experiments have highlighted important roles for members of the Catharanthus roseus RLK1‐like(CrRLK1L)family of lectin‐containing receptor‐like kinases in regulating aspects of cell wall integrity in tip‐growing cells(Hématy and H?fte 2008;Cheung and Wu 2011;Boisson‐Dernier et al.2011).THESEUS1(At5g54380),the first characterized member of the CrRLK1L family,functions as a suppressor of prc1,a cesa6 mutant(Hématy et al.2007).The the1 mutant rescues the short hypocotyl phenotype of prc1 when grown in dark and therefore it was hypothesized that THE1 represses cell expansion when it detects the wall integrity is impaired(Hématy et al.2007;Hématy and H?fte 2008).Another member of the CrRLK1L family,FERONIA (At3g51550),was initially identified based on fertilization defects associated with inappropriate pollen tube‐synergid cell interactions observed in fer mutants(Huck 2003).Root hair defects were later observed in other fer mutant backgrounds in which the majority of root hairs were significantly shorter and often root hairs burst(Duan et al.2010).FER was subsequently shown to interact with an ROPGEF1(At4g38430)and current models for the function of FER receptors involve the recruitment and activation of ROP GTPase‐based signaling pathways upon perception of upstream cell wall‐associated signals by the FER receptor(Duan et al.2010;Cheung and Wu 2011).While the downstream pathway of FER is elucidated to some extent(Duan et al.2010),the upstream signal that activates FER still remains unknown.However,the extracellular domains of FER as well as THE1 and ANX1(At3g04690),another member of the CrRLK1L family,contain two malectin‐like domains,providing a hint in their potential substrates(Boisson‐Dernier et al.2011;Cheung and Wu 2011).In animals,malectin is an ER membrane protein that shows specificity for Glc2‐N‐glycan moieties,and binds α‐linked disaccharides,such as maltose(glucose‐α‐1,4‐glucose)and nigerose(glucose‐α‐1,3‐glucose)(Schallus et al.2008).This raises the intriguing possibility that the two malectin domains present in the extracellular domains of CrRLK1L family members may recognize similar oligosaccharides or polysaccharides in the plant cell wall.

    Conclusion and Perspectives

    Examination of tip‐growing cells such as root hairs and pollen tubes using electron microscopy has provided important information regarding the ultrastructural organization of cell wall components during polarized cell expansion in plants(Emons and Wolters‐Arts 1983;Emons 1994).More recently,the dispensable nature of root hairs to overall plant growth,and the relative ease by which growth and development of tip‐growing root hairs and pollen tubes can be observed and manipulated using live‐cell imaging methods has resulted in the generation of detailed models for the subcellular organization that underpins the polarized secretion and integration of cell wall components in these cells.Given the central role the plant cell wall plays in growth and development,study of the mechanisms that govern overall plant growth has proven relatively recalcitrant to genetic approaches due either to the lethal nature of,or genetic redundancy observed for,the cellular components involved in generalized cell wall biosynthesis.In this respect,examination of root hair‐or pollen‐specific cell wall defects that are observed upon mutation of members of larger gene families that display cell type‐specific expression has proven a useful tool for identifying possible roles of a number of gene families involved in synthesis or regulation of plant cell wall biogenesis.

    While our understanding of how specific classes of cell wall polysaccharides are synthesized and deposited in expanding cell walls has greatly improved in recent years,key questions still remain.What are the identities of proteins responsible for synthesis of cellulose or cellulose‐like polysaccharides in the tips of growing root hairs and pollen tubes,and how does the regulation of these enzyme complexes differ from cells undergoing diffuse expansion?What specifically are the roles of xyloglucan and pectin polysaccharides with regard to spatial organization and cross‐linking of cellulose microfibrils in the cell wall,and how do these two physical characteristics contribute to the extensibility and integrity of cell walls overall?Finally,how similar,or distinct,is the overall organization of these three main polysaccharide classes between cells undergoing tip‐restricted or diffuse expansion?Experiments aimed at providing insight into these questions should provide interesting challenges,but also novel insights into our overall knowledge of plant cell wall biosynthesis,and how the organization of this process compares between cells undergoing either tip‐restricted or diffuse cell expansion.

    Acknowledgements

    This work was funded by the Division of Chemical Sciences,Geosciences,and Biosciences,Office of Basic Energy Sciences of the U.S.Department of Energy through Grant DE‐FG02‐07ER15887,and funds from the National Science Foundation grant 0937323 provided salary support for F.G.

    Anderson CT,Wallace IS,Somerville CR(2012)Metabolic click‐labeling with a fucose analog reveals pectin delivery,architecture,and dynamics in Arabidopsis cell walls.Proc.Natl.Acad.Sci.USA 109,1329–1334.

    Baluska F,Salaj J,Mathur J,Braun M,Jasper F,Samaj J,Chua NH,Barlow PW,Volkmann D(2000)Root hair formation:F‐actin‐dependent tip growth is initiated by local assembly of profilin‐supported F‐actin meshworks accumulated within expansin‐enriched bulges.Dev.Biol.227,618–632.

    Baskin TI(2005)Anisotropic expansion of the plant cell wall.Annu.Rev.Cell.Dev.Biol.21,203–222.

    Bernal AJ,Yoo CM,Mutwil M,Jensen JK,Hou G,Blaukopf C,S?rensen I,Blancaflor EB,Scheller HV,Willats WGT(2008)Functional analysis of the cellulose synthase‐like genes CSLD1,CSLD2,and CSLD4 in tip‐growing Arabidopsis cells.Plant Physiol.148,1238–1253.

    Boisson‐Dernier A,Kessler SA,Grossniklaus U(2011)The walls have ears:The role of plant CrRLK1Ls in sensing and transducing extracellular signals.J.Exp.Bot.62,1581–1591.

    Brady SM,Orlando DA,Lee JY,Wang JY,Koch J,Dinneny JR,Mace D,Ohler U,Benfey PN(2007)A high‐resolution root spatiotemporal map reveals dominant expression patterns.Science 318,801–806.

    Brown M,Saxena I,Kudlicka K(1996)Cellulose biosynthesis in higher plants.Trends Plant Sci.1,149–156.

    Del Campillo E,Gaddam S,Mettle‐Amuah D,Heneks J(2012)A tale of two tissues:AtGH9C1 is an endo‐β‐1,4‐glucanase involved in root hair and endosperm development in Arabidopsis.PLoS ONE 7,e49363.

    Ca?o‐Delgado A,Metzlaff K,Bevan M(2000)The eli1 mutation reveals a link between cell expansion and secondary cell wall formation in Arabidopsis thaliana.Development 3405,3395–3405.

    Carol RJ,Dolan L(2002)Building a hair:Tip growth in Arabidopsis thaliana root hairs.Philos.Trans.R.Soc.Lond.B Biol.Sci.357,815–821.

    Carol RJ,Dolan L(2006)The role of reactive oxygen species in cell growth:Lessons from root hairs.J.Exp.Bot.57,1829–1834.

    Cavalier DM,Lerouxel O,Neumetzler L,Yamauchi K,Reinecke A,Freshour G,Zabotina OA,Hahn MG,Burgert I,Pauly M,Raikhel NV,Keegstra K(2008)Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan,a major primary cell wall component.Plant Cell 20,1519–1537.

    Chebli Y,Kaneda M,Zerzour R,Geitmann A(2012)The cell wall of the Arabidopsis pollen tube—spatial distribution,recycling,and network formation of polysaccharides.Plant Physiol.160,1940–1955.

    Cheung A,Chen C(2002)Rab2 GTPase regulates vesicle trafficking between the endoplasmic reticulum and the Golgi bodies and is important to pollen tube growth.Plant Cell 14,945–962.

    Cheung A,Niroomand S(2010)A transmembrane formin nucleates subapical actin assembly and controls tip‐focused growth in pollen tubes.Proc.Natl.Acad.Sci.USA 107,16390–16395.

    Cheung A,Wu HM(2004)Overexpression of an Arabidopsis formin stimulates supernumerary actin cable formation from pollen tube cell membrane.Plant Cell 16,257–269.

    Cheung AY,Wu HM(2008)Structural and signaling networks for the polar cell growth machinery in pollen tubes.Annu.Rev.Plant Biol.59,547–572.

    Cheung AY,Wu HM(2011)THESEUS 1,FERONIA and relatives:A family of cell wall‐sensing receptor kinases?Curr.Opin.Plant Biol.14,632–641.

    Cho HT,Cosgrove DJ(2000)Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana.Proc.Natl.Acad.Sci.USA 97,9783–9788.

    Cho HT,Cosgrove DJ(2002)Regulation of root hair initiation and expansin gene expression in Arabidopsis.Plant Cell 14,3237–3253.

    Choi D,Lee Y,Cho H,Kende H(2003)Regulation of expansin gene expression affects growth and development in transgenic rice plants.Plant Cell 15,1386–1398.

    Cole RA,Fowler JE(2006)Polarized growth:Maintaining focus on the tip.Curr.Opin.Plant Biol.9,579–588.

    Cosgrove DJ(2005)Growth of the plant cell wall.Nat.Rev.Mol.Cell Biol.6,850–861.

    Cosgrove DJ,Li LC,Cho HT,Hoffmann‐Benning S,Moore RC,Blecker D(2002)The growing world of expansins.Plant Cell Physiol.43,1436–1444.

    Crowell EF,Gonneau M,Stierhof YD,H?fte H,Vernhettes S(2010)Regulated trafficking of cellulose synthases.Curr.Opin.Plant Biol.13,700–705.

    Cvrcková F,Novotny M,Pícková D,Zársky V(2004)Formin homology 2 domains occur in multiple contexts in angiosperms.BMC Genomics 5,44.

    Desnos T,Orbovi? V,Bellini C,Kronenberger J,Caboche M,Traas J,H?fte H(1996)Procuste1 mutants identify two distinct genetic pathways controlling hypocotyl cell elongation,respectively in dark‐and light‐grown Arabidopsis seedlings.Development 122,683–693.

    Duan Q,Kita D,Li C,Cheung AY,Wu HM(2010)FERONIA receptor‐like kinase regulates RHO GTPase signaling of root hair development.Proc.Natl.Acad.Sci.USA 107,17821–17826.

    Egelund J,Petersen BL,Motawia MS,Damager I,Faik A,Olsen CE,Ishii T,Clausen H,Ulvskov P,Geshi N(2006)Arabidopsis thaliana RGXT1 and RGXT2 encode Golgi‐localized(1,3)‐alpha‐D‐xylosyltransferases involved in the synthesis of pectic rhamnogalacturonan‐II.Plant Cell 18,2593–2607.

    Emons AMC(1994)Winding threads around plant cells:A geometrical model for microfibril deposition.Plant Cell Environ.17,3–14.

    Emons AMC,Wolters‐Arts A(1983)Cortical microtubules and microfibril deposition in the cell wall of root hairs of Equisetum hyemale.Protoplasma 81,68–81.

    Emons AMC,Mulder BM(2000)How the deposition of cellulose microfibrils builds.Trends Plant Sci.5,35–40.

    Endler A,Persson S(2011)Cellulose synthases and synthesis in Arabidopsis.Mol.Plant 4,199–211.

    Foreman J,Demidchik V,Bothwell JHF,Mylona P,Miedema H,Torres MA,Linstead P,Costa S,Brownlee C,Jones JD,Davis JM,Dolan L(2003)Reactive oxygen species produced by NADPH oxidase regulate plant cell growth.Nature 422,442–446.

    Fu Y,Wu G,Yang Z(2001)Rop GTPase‐dependent dynamics of tip‐localized F‐actin controls tip growth in pollen tubes.J.Cell Biol.152,1019–1032.

    Galway ME,Heckman JW,Schiefelbein JW(1997)Growth and ultrastructure of Arabidopsis root hairs:The rhd3 mutation alters vacuole enlargement and tip growth.Planta 201,209–218.

    Galway ME,Eng RC,Schiefelbein JW,Wasteneys GO(2011)Root hair‐specific disruption of cellulose and xyloglucan in AtCSLD3 mutants,and factors affecting the post‐rupture resumption of mutant root hair growth.Planta 233,985–999.

    Gibbon BC,Kovar DR,Staiger CJ(1999)Latrunculin B has different effects on pollen germination and tube growth.Plant Cell 11,2349–2363.

    Gorres K,Raines R(2010)Prolyl 4‐hydroxylase.Crit.Rev.Biochem.Mol.Biol.45,106–124.

    Grebe M(2012)The patterning of epidermal hairs in Arabidopsis—updated.Curr.Opin.Plant Biol.15,31–37.

    Green PB(1962)Mechanism for plant cellular morphogenesis.Science 138,1404–1405.

    Gu Y,Fu Y,Dowd P,Li S,Vernoud V,Gilroy S,Yang Z(2005)A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes.J.Cell Biol.169,127–138.

    Gu Y,Kaplinsky N,Bringmann M,Cobb A,Carroll A,Sampathkumar A,Baskin TI,Persson S,Somerville CR(2010)Identification of a cellulose synthase‐associated protein required for cellulose biosynthesis.Proc.Natl.Acad.Sci.USA 107,12866–12871.

    Guerriero G,Fugelstad J,Bulone V(2010)What do we really know about cellulose biosynthesis in higher plants?J.Integr.Plant Biol.52,161–175.

    Helling D,Possart A,Cottier S,Klahre U,Kost B(2006)Pollen tube tip growth depends on plasma membrane polarization mediated by tobacco PLC3 activity and endocytic membrane recycling.Plant Cell 18,3519–3534.

    Hématy K,H?fte H(2008)Novel receptor kinases involved in growth regulation.Curr.Opin.Plant Biol.11,321–328.

    Hématy K,Sado PE,Van Tuinen A,Rochange S,Desnos T,Balzergue S,Pelletier S,Renou JP,H?fte H(2007)A receptor‐like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis.Curr.Biol.17,922–931.

    Huck N(2003)The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception.Development 130,2149–2159.

    Jones MA,Shen J,Fu Y,Li H,Yang Z,Grierson CS(2002)The arabidopsis Rop2 GTPase is a positive regulator of both root hair initiation and tip growth.Plant Cell 14,763–776.

    Jones MA,Raymond MJ,Yang Z,Smirnoff N(2007)NADPH oxidase‐dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase.J.Exp.Bot.58,1261–1270.

    Konopka CA,Backues SK,Bednarek SY(2008)Dynamics of Arabidopsis dynamin‐related protein 1C and a clathrin light chain at the plasma membrane.Plant Cell 20,1363–1380.

    Kusano H,Testerink C,Vermeer JEM,Tsuge T,Shimada H,Oka A,Munnik T,Aoyama T(2008)The Arabidopsis phosphatidylinositol phosphate 5‐kinase PIP5K3 is a key regulator of root hair tip growth.Plant Cell 20,367–380.

    Lee YJ,Yang Z(2008)Tip growth:Signaling in the apical dome.Curr.Opin.Plant Biol.11,662–671.

    Lee YJ,Szumlanski A,Nielsen E,Yang Z(2008)Rho‐GTPase‐dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth.J.Cell Biol.181,1155–1168.

    Liepman AH,Wightman R,Geshi N,Turner SR,Scheller HV(2010)Arabidopsis—a powerful model system for plant cell wall research.Plant J.61,1107–1121.

    Lin C,Choi HS,Cho HT(2011)Root hair‐specific EXPANSIN A7 is required for root hair elongation in Arabidopsis.Mol.Cells 31,393–397.

    Mohnen D(2008)Pectin structure and biosynthesis.Curr.Opin.Plant Biol.11,266–277.

    Mohnen D,Tierney ML(2011)Plant science.Plants get Hyp to O‐glycosylation.Science 332,1393–1394.

    Molendijk AJ,Bischoff F,Rajendrakumar CS,Friml J,Braun M,Gilroy S,Palme K(2001)Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth.EMBO J.20,2779–2288.

    M?lh?j M,J?rgensen B,Ulvskov P,Borkhardt B(2001)Two Arabidopsis thaliana genes,KOR2 and KOR3,which encode membrane‐anchored endo‐1,4‐beta‐D‐glucanases,are differentially expressed in developing leaf trichomes and their support cells.Plant Mol.Biol.46,263–275.

    Moore I,Diefenthal T,Zarsky V,Schell J,Palme K(1997)A homolog of the mammalian GTPase Rab2 is present in Arabidopsis and is expressed predominantly in pollen grains and seedlings.Proc.Natl.Acad.Sci.USA 94,762–767.

    Mueller SC,Brown RM(1980)Evidence for an intramembrane component associated with a cellulose microfibril‐synthesizing complex in higher plants.J.Cell Biol.84,315–326.

    Newcomb EH,Bonnett HT(1965)Cytoplasmic microtubule and wall microfibril orientation in root hairs of radish.J.Cell Biol.27,575–589.

    Nicol F,His I,Jauneau A,Vernhettes S,Canut H,H?fte H(1998)A plasma membrane‐bound putative endo‐1,4‐beta‐D‐glucanase is required for normal wall assembly and cell elongation in Arabidopsis.EMBO J.17,5563–5576.

    Nielsen E(2006)Rab GTPases in plant endocytosis.Plant Endocyt.1,177–195.

    Nielsen E(2009)Plant cell wall biogenesis during tip growth in root hair cells.Root Hairs 12,1–18.

    Nielsen E,Cheung AY,Ueda T(2008)The regulatory RAB and ARF GTPases for vesicular trafficking.Plant Physiol.147,1516–1526.

    Ovecka M,Berson T,Beck M,Derksen J,Samaj J,Baluska F,Lichtscheidl IK(2010)Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana.Plant Cell 22,2999–3019.

    Pagant S,Bichet A,Sugimoto K(2002)KOBITO1 encodes a novel plasma membrane protein necessary for normal synthesis of cellulose during cell expansion in Arabidopsis.Plant Cell 14,2001–2013.

    Pang CY,Wang H,Pang Y,Xu C,Jiao Y,Qin YM,Western TL,Yu SX,Zhu YX(2010)Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation.Mol.Cell.Proteomics 9,2019–2033.

    Paredez AR,Somerville CR,Ehrhardt DW(2006)Visualization of cellulose synthase demonstrates functional association with microtubules.Science 312,1491–1495.

    Park YB,Cosgrove DJ(2012)Changes in cell wall biomechanical properties in the xyloglucan‐deficient xxt1/xxt2 mutant of Arabidopsis.Plant Physiol.158,465–475.

    Park S,Szumlanski AL,Gu F,Guo F,Nielsen E(2011)A role for CSLD3 during cell‐wall synthesis in apical plasma membranes of tip‐growing root‐hair cells.Nat.Cell Biol.13,973–980.

    Parker JS,Cavell AC,Dolan L,Roberts K,Grierson CS(2000)Genetic interactions during root hair morphogenesis in Arabidopsis.Plant Cell 12,1961–1974.

    Patriarca EJ,Tatè R,Ferraioli S,Iaccarino M(2004)Organogenesis of legume root nodules.Int.Rev.Cytol.234,201–262.

    Pei W,Du F,Zhang Y,He T,Ren H(2012)Control of the actin cytoskeleton in root hair development.Plant Sci.187,10–18.

    Pe?a MJ,Kong Y,York WS,O’Neill MA(2012)A galacturonic acid‐containing xyloglucan is involved in arabidopsis root hair tip growth.Plant Cell 24,4511–4524.

    Persson S,Paredez A,Carroll A,Palsdottir H,Doblin M,Poindexter P,Khitrov N,Auer M,Somerville CR(2007)Genetic evidence for three unique components in primary cell‐wall cellulose synthase complexes in Arabidopsis.Proc.Natl.Acad.Sci.USA 104,15566–15571.

    Pina C,Pinto F,Feijó JA,Becker JD(2005)Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth,division control,and gene expression regulation.Plant Physiol.138,744–756.

    Preuss ML,Serna J,Falbel TG,Bednarek SY,Nielsen E(2004)The Arabidopsis Rab GTPase RabA4b localizes to the tips of growing root hair cells.Plant Cell 16,1589–1603.

    Preuss ML,Schmitz AJ,Thole JM,Bonner HKS,Otegui MS,Nielsen E(2006)A role for the RabA4b effector protein PI‐4Kbeta1 in polarized expansion of root hair cells in Arabidopsis thaliana.J.Cell Biol.172,991–998.

    Richmond TA,Somerville CR(2000)The cellulose synthase superfamily.Plant Physiol.124,495–498.

    Rounds CM,Lubeck E,Hepler PK,Winship LJ(2011)Propidium iodide competes with Ca2+to label pectin in pollen tubes and Arabidopsis root hairs.Plant Physiol.157,175–187.

    Ryu KH,Zheng X,Huang L,Schiefelbein JW(2013)Computational modeling of epidermal cell fate determination system.Curr.Opin.Plant.Biol.16,5–10.

    Schallus T,Jaeckh C,Fehér K,Palma AS,Liu Y,Simpson JC,Mackeen M,Stier G,Gibson TJ,Feizi T Pieler T,Muhle‐Goll C(2008)Malectin:A novel carbohydrate‐binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N‐glycosylation.Mol.Biol.Cell 19,3404–3414.

    Schiefelbein JW,Somerville C(1990)Genetic control of root hair development in Arabidopsis thaliana.Plant cell 2,235–243.

    Schindelman G,Morikami A,Jung J,Baskin TI,Carpita NC,Derbyshire P,McCann MC,Benfey PN(2001)COBRA encodes a putative GPI‐anchored protein,which is polarly localized and necessary for oriented cell expansion in Arabidopsis.Genes Dev.15,1115–1127.

    Somerville C(2006)Cellulose synthesis in higher plants.Annu.Rev.Cell Dev.Biol.22,53–78.

    Somerville C,Bauer S,Brininstool G,Facette M,Hamann T,Milne J,Osborne E,Paredez A,Persson S,Raab T Vorwerk S,Youngs H(2004)Toward a systems approach to understanding plant cell walls.Science 306,2206–2211.

    Sousa E,Kost B,Malhó R(2008)Arabidopsis phosphatidylinositol‐4‐monophosphate 5‐kinase 4 regulates pollen tube growth and polarity by modulating membrane recycling.Plant Cell 20,3050–3064.

    Sterling JD,Atmodjo MA,Inwood SE,Kumar Kolli VS,Quigley HF,Hahn MG,Mohnen D(2006)Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase.Proc.Natl.Acad.Sci.USA 103,5236–5241.

    Szumlanski AL,Nielsen E(2009)The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana.Plant Cell 21,526–544.

    Szyjanowicz PMJ,McKinnon I,Taylor NG,Gardiner J,Jarvis MC,Turner SR(2004)The irregular xylem 2 mutant is an allele of korrigan that affects the secondary cell wall of Arabidopsis thaliana.Plant J.37,730–740.

    Takeda S,Gapper C,Kaya H,Bell E,Kuchitsu K,Dolan L(2008)Local positive feedback regulation determines cell shape in root hair cells.Science 319,1241–1244.

    Thole JM,Vermeer JEM,Zhang Y,Gadella TWJ,Nielsen E(2008)Root hair defective4 encodes a phosphatidylinositol‐4‐phosphate phosphatase required for proper root hair development in Arabidopsis thaliana.Plant Cell 20,381–395.

    Tian GW,Chen MH,Zaltsman A,Citovsky V(2006)Pollen‐specific pectin methylesterase involved in pollen tube growth.Dev.Biol.294,83–91.

    Tominaga‐Wada R,Ishida T,Wada T(2011)New insights into the mechanism of development of Arabidopsis root hairs and trichomes.Int.Rev.Cell Mol.Biol.286,67–106.

    Van Bruaene N,Joss G,Van Oostveldt P(2004)Reorganization and in vivo dynamics of microtubules during arabidopsis root hair development.Plant Physiol.136,3905–3919.

    Velasquez SM,Ricardi MM,Dorosz JG,Fernandez PV,Nadra AD,Pol‐Fachin L,Egelund J,Gille S,Harholt J,Ciancia M Verli H,Pauly M,Bacic A,Olsen CE,Ulvskov P,Petersen BL,Somerville C,Iusem ND,Estevez JM(2011)O‐glycosylated cell wall proteins are essential in root hair growth.Science 332,1401–1403.

    Wang X,Cnops G,Vanderhaeghen R,De Block S,Van Montagu M,Van Lijsebettens M(2001)AtCSLD3,a cellulose synthase‐like gene important for root hair growth in arabidopsis.Plant Physiol.126,575–586.

    Wang W,Wang L,Chen C,Xiong G,Tan XY,Yang KZ,Wang ZC,Zhou Y,Ye D,Chen LQ(2011)Arabidopsis CSLD1 and CSLD4 are required for cellulose deposition and normal growth of pollen tubes.J.Exp.Bot.62,5161–5177.

    Won SK,Lee YJ,Lee HY,Heo YK,Cho M,Cho HT(2009)Cis‐element‐and transcriptome‐based screening of root hair‐specific genes and their functional characterization in Arabidopsis.Plant Physiol.150,1459–1473.

    Won SK,Choi SB,Kumari S,Cho M,Lee SH,Cho HT(2010)Root hair‐specific EXPANSIN B genes have been selected for Graminaceae root hairs.Mol.Cells 30,369–376.

    Wymer C,Bibikova T,Gilroy S(1997)Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana.Plant J.12,427–439.

    Ye J,Zheng Y,Yan A,Chen N,Wang Z,Huang S,Yang Z(2009)Arabidopsis formin3 directs the formation of actin cables and polarized growth in pollen tubes.Plant Cell 21,3868–3884.

    Yi K,Guo C,Chen D,Zhao B,Yang B,Ren H(2005)Cloning and functional characterization of a formin‐like protein(AtFH8)from Arabidopsis.Plant Physiol.138,1071–1082.

    Yin L,Verhertbruggen Y,Oikawa A,Manisseri C,Knierim B,Prak L,Jensen JK,Knox JP,Auer M,Willats WG,Scheller HV(2011)The cooperative activities of CSLD2,CSLD3,and CSLD5 are required for normal Arabidopsis development.Mol.Plant 4,1024–1037.

    Yoo CM,Quan L,Blancaflor EB(2012)Divergence and redundancy in CSLD2 and CSLD3 function during Arabidopsis thaliana root hair and female gametophyte development.Front.Plant Sci.3,111.

    Zabotina OA,Van de Ven WTG,Freshour G,Drakakaki G,Cavalier D,Mouille G,Hahn MG,Keegstra K,Raikhel NV(2008)Arabidopsis XXT5 gene encodes a putative alpha‐1,6‐xylosyltransferase that is involved in xyloglucan biosynthesis.Plant J.56,101–115.

    Zabotina OA,Avci U,Cavalier D,Pattathil S,Chou YH,Eberhard S,Danhof L,Keegstra K,Hahn MG(2012)Mutations in multiple XXT genes of Arabidopsis reveal the complexity of xyloglucan biosynthesis.Plant Physiol.159,1367–1384.

    Zhang B,Zhou Y(2011)Rice brittleness mutants:A way to open the“black box”of monocot cell wall biosynthesis.J.Integr.Plant Biol.53,136–142.

    Zheng Y,Xin H,Lin J,Liu CM,Huang S(2012)An Arabidopsis class II formin,AtFH19,nucleates actin assembly,binds to the barbed end of actin filaments,and antagonizes the effect of AtFH1 on actin dynamics.J.Integr.Plant Biol.54,800–813.

    Zuo J,Niu Q,Nishizawa N,Wu Y,Kost B,Chua N(2000)KORRIGAN,an Arabidopsis endo‐1,4‐D‐glucanase,localizes to the cell plate by polarized targeting and is essential for cytokinesis.Plant Cell 12,1137–1152.

    超碰97精品在线观看| 大话2 男鬼变身卡| 一二三四在线观看免费中文在 | 久久97久久精品| 精品人妻熟女毛片av久久网站| 国产一区亚洲一区在线观看| 18禁国产床啪视频网站| 日韩免费高清中文字幕av| 精品国产一区二区久久| 国产探花极品一区二区| 最近的中文字幕免费完整| 日韩中文字幕视频在线看片| 亚洲成色77777| 90打野战视频偷拍视频| 欧美最新免费一区二区三区| 麻豆乱淫一区二区| 制服诱惑二区| 国产乱人偷精品视频| 国产精品三级大全| 99国产综合亚洲精品| 免费看不卡的av| 免费人成在线观看视频色| 亚洲精品中文字幕在线视频| 国产精品欧美亚洲77777| 母亲3免费完整高清在线观看 | 亚洲国产精品一区三区| 亚洲精品视频女| 免费看不卡的av| 亚洲国产精品成人久久小说| 久久久精品94久久精品| 午夜日本视频在线| 蜜桃在线观看..| 99热全是精品| 成人漫画全彩无遮挡| 丝袜人妻中文字幕| 久久久精品免费免费高清| 少妇 在线观看| 国产精品女同一区二区软件| 91aial.com中文字幕在线观看| 捣出白浆h1v1| 自线自在国产av| 好男人视频免费观看在线| 18禁裸乳无遮挡动漫免费视频| 男女下面插进去视频免费观看 | 久久精品久久久久久噜噜老黄| 精品国产露脸久久av麻豆| 精品一品国产午夜福利视频| 欧美精品亚洲一区二区| 国产精品欧美亚洲77777| 久久久久久久久久久久大奶| 免费少妇av软件| 熟女人妻精品中文字幕| 少妇的逼好多水| 亚洲一区二区三区欧美精品| 免费看不卡的av| 欧美日韩亚洲高清精品| 国产精品久久久久久av不卡| 久久这里只有精品19| 最近中文字幕2019免费版| 免费人成在线观看视频色| 欧美精品亚洲一区二区| 黄片播放在线免费| 满18在线观看网站| 国产精品久久久久久久久免| 国产国拍精品亚洲av在线观看| 在线天堂中文资源库| 亚洲伊人色综图| 亚洲av免费高清在线观看| 久久人人爽人人爽人人片va| 母亲3免费完整高清在线观看 | 人妻少妇偷人精品九色| 大片电影免费在线观看免费| 视频在线观看一区二区三区| 宅男免费午夜| 久久精品夜色国产| 中文字幕av电影在线播放| 国产成人91sexporn| 制服丝袜香蕉在线| 成年女人在线观看亚洲视频| 久久人人爽人人片av| 视频中文字幕在线观看| 午夜av观看不卡| 侵犯人妻中文字幕一二三四区| 国产欧美另类精品又又久久亚洲欧美| 寂寞人妻少妇视频99o| 又黄又爽又刺激的免费视频.| 久久精品夜色国产| 国产1区2区3区精品| xxx大片免费视频| 一区二区三区精品91| 亚洲成人av在线免费| 天天影视国产精品| 欧美丝袜亚洲另类| 啦啦啦视频在线资源免费观看| 日本wwww免费看| 国产福利在线免费观看视频| 国产精品不卡视频一区二区| 纯流量卡能插随身wifi吗| 亚洲国产精品成人久久小说| 久久 成人 亚洲| 精品久久国产蜜桃| 美女主播在线视频| 久久人妻熟女aⅴ| 人妻 亚洲 视频| 新久久久久国产一级毛片| 三级国产精品片| 美国免费a级毛片| 久久青草综合色| 一级片'在线观看视频| 国产精品秋霞免费鲁丝片| 免费人妻精品一区二区三区视频| 香蕉丝袜av| 女人久久www免费人成看片| 国产不卡av网站在线观看| 国产日韩欧美亚洲二区| 超碰97精品在线观看| 少妇人妻精品综合一区二区| 国产免费一区二区三区四区乱码| 精品一区在线观看国产| 日韩三级伦理在线观看| 欧美人与性动交α欧美精品济南到 | 亚洲一级一片aⅴ在线观看| 国产精品一国产av| 高清黄色对白视频在线免费看| 秋霞伦理黄片| 久久久国产欧美日韩av| 男人舔女人的私密视频| 狂野欧美激情性bbbbbb| 精品久久久精品久久久| 欧美国产精品va在线观看不卡| 国产国拍精品亚洲av在线观看| 国产国语露脸激情在线看| 一区二区三区精品91| 国产女主播在线喷水免费视频网站| 国产男女超爽视频在线观看| 日本黄色日本黄色录像| 精品人妻在线不人妻| 丁香六月天网| 免费黄网站久久成人精品| 久久人人爽人人片av| 丝袜脚勾引网站| 婷婷色综合www| 丝袜美足系列| xxxhd国产人妻xxx| 男女高潮啪啪啪动态图| 女人精品久久久久毛片| 国产国语露脸激情在线看| 男人操女人黄网站| 18在线观看网站| 亚洲av国产av综合av卡| 人成视频在线观看免费观看| 寂寞人妻少妇视频99o| 香蕉丝袜av| 一级毛片黄色毛片免费观看视频| 亚洲成色77777| 久久精品人人爽人人爽视色| 久久久久国产网址| 久久鲁丝午夜福利片| 国产一区二区三区综合在线观看 | 一边亲一边摸免费视频| 精品久久久久久电影网| 搡女人真爽免费视频火全软件| 国产欧美日韩综合在线一区二区| 国产熟女午夜一区二区三区| 91aial.com中文字幕在线观看| 国产精品成人在线| 国产极品天堂在线| 男女啪啪激烈高潮av片| 国产淫语在线视频| 丝瓜视频免费看黄片| 久久久久精品性色| 国产精品久久久久久精品电影小说| 亚洲高清免费不卡视频| 日日爽夜夜爽网站| 卡戴珊不雅视频在线播放| 亚洲,一卡二卡三卡| 亚洲欧美日韩卡通动漫| 黄色毛片三级朝国网站| 91精品国产国语对白视频| 国产精品久久久久久av不卡| 99久久综合免费| 一区二区三区乱码不卡18| 久久精品国产综合久久久 | 在线天堂中文资源库| 伦理电影大哥的女人| 人人妻人人澡人人爽人人夜夜| 久久久久久久久久久免费av| 性高湖久久久久久久久免费观看| 色94色欧美一区二区| 亚洲成人av在线免费| 你懂的网址亚洲精品在线观看| 日本免费在线观看一区| 午夜福利在线观看免费完整高清在| 免费观看在线日韩| 欧美精品一区二区大全| 视频在线观看一区二区三区| 久久99精品国语久久久| 亚洲天堂av无毛| 亚洲欧洲国产日韩| 少妇人妻久久综合中文| 一级毛片 在线播放| 在线观看三级黄色| 丰满乱子伦码专区| 9色porny在线观看| 国产av国产精品国产| 国产免费一区二区三区四区乱码| 夜夜骑夜夜射夜夜干| 日韩 亚洲 欧美在线| 在线观看www视频免费| 亚洲精品一区蜜桃| 日本欧美视频一区| 国产成人精品一,二区| 热99久久久久精品小说推荐| 国产精品一区二区在线观看99| 边亲边吃奶的免费视频| 国产国语露脸激情在线看| 波多野结衣一区麻豆| 亚洲熟女精品中文字幕| 亚洲美女视频黄频| 免费不卡的大黄色大毛片视频在线观看| 中文精品一卡2卡3卡4更新| 男女国产视频网站| 日本爱情动作片www.在线观看| 中文字幕av电影在线播放| 久久青草综合色| 日韩成人av中文字幕在线观看| 久久国产亚洲av麻豆专区| 婷婷色综合www| 黄色视频在线播放观看不卡| 人妻系列 视频| 狠狠精品人妻久久久久久综合| 国产在线一区二区三区精| 国产免费又黄又爽又色| 日韩在线高清观看一区二区三区| 十八禁网站网址无遮挡| 亚洲成人av在线免费| 欧美精品一区二区大全| 国产精品成人在线| 亚洲综合色惰| 欧美国产精品一级二级三级| 日本av手机在线免费观看| 欧美日韩国产mv在线观看视频| 日本欧美国产在线视频| 国产精品国产三级国产专区5o| 在线亚洲精品国产二区图片欧美| 一个人免费看片子| 国产精品人妻久久久久久| 免费看光身美女| 日本-黄色视频高清免费观看| 2022亚洲国产成人精品| 看非洲黑人一级黄片| 亚洲精品色激情综合| 搡老乐熟女国产| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久精品电影小说| 超碰97精品在线观看| 在线观看人妻少妇| 国产精品不卡视频一区二区| 欧美最新免费一区二区三区| 天天躁夜夜躁狠狠久久av| 少妇被粗大猛烈的视频| 亚洲精品乱久久久久久| 青春草亚洲视频在线观看| 99九九在线精品视频| 亚洲精品第二区| 自线自在国产av| 午夜免费观看性视频| 黄色配什么色好看| 国产成人精品无人区| 69精品国产乱码久久久| av又黄又爽大尺度在线免费看| 青青草视频在线视频观看| 午夜福利影视在线免费观看| 人妻系列 视频| 91成人精品电影| 久久av网站| 成年美女黄网站色视频大全免费| av在线观看视频网站免费| 亚洲综合色惰| 国语对白做爰xxxⅹ性视频网站| av在线app专区| 亚洲少妇的诱惑av| 丁香六月天网| 午夜福利在线观看免费完整高清在| 桃花免费在线播放| av天堂久久9| 下体分泌物呈黄色| 婷婷色综合www| 性色av一级| 新久久久久国产一级毛片| 尾随美女入室| 中文字幕另类日韩欧美亚洲嫩草| 久久99蜜桃精品久久| 男女边吃奶边做爰视频| av免费在线看不卡| 男女高潮啪啪啪动态图| 毛片一级片免费看久久久久| 亚洲国产色片| 亚洲国产精品国产精品| 色5月婷婷丁香| 国产成人精品无人区| 日韩不卡一区二区三区视频在线| 激情五月婷婷亚洲| 春色校园在线视频观看| 国产一级毛片在线| 人妻 亚洲 视频| 国产熟女欧美一区二区| 欧美精品一区二区免费开放| 中文精品一卡2卡3卡4更新| 美女福利国产在线| 在线观看www视频免费| 成年女人在线观看亚洲视频| 波野结衣二区三区在线| 久久免费观看电影| av免费在线看不卡| 亚洲色图综合在线观看| 久久精品夜色国产| 亚洲欧美色中文字幕在线| 少妇高潮的动态图| 日本与韩国留学比较| 久久久国产一区二区| 丰满少妇做爰视频| 18禁动态无遮挡网站| 国产成人午夜福利电影在线观看| 欧美日韩一区二区视频在线观看视频在线| 日本午夜av视频| av一本久久久久| 免费日韩欧美在线观看| 亚洲伊人色综图| 在线天堂中文资源库| 最新的欧美精品一区二区| 大片电影免费在线观看免费| 性色avwww在线观看| 午夜精品国产一区二区电影| 日韩在线高清观看一区二区三区| 在线看a的网站| 中国三级夫妇交换| 国产成人a∨麻豆精品| 婷婷色av中文字幕| 国产不卡av网站在线观看| 纵有疾风起免费观看全集完整版| 我的女老师完整版在线观看| 久久 成人 亚洲| 成人二区视频| 亚洲,欧美精品.| 边亲边吃奶的免费视频| 18禁裸乳无遮挡动漫免费视频| 99久久综合免费| 18禁观看日本| 日韩,欧美,国产一区二区三区| 亚洲av国产av综合av卡| 一级a做视频免费观看| 春色校园在线视频观看| 99久久人妻综合| 满18在线观看网站| 国产欧美另类精品又又久久亚洲欧美| 我要看黄色一级片免费的| 久久精品国产鲁丝片午夜精品| 最近最新中文字幕大全免费视频 | 国产极品粉嫩免费观看在线| 女性被躁到高潮视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久毛片免费看一区二区三区| 免费黄频网站在线观看国产| 精品国产一区二区三区久久久樱花| 国产成人免费观看mmmm| 婷婷成人精品国产| 精品国产一区二区三区久久久樱花| av天堂久久9| 免费黄网站久久成人精品| 国产av精品麻豆| 亚洲成国产人片在线观看| a级毛色黄片| www.av在线官网国产| 熟女电影av网| 国产黄色免费在线视频| 99热国产这里只有精品6| 一二三四中文在线观看免费高清| 久久人人97超碰香蕉20202| 免费高清在线观看日韩| 18禁裸乳无遮挡动漫免费视频| 在现免费观看毛片| 久久这里有精品视频免费| 亚洲精品乱码久久久久久按摩| 亚洲av电影在线观看一区二区三区| 妹子高潮喷水视频| 日韩,欧美,国产一区二区三区| 成人国产麻豆网| 美国免费a级毛片| 国产淫语在线视频| 18在线观看网站| 91在线精品国自产拍蜜月| 国产深夜福利视频在线观看| 老司机影院毛片| 亚洲国产欧美在线一区| 亚洲欧美中文字幕日韩二区| 人妻一区二区av| 亚洲色图 男人天堂 中文字幕 | 亚洲欧洲精品一区二区精品久久久 | 精品国产国语对白av| 国产免费又黄又爽又色| 国产国语露脸激情在线看| 美女视频免费永久观看网站| 亚洲一区二区三区欧美精品| 大片免费播放器 马上看| 精品人妻在线不人妻| av片东京热男人的天堂| 亚洲欧美日韩另类电影网站| 精品国产一区二区三区久久久樱花| 欧美日韩视频高清一区二区三区二| 日日啪夜夜爽| 免费播放大片免费观看视频在线观看| 亚洲人与动物交配视频| 99re6热这里在线精品视频| 亚洲美女视频黄频| a级毛色黄片| 国产免费一级a男人的天堂| 国产精品三级大全| 成人18禁高潮啪啪吃奶动态图| 国产高清三级在线| 草草在线视频免费看| 国产精品99久久99久久久不卡 | 黄色配什么色好看| 女的被弄到高潮叫床怎么办| 日韩电影二区| 日本av免费视频播放| 18禁在线无遮挡免费观看视频| 青春草视频在线免费观看| 蜜臀久久99精品久久宅男| 久久青草综合色| 欧美精品高潮呻吟av久久| 26uuu在线亚洲综合色| 春色校园在线视频观看| 亚洲欧美色中文字幕在线| 欧美最新免费一区二区三区| 五月玫瑰六月丁香| 在线免费观看不下载黄p国产| av有码第一页| 一级片'在线观看视频| 久久久精品区二区三区| 国产一区二区激情短视频 | 国产精品麻豆人妻色哟哟久久| 男女边摸边吃奶| 美女福利国产在线| 久久这里有精品视频免费| 中文字幕人妻熟女乱码| 一本大道久久a久久精品| 久久亚洲国产成人精品v| 搡女人真爽免费视频火全软件| 9热在线视频观看99| 国产一区二区激情短视频 | 国产精品嫩草影院av在线观看| 国产精品久久久久久精品古装| 天天操日日干夜夜撸| 夜夜骑夜夜射夜夜干| 久久国产精品大桥未久av| 91精品国产国语对白视频| 成年av动漫网址| 久久精品人人爽人人爽视色| 大片电影免费在线观看免费| 建设人人有责人人尽责人人享有的| 黄色配什么色好看| 日韩三级伦理在线观看| 亚洲精品成人av观看孕妇| 国产免费现黄频在线看| 有码 亚洲区| 三上悠亚av全集在线观看| 免费人妻精品一区二区三区视频| 狂野欧美激情性bbbbbb| 国产日韩欧美在线精品| freevideosex欧美| 精品一区在线观看国产| 少妇 在线观看| 亚洲成av片中文字幕在线观看 | 伊人亚洲综合成人网| 丝袜脚勾引网站| 交换朋友夫妻互换小说| 国产片特级美女逼逼视频| 午夜福利网站1000一区二区三区| 精品一区二区三区视频在线| 国产男女超爽视频在线观看| 国产精品一区二区在线不卡| 亚洲少妇的诱惑av| 亚洲美女黄色视频免费看| 亚洲婷婷狠狠爱综合网| 两个人免费观看高清视频| 日韩不卡一区二区三区视频在线| 丝袜脚勾引网站| 欧美精品人与动牲交sv欧美| 我要看黄色一级片免费的| 亚洲人成77777在线视频| 黄片播放在线免费| 国产精品人妻久久久久久| 国产精品人妻久久久影院| 自线自在国产av| 男人操女人黄网站| a 毛片基地| 久久女婷五月综合色啪小说| 丝袜美足系列| 久久久久精品人妻al黑| 搡老乐熟女国产| 国产精品不卡视频一区二区| 十分钟在线观看高清视频www| 亚洲少妇的诱惑av| 亚洲欧美成人综合另类久久久| 一二三四在线观看免费中文在 | 色吧在线观看| 亚洲av综合色区一区| 国产免费一级a男人的天堂| 国产免费视频播放在线视频| 国产av一区二区精品久久| 色婷婷av一区二区三区视频| 久久99热6这里只有精品| 免费观看在线日韩| 中文字幕av电影在线播放| 国产av一区二区精品久久| 亚洲av男天堂| 国产精品久久久久久久久免| 欧美精品一区二区大全| 9191精品国产免费久久| 亚洲,欧美,日韩| 日韩av免费高清视频| 亚洲精品一区蜜桃| 国产精品一国产av| 国产黄色视频一区二区在线观看| 美女脱内裤让男人舔精品视频| 综合色丁香网| 精品人妻在线不人妻| 最近最新中文字幕免费大全7| 国产精品久久久久久久久免| 一级片免费观看大全| 春色校园在线视频观看| 黄色一级大片看看| 久久热在线av| 狠狠婷婷综合久久久久久88av| 国产精品三级大全| 老女人水多毛片| 国产国语露脸激情在线看| 热re99久久精品国产66热6| 男的添女的下面高潮视频| 国语对白做爰xxxⅹ性视频网站| 日韩,欧美,国产一区二区三区| 亚洲精品国产色婷婷电影| 国产xxxxx性猛交| 七月丁香在线播放| 女的被弄到高潮叫床怎么办| 国产极品天堂在线| 人妻少妇偷人精品九色| 精品国产露脸久久av麻豆| 国产成人免费无遮挡视频| 高清视频免费观看一区二区| 97在线视频观看| 亚洲国产看品久久| 亚洲av.av天堂| 自线自在国产av| 日本午夜av视频| 国产亚洲一区二区精品| 久久久亚洲精品成人影院| www日本在线高清视频| 最近中文字幕2019免费版| 国产成人a∨麻豆精品| 久久鲁丝午夜福利片| 黑人欧美特级aaaaaa片| 午夜免费男女啪啪视频观看| 2018国产大陆天天弄谢| 乱码一卡2卡4卡精品| 亚洲国产av新网站| 自线自在国产av| 最新中文字幕久久久久| 如何舔出高潮| 波多野结衣一区麻豆| 欧美3d第一页| 国产精品成人在线| 人妻系列 视频| 国产黄色免费在线视频| 一二三四在线观看免费中文在 | 日本vs欧美在线观看视频| 久久人人97超碰香蕉20202| 久久精品国产自在天天线| 久热久热在线精品观看| 香蕉国产在线看| 另类精品久久| 如日韩欧美国产精品一区二区三区| a级毛色黄片| av在线观看视频网站免费| 日韩一区二区三区影片| 这个男人来自地球电影免费观看 | 免费观看在线日韩| 夜夜骑夜夜射夜夜干| 国产熟女欧美一区二区| 亚洲国产最新在线播放| 成人亚洲欧美一区二区av| 18禁在线无遮挡免费观看视频| 久久久久久久久久久免费av| 啦啦啦视频在线资源免费观看| 久久久久国产网址| 亚洲 欧美一区二区三区| 不卡视频在线观看欧美| 日本爱情动作片www.在线观看| 精品少妇黑人巨大在线播放| xxxhd国产人妻xxx| 在线天堂中文资源库| 一二三四中文在线观看免费高清| 欧美激情极品国产一区二区三区 | 18禁国产床啪视频网站| 两个人看的免费小视频| 伦精品一区二区三区| 久久精品久久精品一区二区三区| 亚洲精品美女久久av网站| 免费观看无遮挡的男女| 国产精品.久久久| 99九九在线精品视频| 中文字幕另类日韩欧美亚洲嫩草| 久久国内精品自在自线图片| 亚洲av日韩在线播放|