柴大軍, 許昌聲, 寧若冰, 祝 江, 謝 泓, 林金秀
糖尿病患者發(fā)生動脈粥樣硬化性疾病的風險較正常人顯著增加。血管平滑肌細胞(vascular smooth muscle cells,VSMCs)增殖及其由血管中膜向內皮下區(qū)域遷移是動脈粥樣硬化形成和發(fā)展過程中的重要事件,在血管基底膜退化和重構過程中起到核心作用[1],蛋白激酶 C(protein kinase C,PKC)參與了血管平滑肌細胞的增殖過程[2]。哺乳動物的細胞增殖過程通常由細胞周期所調控,細胞從G1期進入S期需要細胞周期蛋白(cyclin)/細胞周期蛋白依賴激酶(cyclin-dependent kinase,CDK)復合物的結合和激活,主要是 cyclin/CDK4 和 cyclin/CDK2[3]。p27Kip1是Cip/Kip家族的細胞周期蛋白依賴激酶抑制物(cyclin-dependent kinase inhibitors,CDKI),能夠與cyclin/CDK4和cyclin/CDK2復合物結合并抑制后者的激酶活性,從而負性調控細胞周期進程[4],研究發(fā)現p27Kip1是調控VSMCs增殖的重要因素[5]。視黃醇類X受體(retinoid X receptor,RXR)作為核激素受體超家族的成員,介導了多種激素和藥物的細胞生物學效應。RXR在核受體家族中具有獨特的地位,因其可以和許多核受體形成異源二聚體并在心血管功能的調控方面具有重要作用[6],在體研究發(fā)現RXR激動劑具有抗動脈粥樣硬化效應[7]。然而,RXR及其配體通過何種機制來調控動脈粥樣硬化等心血管事件的進展尚不清楚。本研究將討論RXR激動劑在高糖誘導大鼠主動脈平滑肌細胞(rat aortic smooth muscle cells,RASMCs)增殖過程中的作用及相關機制,為RXR及其配體心血管保護作用的發(fā)揮尋求新的分子機制。
DMEM(Dulbecco’s modified Eagle medium)培養(yǎng)基,胎牛血清(fetal bovine serum,FBS)、胰蛋白酶、磷酸緩沖液、Trizol和 Opti-MEM購自Invitrogen;PKC抑制劑(PKC inhibitor peptide)和BrdU增殖檢測試劑盒購自Millipore;II型膠原酶和RXR天然配體9-順式維甲酸(9-cis-retinoic acid,9-cis-RA)購自Sigma;RXR特異性配體SR11237由廈門大學藥學院曾錦章教授友情提供;WST-1細胞增殖檢測試劑盒購自Cayman;兔抗鼠β-actin、PKC及 p-PKC單克隆抗體和兔抗鼠CDK2多克隆抗體、羊抗鼠p27Kip1多克隆抗體和辣根過氧化物酶標記的Ⅱ抗購自Santa Cruz。
2.1 組織干涸法體外培養(yǎng)RASMCs 在參照文獻方法[8]的基礎上稍加改進,取10~12周齡健康雄性Sprague-Dawley大鼠的胸主動脈分離培養(yǎng)RASMCs。去內皮化的組織塊均勻平鋪于0.1%明膠包被的培養(yǎng)瓶內培養(yǎng)10 d。應用平滑肌肌動蛋白抗體進行免疫細胞化學染色方法鑒定細胞,3~6代生長良好的細胞(細胞純度>95%)用于本研究。
2.2 RASMCs的干預和分組 25 mmol/L高濃度葡萄糖常被用來刺激內皮細胞,體外模擬糖尿病患者的體內高糖環(huán)境[9]。實驗過程中設立等滲透壓的甘露醇干預組(5.5 mmol/L葡萄糖 +19.5 mmol/L甘露醇)作為對照以排除高糖干預時因細胞外滲透壓急性改變產生的細胞學效應[10],分為正常組(葡萄糖終濃度為5.5 mmol/L)、甘露醇組、高糖組(葡萄糖終濃度為 25 mmol/L)、高糖 +9-cis-RA(10-9~10-7mol/L)組、高糖 +SR11237(10-7mol/L)組和高糖+PKC抑制劑(2~20 μmol/L)組。各組細胞在干預前用無血清的DMEM培養(yǎng)基培養(yǎng)24 h使細胞進入靜止期。
2.3 細胞增殖活性測定 細胞增殖活性檢測采用WST-1細胞增殖檢測試劑盒,檢測方法參考產品說明書進行。
2.4 溴脫氧鳥苷(bromodeoxyuridine,BrdU)插入法檢測RASMCs DNA合成 采用BrdU增殖檢測試劑盒依據產品說明檢測RASMCs DNA合成。細胞干預結束,先用BrdU標記4 h,再與過氧化物酶標記的抗BrdU抗體共孵育。加入底物3-甲基聯苯胺并用酶標儀450 nm波長讀取吸光度(absorbance,A),間接反映細胞BrdU的摻入率。
2.5 細胞周期分析 參照文獻[11],采用流式細胞學方法檢測RASMCs細胞周期分布比例。細胞干預后,用70%冰乙醇進行固定,用含有40 mg/L核糖核酸酶的PBS 37℃孵育30 min,再用含50 mg/L碘化丙啶的PBS懸浮細胞。細胞周期分布比例用FACSCalibur Sorting System(Becton& Dickinson)檢測,細胞在G0/G1、S和G2/M期的分布百分比采用Modfit LT軟件進行分析。
2.6 細胞蛋白的提取和免疫印跡雜交 提取細胞總蛋白,煮沸變性10 min,采用10% ~12%SDS-PAGE電泳分離50 μg細胞蛋白樣品,轉至PVDF膜后用特異的抗CDK2、p27Kip1及p-PKC抗體進行免疫雜交檢測,β-actin作為內參照。
數據以均數±標準誤(mean±SEM),采用統(tǒng)計軟件SPSS 13.0分析處理。組間均數比較采用單因素方差分析(One-Way ANOVA),兩兩比較采用Scheffe事后檢驗(Post hoc Scheffe test),以P<0.05為差異有統(tǒng)計學意義。
WST-1細胞增殖檢測結果顯示,高糖(25 mmol/L)干預RASMCs 48 h后,細胞增殖活性較對照組(葡萄糖終濃度為5.5 mmol/L)顯著增加(1.46 ±0.10 vs 0.46 ±0.07,P <0.01),等滲透壓的甘露醇干預 48 h未增加細胞增殖活性,9-cis-RA呈濃度依賴性(10-9~10-7mol/L)地抑制高糖環(huán)境下RASMCs細胞增殖活性的增加幅度,10-7mol/L的SR11237對高糖誘導RASMCs細胞增殖活性的抑制作用與等濃度的9-cis-RA相似,見圖1。
Figure 1.RXR agonists inhibited high-glucose-induced proliferation of RASMCs.RASMCs were incubated with 9-cis-RA(10-9~10-7mol/L)or SR11237(10-7mol/L)for 1h and then exposed to high glucose or mannitol for 48 h.RASMCs proliferation was analyzed by WST-1 assay.Mean ± SEM.n=5.*P < 0.05 vs normal glucose;△P<0.05 vs high glucose alone;#P <0.05 vs high glucose plus 10-9mol/L 9-cis-RA;▲P <0.05 vs high glucose plus 10-8mol/L 9-cis-RA.圖1 RXR激動劑抑制高糖誘導的RASMCs增殖
9-cis-RA呈濃度依賴性地抑制高糖誘導下RASMCs的DNA合成,10-7mol/L SR11237的抑制效應與10-7mol/L 9-cis-RA相似,見圖2。
Figure 2.RXR agonists inhibited high-glucose-induced DNA synthesis in RASMCs.RASMCs were incubated with 9-cis-RA(10-9 ~ 10-7mol/L)or SR11237(10-7 mol/L)for 1 h and then exposed to high glucose or mannitol for 48 h.RASMCs DNA synthesis was detected by BrdU incorporation assay.Mean±SEM.n=5.*P <0.05 vs normal glucose;△P <0.05 vs high glucose alone;#P<0.05 vs high glucose plus 10-9 mol/L 9-cis-RA;▲P <0.05 vs high glucose plus 10-8mol/L 9-cis-RA.圖2 RXR激動劑抑制高糖誘導的RASMCs DNA合成
無血清DMEM培養(yǎng)基培養(yǎng)RASMCs 24 h后可使(85.6±3.8)%的細胞同步于 G0/G1期,高糖干預48 h使 RASMCs分布于 S期的比例由(1.58±0.08)%增加至(16.28±1.24)%(P<0.05)。當用9-cis-RA(10-9~10-7mol/L)或 SR11237(10-7mol/L)預處理RASMCs 1 h后再給予高糖干預48 h,結果顯示9-cis-RA呈濃度依賴性地下調RASMCs在S期的分布比例,10-7mol/L的SR11237對RASMCs在S期分布比例的下調作用與等濃度9-cis-RA的作用相當[分別由(16.28±1.24)%下降至(4.98±0.89)%和(4.18±0.76)%],見圖3。
高糖干預48 h后,RASMCs細胞CDK2蛋白的表達顯著增加,p27Kip1蛋白水平則明顯下降。9-cis-RA呈濃度依賴性地降低高糖誘導下CDK2蛋白表達水平增加的幅度,同時逆轉高糖對p27Kip1蛋白的下調作用,10-7mol/L SR11237對高糖環(huán)境下CDK2和p27Kip1蛋白表達的影響與10-7mol/L 9-cis-RA相似,見圖4。
Figure 3.Effects of RXR agonists on high-glucose-induced cell cycle progression of RASMCs.The cell cycle was determined by flow cytometry.The statistical analysis of five independentexperimentswith similarresults showed the inhibition of 9-cis-RA and SR11237 on high-glucose-induced RASMCs cell cycle progression.Each item is derived from a representative experiment where data from at least 10 000 events were obtained.圖3 RXR激動劑抑制高糖誘導的RASMCs細胞周期進程
Figure 4.Effects of RXR agonists on the expression of CDK2 and p27Kip1in RASMCs.RASMCs were incubated with 9-cis-RA(10-9 ~10-7mol/L)or SR11237(10-7mol/L)for 1 h and then exposed to high glucose or mannitol for 48 h.Mean±SEM.n=4.*P <0.05 vs normal glucose;△P<0.05 vs high glucose alone;#P<0.05 vs high glucose plus 10-9mol/L 9-cis-RA;▲P <0.05 vs high glucose plus 10 -8mol/L 9-cis-RA.圖4 在高糖環(huán)境下,RXR激動劑下調CDK2表達,上調p27Kip1表達
PKC抑制劑呈濃度依賴性的抑制高糖環(huán)境下RASMCs細胞的增殖,見圖5A。20 μmol/L的 PKC抑制劑顯著抑制高糖誘導的RASMCs DNA合成(圖5B)和細胞周期進展過程 (圖5C)。因此,PKC參與高糖環(huán)境下RASMCs的增殖過程并發(fā)揮重要作用。
Figure 5.PKC inhibitor inhibited high-glucose-induce RASMCs proliferation.A:RASMCs proliferation was analyzed by WST-1 assay;B:RASMCs DNA synthesis was detected by BrdU incorporation assay;C:flow cytometry analysis of the effect of PKC inhibitor peptide on high-glucose-induced cell cycle progression.RASMCs were treated with the indicated concentration of PKC inhibitor peptide for 1 h and then exposed to high glucose for 48 h.Mean±SEM.n=5.*P <0.05 vs normal glucose;△P<0.05 vs high glucose alone;#P <0.05 vs high glucose plus 2 μmol/L PKC inhibitor.圖5 PKC抑制劑抑制高糖環(huán)境下RASMCs的增殖
PKC抑制劑呈濃度依賴性地降低高糖誘導下CDK2蛋白表達水平增加的幅度,同時上調高糖干預下p27Kip1蛋白的表達,見圖6。這說明PKC參與了高糖對RASMCs CDK2和p27Kip1蛋白表達的調控。
Figure 6.Effects of PKC inhibitor on the expression of CDK2 and p27Kip1in RASMCs.RASMCs were incubated with PKC inhibitor peptide for 1 h and then exposed to high glucose for 48 h.Mean ± SEM.n=4.*P <0.05 vs normal glucose;△P <0.05 vs high glucose alone;#P <0.05 vs high glucose plus 2 μmol/L PKC inhibitor.圖6 PKC抑制劑在高糖環(huán)境下調CDK2的表達,上調p27Kip1的表達
用 9-cis-RA(10-8~ 10-7mol/L)或 SR11237(10-7mol/L)預處理RASMCs 45 min后,再暴露于高糖環(huán)境30 min,發(fā)現9-cis-RA呈濃度依賴性抑制高糖誘導的PKC磷酸化水平,SR11237與等濃度9-cis-RA具有相似效應,見圖7。
RXR是由特異性配體激活的轉錄因子,可與其它核受體(如肝臟X受體和過氧化物酶體增生物激活受體等)形成異源二聚體在調控機體能量代謝、炎癥、氧化應激及膠原合成等方面發(fā)揮有益作用[12-14]。RXR配體通過減少腸道脂質吸收和降低脂蛋白水平抑制動脈粥樣斑塊的進展[7],我們前期發(fā)現RXR激動劑通過抑制高糖環(huán)境下PKC的活化對抗高糖對人血管內皮細胞產生的氧化應激損傷[15],提示RXR可能成為新的抗動脈粥樣硬化的藥物治療靶點。
Figure 7.RXR agonists inhibited high-glucose-induced PKC activation.Mean± SEM.n=4.*P <0.05 vs normal glucose;△P<0.05 vs high glucose alone;#P<0.05 vs high glucose plus 10 -8mol/L 9-cis-RA.圖7 RXR激動劑抑制高糖誘導的PKC磷酸化
血管平滑肌細胞的增殖和遷移是糖尿病致動脈粥樣硬化形成過程中的重要環(huán)節(jié),受到細胞周期蛋白、CDK和CDKI等因素的調控[3-4]。本研究通過WST-1細胞增殖分析和DNA合成檢測方法發(fā)現了RXR天然配體9-cis-RA可顯著抑制高糖誘導的RASMCs增殖和DNA合成。在高糖環(huán)境下,RASMCs在細胞周期S期的分布比例顯著增加,但9-cis-RA可顯著逆轉高糖對細胞周期的調控作用。9-cis-RA除與RXR結合外,還可與維甲酸受體結合,但RXR的特異性配體SR11237與等濃度9-cis-RA在對抗高糖的促增殖效應方面具有相似作用,說明9-cis-RA的鈍化效應是通過RXR特異性通路實現的。CDK2是調節(jié)細胞增殖和細胞周期進程的重要細胞周期蛋白依賴激酶,但受到細胞周期蛋白依賴激酶抑制物p27Kip1的調控,后者通過抑制CDK2的活性實現對細胞周期進程的負性調控[3-5]。為深入探討RXR激動劑在高糖條件下抑制RASMCs增殖的分子機制,我們觀察了9-cis-RA和SR11237對CDK2和p27Kip1蛋白的影響,結果發(fā)現高糖對CDK2和p27Kip1蛋白表達的作用可被9-cis-RA和 SR11237所逆轉。因此,RXR激動劑通過調控CDK2和p27Kip1蛋白的表達對抗高糖的促增殖效應。
PKC作為絲氨酸/蘇氨酸激酶家族的成員在細胞信號轉導過程中發(fā)揮重要作用,參與調控心臟收縮、心肌肥厚、缺血/再灌注損傷、氧化應激反應和動脈粥樣硬化等病理生理過程[15-18],但在特定細胞中可被RXR所調控[15]。在本研究中,PKC抑制劑通過上調p27Kip1、下調CDK2蛋白表達抑制高糖誘導的RASMCs增殖,證實了PKC參與高糖環(huán)境下血管平滑肌細胞的增殖過程。為揭示RXR激動劑調控CDK2和p27Kip1蛋白表達和抑制血管平滑肌細胞增殖的機制,我們再次探討了RXR配體對PKC活化的影響,結果顯示9-cis-RA和SR11237可鈍化高糖誘導的PKC活化。所以,抑制PKC活化是RXR激動劑在高糖環(huán)境下調CDK2、上調p27Kip1及最終實現抑制RASMCs增殖的重要機制。維甲酸(retinoid acid,RA)可能通過影響PKC的亞細胞定位或與PKC直接結合鈍化PKC[19-20],但RXR配體抑制PKC活化的機制仍需深入探討。
總之,本研究發(fā)現了在高糖環(huán)境下RXR激動劑通過抑制PKC的激活實現其對血管平滑肌細胞CDK2和p27Kip1的調控,進而抑制細胞增殖,為RXR及其配體的抗動脈硬化作用探明新的分子機制。
[1] Orr AW,Sanders JM,Bevard M,et al.The subendothelial extracellular matrix modulates NF-κB activation by flow:a potential role in atherosclerosis[J].J Cell Biol,2005,169(1):191-202.
[2] Ding Q,Chai H,Mahmood N,et al.Matrix metalloproteinases modulated by protein kinase Cε mediate resistininduced migration of human coronary artery smooth muscle cells[J].J Vasc Surg,2011,53(4):1044-1051.
[3] Sherr CJ,Roberts JM.CDK inhibitors:positive and negative regulators of G1-phase progression[J].Genes Dev,1999,13(12):1501-1512.
[4] Noori S,Hassan ZM.Tehranolide inhibits proliferation of MCF-7 human breast cancer cells by inducing G0/G1arrest and apoptosis[J].Free Radic Biol Med,2012,52(9):1987-1999.
[5] Tanner FC,Boehm M,Akyurek LM,et al.Differential effects of the cyclin-dependent kinase inhibitors p27Kip1,p21Cip1,and p16Ink4on vascular smooth muscle cell proliferation[J].Circulation,2000,101(17):2022-2025.
[6] Sugden MC,Holness MJ.Role of nuclear receptors in the modulation of insulin secretion in lipid-induced insulin resistance[J].Biochem Soc Trans,2008,36(5):891-900.
[7] Lalloyer F,Fievet C,Lestavel S,et al.The RXR agonist bexarotene improves cholesterol homeostasis and inhibits atherosclerosis progression in a mouse model of mixed dyslipidemia[J].Arterioscler Thromb Vasc Biol,2006,26(12):2731-2737.
[8] Wang Y,Lindstedt KA,Kovanen PT.Mast cell granule remnants carry LDL into smooth muscle cells of synthetic phenotype and induce their conversion into foam cells[J].Arterioscler Thromb Vasc Biol,1995,15(6):801-810.
[9] Egashira K,Inoue S,Ni W,et al.Anti-monocyte chemoattractant protein-1 gene therapy limits progression and destabilization of established atherosclerosis in apolipoprotein E-knockout mice[J].Circulation,2002,106(21):2700-2706.
[10] Sakuma H,Yamamoto M,Okumura M,et al.High glucose inhibits apoptosis in human coronary artery smooth muscle cells by increasing bcl-xL and bfl-1/A1[J].Am J Physiol Cell Physiol,2002,283(2):C422-C428.
[11] Kim JH,Jin YR,Park BS,et al.Luteolin prevents PDGF-BB-induced proliferation of vascular smooth muscle cells by inhibition of PDGF beta-receptor phosphorylation[J].Biochem Pharmacol,2005,69(12):1715-1721.
[12] Plutzky J.The PPAR-RXR transcriptional complex in the vasculature:energy in the balance[J].Circ Res,2011,108(8):1002-1016.
[13] Staels B.Regulation of lipid and lipoprotein metabolism by retinoids[J].J Am Acad Dermatol,2001,45(5):S158-S167.
[14]Streb JW,Miano JM.Retinoids:pleiotropic agents of therapy for vascular diseases?[J].Curr Drug Targets Cardiovasc Haematol Disord,2003,3(1):31-57.
[15] Chai D,Wang B,Shen L,et al.RXR agonists inhibit high-glucose-induced oxidative stress by repressing PKC activity in human endothelial cells[J].Free Radic Biol Med,2008,44(7):1334-1347.
[16] Steinberg SF.Cardiac actions of protein kinase C isoforms[J].Physiology(Bethesda),2012,27(3):130-139.
[17] Nakagawa Y.Artificial analogs of naturally occurring tumor promoters as biochemical tools and therapeutic leads[J].Biosci Biotechnol Biochem,2012,76(7):1262-1274.
[18]賈 薇,袁中華.動脈粥樣硬化中的4個PKC相關酶[J].中國病理生理雜志,2007,23(7):1442-1445.
[19] Carter CA,Parham GP,Chambers T.Cytoskeletal reorganization induced by retinoic acid treatment of human endometrial adenocarcinoma(RL95-2)cells is correlated with alterations in protein kinase C-α[J].Pathobiology,1998,66(6):284-292.
[20] Radominska-Pandya A,Chen G,Czernik PJ,et al.Direct interaction of all-trans-retinoic acid with protein kinase C(PKC):implications for PKC signaling and cancer therapy[J].J Biol Chem,2000,275(29):22324-22330.