• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-diagnosis method for faulty modules on wireless sensor node

    2013-11-05 07:30:56ZHAOJun趙軍CHENXiangguang陳祥光LIZhimin李智敏WULei吳磊
    關鍵詞:吳磊趙軍

    ZHAO Jun(趙軍), CHEN Xiang-guang(陳祥光), LI Zhi-min(李智敏), WU Lei(吳磊)

    (School of Chemical Engineering and Environment,Beijing Institute of Technology,Beijing 100081,China)

    With the advantage of the embedded systems technology,the usage of wireless sensor network has extended to various applications and the wireless sensor networks have emerged as the solution for remote sensing applications,such as military monitoring and environment detecting.

    In this paper,we study the wireless sensor network used in the airfield fuel oil supply system.Fig.1 shows the architecture of the wireless sensor network.The network includes several mobile sensor nodes and one sink node.The sensor node is installed on the oil trucks,which are movable and could not be connected by the wired fieldbus.The sink node is connected to the monitor computer via USB or serial port.Every sensor node gets the measuring values and sends them to the sink node,while the sink node collects and submits the measurements to the monitor computer.

    As the sensor nodes work outdoor,the electrical connections may be damaged due to malicious impacts or corrosion of metal.The modules of the sensor nodes may fail owing to the physical damage orthe fabrication process problems.These failed nodes will decrease the quality of service and make the entire wireless sensor network function improperly.

    Fig.1 Wireless sensor network architecture

    If we replace the whole node when only one module fails,that will cause the device wastes and increase costs.It will be more economic and proper if we can find the failed module and replace it.So we design every module as a separate circuit,and add a state detection module to detect the status of all modules in the node.Another reason of our design is that the wireless sensor network is applied at the airfield oil fuel supply system and the nodes of WSN may be installed on the devices which may be vary from each other in function and dimensions.

    Fig.2 shows the architecture of the sensor node we install on oil trucks.We design a fundamental circuit as a common part which contains the power supply module,processor module and state detection module.The other modules are designed as separate circuits.At last we connect these different function circuits together with electrical connections according to the function of different sensor node.

    Fig.2 Architecture of the sensor node

    In later chapters,we will discuss the self-diagnosis algorithm on the state detection module to detect the status of each module of sensor node and find the failure module timely in order to ensure the system more reliability.

    1 Related works

    Self-diagnosis is important especially in assuring the dependability of mission-critical information systems.Built-in self-test(BIST)is widely used in voting based systems or off-line testing.There are many methods[1-2]applied the self-diagnosis to hardware and design in some unconventional circuits,but they used the hardware resources extremely.Ref.[3] proposed an evolutionary method in designing the self-diagnostics circuits in nature exhibit self-diagnostic system.

    Ref.[4]evolved the digital circuits with online built-in self-test design.It describes the generational genetic algorithm(GA)as the theoretic of self-diagnosis method and designs the self-diagnosis analog circuits.But with the increasing number of sensors on each sensor node,the genetic algorithm will become complicated and the design of the self-diagnosis analog circuits will be more and more difficult.Ref.[5] described a method of introducing a level of fault tolerance into wireless sensor networks by monitoring the status of each wireless sensor node.It focuses on the detection of physical malfunctions caused by impacts or incorrect orientation,and designs a flexible circuit using accelerometers that acts as a sensing layer around a node,which will be capable of sensing the physical condition of a node.The software analyses the raw data from the accelerometers to determine the orientation of the node and access the damage probability.At last the whole sensor network should be made aware of the faulty nodes to ensure that faulty nodes are routed around.

    Ref.[6] proposed a built-in and self-organized diagnosis mechanism to monitor each node in real time and identify faulty nodes.This diagnosis is operated within a cluster of nodes.It can reduce power consumption and communication traffic.Ref.[7] presents a methodology for fault characterization.This self-learning approach is developed in initial and learning phases.The process units are simulated without and with different faults that will let the system(in an automated way)detect the key variables to characterize the faults.This method can be used on line,and key variables will be monitored in order to diagnose possible faults.

    Ref.[8] proposed an energy efficient faulttolerant detection scheme that explicitly introduces the sensor fault probability into the optimal event detection process.As the relationship between measurement noise and sensor faults is likely to be stochastical and unrelated,while the event measurements are likely to be spatially correlated,the authors attempted to disambiguate e-vents from both noise related measurement error and sensor fault simultaneously in fault-tolerant detection and limit the effects of faulty sensor on the event detection accuracy.Since the optimal detection error was shown to decrease exponentially with the increase of the neighborhood size,the Bayesian detection scheme is used to achieve the balance on the event detection accuracy and the energy consumption by choosing a proper neighborhood size for a sensor node in fault correction,as such the energy could be conserved.

    Although the self-diagnosing hardware can monitor the conditions of the node,this self-diagnosis suffers from two main disadvantages.The first is that they require the circuit’s operation to go off-line periodically to feed in the test patterns.The second is that we will never know what is derived from the node if the testing logic fails and the rest of the circuit is functioning properly.We propose a new distributed fault detection method in this paper to remedy the shortcomings above;there is a circuit as the self-diagnosing hardware around a sensor node to monitor the status of the sensor node and the software to analyze the measurements and check out the failed modules.

    2 Self-diagnosis algorithm

    As mentioned,we could not replace the entire sensor node because of the failure of one module,so we need an accurate diagnosis of each failure module, forexample, when the screen is not shown,we need to diagnose whether it is the failure of the screen or the processor module.In this paper,sensor nodes are distributed sparsely together with the oil tank trucks.Because the measurement of each sensor node may vary from each other and the operation of every sensor node may be different for each time,and the method of collecting and comparing its own measurement is not appropriate in this paper.

    The self-diagnosis algorithm on state detection module is working by observing the voltage changes of each module.This fault detection system can be expressed by the fault identification principle S=(U,A,R,P),where U is the diagnostic object,A={a[i],i=1,2,…,k}is condition attributes,R={r}is the results of condition attributes,P={s[i],i=1,2,…,k}is the working status of each module.We define a[i]=0 and s[i]=0 means the condition attribute is normal and the module is working well,and a[i]=1 and s[i]=1 means the condition attribute is abnormal and the module fails.We will discuss the parameters of each module separately below.

    2.1 Choice of condition attributes

    2.1.1 Power supply module

    The power supply module is the basis of the system to normal operation.The power supply module is running by the storage battery on the truck,and the source voltage may fluctuate according to the working state of the truck.Therefore,we add a voltage stabilization module before the regulation of voltage and the power supply module can be divided into two parts,voltage stabilization and voltage regulation.Most modules are ready-made.Fig.3 shows the architecture of the power supply module and the power supply for each module.

    In our sensor node,the voltage stabilization module is DLM20-24D12,the input range of which is 18-36 V and the output range is 12±1%V.The voltage regulation module is LM2596 step-down voltage regulator and the accuracy of each output voltage is 5%.The state detection module detects the input and output voltage of the voltage stabilization module and the four outputs voltage from the voltage regulation module supplied for each modules to diagnose whether there are some failures.Sometimes,when the battery power drops,the internal resistance will increase.If the printer energy consumption increases suddenly,the output voltage may be dropped,resulting in shortterm failure.

    Fig.3 Power supply for each module

    We define the condition attribute that the four outputs of the regulator and one output of the stabilizator are all in their normal range as a[1],and the working status of the power supply module as s[1].

    2.1.2 Wireless communication module

    The communication module we selected is coRE1 OEM long distance Ad-hoc wireless module.Tab.1 shows the mainly technical parameters of the module.

    Tab.1 Technology parameters of the wireless module

    We can distinguish the transmission working mode from the other working modes through the input current.Another method to distinguish the working mode transmission is the electrical level changes of the interface between the processor module and the wireless communication module.The electrical level change of interface TX means the wireless communication module need to switch the working mode to transmission and send data,resulting the increase of input current.If there is no change in consumption,we can diagnosis the transceiver fails.

    Also we define that results of two distinguish methods are the same as a condition attribute a[2]and the diagnosis result of working status as s[2].

    2.1.3 Sensor module

    The sensor module has two components,flow sensor and GPS.The most important components of flow sensor are photoelectric switch and photocoupler.When the photoelectric switch turns off the leakage current is 10 mA,and the breakover current is 40 mA when the photoelectric switch turns on.We can distinguish whether there is liquid flow by these current and diagnosis whether the current in the normal range as well as the photoelectric switch working normal.For the photocoupler,we can diagnose whether there is failure based on front-end and back-end voltage level changes.The GPS returns a set of data per second,based on which we can accomplish the diagnosis.

    We define a condition attribute a[3]to describe whether the relationship between the current and the output of photoelectric switch is normal.Also we define s[3]to describe whether the photoelectric switch is working normal.

    We define another condition attributes a[4]to describe whether the front-end and back-end voltage level changes of the photocoupler are correct,and another working state result s[4]to describe whether the photocoupler is working normal.

    Also,we define a condition attributes a[5]to describe whether the data format of the GPS are correct,and the working state result s[5]to describe whether GPS is working normal.

    2.1.4 Man-machine interface module

    The three components in the main-machine interface module are keyboard,screen and miniprinter.Because the keyboard is the initiation of some operations,we can diagnosis the working status of other modules according to the operation of the keyboard.Therefore,the fault diagnosis of keyboard is more important than the other components.The fault of keyboard usually comes from poor contact and interference,which will lead to instability of the keyboard and spikes in keyboard scanning.

    We define a condition attribute a[6]for the keyboard todescribe whether there are many spikes in keyboard scanning,and the key board working status s[6]to describe whether the keyboard is working normal.

    Thescreen and mini-printerare working when the“Print” and“Display” keys are pressed,and the“Busy”state on the interface can be taken as the reaction of the pressed keyboard.We can use the relationship between the keyboard and two modules’“Busy”state to detect whether they are working normal.Another condition is that the consumption of min-printer will increase rapidly when it is working,so we can distinguish its working state by its input current.

    We define a condition attribute a[7] for screen to describe whether the relationship between the pressed“Display”key and the“Busy”state on the interface is normal.Also we define s[7] to describe whether the screen is working normal.

    We define a condition attribute a[8]for minprinter to describe whether the relationship between the pressed“Print”key and the“Busy”state on the interface is normal.We define s[8]to describe whether the min-printer is working normal.We define another condition attribute a[9]for min-printer to describe whether the relationship between the pressed“Print”key and the input current is normal.

    2.1.5 Processor module

    Processor module is the most important part ofsensornode and the micro-processorwe choose is MSP430FG4618.Because of its low power consumption and its small input current,we could not diagnose working status by the input current changes.Like other nodes,we use the response of the processor to diagnose working status.Because wireless sensor node sends information after receiving the DSR(data sending request)from the sink node,the DSR can be taken as the incentive of the working of micro-processor,the electrical level of interface RX changes can be taken as a symbol of the incentive and the electrical level of interface TX changes can be taken as a symbol of the response.If all is normal,we set condition attribute a[10]=0 and the working status result s[9]=0.

    The condition attributes a[7]and a[8]are all take the micro-processor’s response into account in the diagnosis of the man-machine interface module,and these two condition attributes can also be used in the diagnosis of the processor module.

    2.2 Fault identification system

    According to the fault of each module and the changes of condition attributes,we can diagnose the module fault by the fault identification system.At first we collect statistics data about the condition attributes,and Tab.2 shows the condition attributesand theirdescriptions. Tab.3 shows the statistics of the module faults.

    3 Performance evaluation

    Asmentioned before,we determine the working state of each module according to the interface voltage changes and the input current changes.We achieve the interface voltage changes and the input current changes through the current transformer and the voltage transformer.

    Tab.2 Statistics of the condition attributes

    Tab.3 Statistics of the module faults

    Because digital signals with low energy capacity,the detection accuracy of digital signal in current changes or voltage changes is lower than that of the detection of power supply lines.

    We set the detection accuracy of digital signal as 0.85,while the detection accuracy of power supply lines as 0.95.Now we can discuss the accuracy of the fault detection method we mentioned previously.

    Tab.4 Correct detection probabilities of each condition attribute

    Because a[8]and a[9]are involved in the same module fault diagnosis,and P(a[8])is smaller than P(a[9]),so condition attribute a[8]can be removed.Tab.5 shows the changes of the module faults with improved condition attributes.

    Tab.5 Improved module faults

    These module faults can be expressed by:

    We set{P(s[i]),i=1,2,…,n}as the correct diagnosis probability of each module fault.According to the correct detection probability of each condition attribute,we can get the correct diagnosis probability of each module fault.Because the condition attribute a[7],a[9] and a[10]are involved in the fault detection of module faults s[7],s[8]and s[9],these three condition attributes are correlated in diagnosis of module fault and the fault detection of these are all based on the reaction of the sensor node,so the correct diagnosis probabilities of these three faults will be lower than the others as shown in Tab.6.On the other hand,these also improve the diagnostic accuracy of fault mode s[9].Tab.6 shows the correct diagnosis probabilities of each module fault.

    Tab.6 Correct diagnosis probabilities of each module fault

    When i=1 to 6,the condition attribute a[i]and module fault s[i]are one-to-one corresponding,there is no misdiagnosis between each module fault.And the missed-diagnosis probability of each module fault is the difference between 1and its correct diagnosis probability.

    When i=7,9 and 10,these three condition attributes a[7],a[9]and a[10]are involved in the fault detection of module faults s[7],s[8]and s[9].The fault diagnosis of the module fault s[9] may be a misdiagnosis to the other two faults s[7]and s[8].Tab.7 shows the misdiagnosis probabilities between s[9] and the other two faults when the fault s[9]happens.

    Tab.7 Misdiagnosis probability

    Another problem is that the miss-diagnosis probability of s[9]=0.477 7,which is too large to diagnose the module fault.The method reduces the time interval for each diagnosis to resolve this problem.If we operate the diagnosis algorithm everyoneminute,themiss-diagnosis probability will drop to less than 0.001 after ten minutes.

    4 Conclusion

    In this paper we propose a method to diagnose different faults for each module on sensor node by itself.It is based on the hardware of state detection module and the software of self-diagnosis algorithm.We will discuss the diagnosis method using intelligent algorithm based on the performance ofthe microprocessoron sensor node in next paper.The diagnosis accuracy of faulty modules for WSN nodes we proposed can meet the needs for real-field requirement and it will be improved with the development of processor performance.The experiment and simulation results show that the accuracy of this self-diagnosis method can be accepted in engineering application.

    [1] Koza J R.Genetic programming:on the programming of computers by means of natural selection[M].Cambridge,MA:MIT Press,1992.

    [2] Miller J F,Job D,Vassilev V K.Principles in the evolutionary design of digital circuits-part 1[J].Genetic Programming and Evolvable Machines,2000,1:7-35.

    [3] Avizienis A.Design diversity and the immune system paradigm:cornerstones for information system survivability[C]∥Information Survivability Workshop.Carnegie Mellon,USA:[s.n.],2000:27 -36.

    [4] Garvie M,Thompson A.Evolution of combinatonial and sequential on-line self-diagnosing hardware[C]∥Proceedings of the 2003 NASA/Dod Conference on Evolvable Hardware.Washington,D.C.,USA:NASA,2003:177-183.

    [5] Harte S,Rahman A,Razeeb K M.Fault tolerance in sensor networks using self-diagnosing sensor nodes[C]∥The IEEE International Workshop on Intelligent Environments.Colchester,UK:[s.n.],2005:7-12.

    [6] You Zhiyang,Zhao Xibin,Wan Hai.A novel fault diagnosis mechanism for wireless sensor networks[J].Mathematical and Computer Modelling,2011,54(1-2):330-343.

    [7] José Luis de la Mataa,Manuel Rodrígueza.Selflearning of fault diagnosis identification[J].Computer Aided Chemical Engineering,2011(29):885-889.

    [8] Luo X,Dong M,Huang Y.On distributed fault-tolerant detection in wireless sensor networks[J].IEEE Trans Comput,2006(55):58 -70.

    猜你喜歡
    吳磊趙軍
    “章節(jié)起始課”的教學觀察與比較
    湖北省“小個專”黨建工作思考
    黨員生活(2022年2期)2022-04-24 14:14:56
    意林2021年7月
    意林(2021年15期)2021-08-27 03:00:55
    吳磊:極簡設計的踐行者
    現代裝飾(2020年11期)2020-11-27 01:48:02
    隔離的松風
    金秋(2019年14期)2019-10-23 02:11:34
    抓住整體巧妙代入
    七分審題三分做
    對博物館工程建設特殊性的思考
    求和與求援
    深圳市吳磊歷史名師工作室簡介
    高清午夜精品一区二区三区| 亚洲av欧美aⅴ国产| 免费观看av网站的网址| 色婷婷av一区二区三区视频| 国产高清有码在线观看视频| 水蜜桃什么品种好| 久久毛片免费看一区二区三区| 免费高清在线观看日韩| 看非洲黑人一级黄片| 有码 亚洲区| 插阴视频在线观看视频| videos熟女内射| 五月开心婷婷网| 国产 一区精品| 久久ye,这里只有精品| 亚洲欧美清纯卡通| 国产日韩欧美在线精品| 久久99一区二区三区| 色婷婷av一区二区三区视频| 一级毛片我不卡| 成年av动漫网址| 不卡视频在线观看欧美| 哪个播放器可以免费观看大片| 制服人妻中文乱码| 精品一区二区三区视频在线| 日韩一区二区视频免费看| 午夜福利在线观看免费完整高清在| 欧美人与性动交α欧美精品济南到 | 免费黄频网站在线观看国产| 高清午夜精品一区二区三区| 国产亚洲欧美精品永久| 亚洲欧美清纯卡通| 一级毛片aaaaaa免费看小| 欧美xxⅹ黑人| 精品久久国产蜜桃| 51国产日韩欧美| 精品亚洲成a人片在线观看| 999精品在线视频| 亚洲五月色婷婷综合| 中文字幕亚洲精品专区| av在线老鸭窝| 亚洲精品一二三| 黑丝袜美女国产一区| 男女啪啪激烈高潮av片| 美女主播在线视频| xxx大片免费视频| 国产精品女同一区二区软件| 99九九在线精品视频| 九色亚洲精品在线播放| 嘟嘟电影网在线观看| 午夜影院在线不卡| 国产免费一级a男人的天堂| 最新中文字幕久久久久| 国产成人精品婷婷| 久久久久国产精品人妻一区二区| 日本黄色片子视频| 久久久精品免费免费高清| 纵有疾风起免费观看全集完整版| 91久久精品国产一区二区三区| 亚洲精品成人av观看孕妇| 久热这里只有精品99| 欧美精品一区二区大全| 亚洲av电影在线观看一区二区三区| 免费黄色在线免费观看| 九草在线视频观看| 一级毛片 在线播放| av电影中文网址| 精品人妻一区二区三区麻豆| 高清黄色对白视频在线免费看| 大码成人一级视频| 少妇人妻精品综合一区二区| 亚洲在久久综合| 亚洲色图 男人天堂 中文字幕 | 18禁在线无遮挡免费观看视频| 亚洲美女搞黄在线观看| 国产有黄有色有爽视频| 一级a做视频免费观看| 人妻少妇偷人精品九色| 亚洲精品一二三| av在线观看视频网站免费| 中文字幕最新亚洲高清| 中文字幕制服av| 黄色一级大片看看| 最近最新中文字幕免费大全7| 日韩免费高清中文字幕av| 丁香六月天网| 亚洲国产精品一区二区三区在线| 国产亚洲最大av| 久久人人爽人人片av| 久久毛片免费看一区二区三区| 久久99精品国语久久久| 久久久久久久精品精品| 精品亚洲成a人片在线观看| 天堂中文最新版在线下载| 日韩av免费高清视频| 午夜激情福利司机影院| 黄色一级大片看看| 中国三级夫妇交换| 亚洲五月色婷婷综合| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产免费视频播放在线视频| 久久久国产欧美日韩av| av在线观看视频网站免费| 啦啦啦中文免费视频观看日本| 亚洲国产成人一精品久久久| 精品熟女少妇av免费看| av一本久久久久| 麻豆精品久久久久久蜜桃| 麻豆成人av视频| 日本色播在线视频| 国模一区二区三区四区视频| 乱人伦中国视频| 熟女电影av网| 久久久国产一区二区| 亚洲人与动物交配视频| 国产毛片在线视频| 日韩中字成人| 18禁在线无遮挡免费观看视频| 一个人免费看片子| 色网站视频免费| 黑人高潮一二区| 久久久久精品性色| 免费看光身美女| 国产国语露脸激情在线看| av国产久精品久网站免费入址| 精品人妻一区二区三区麻豆| 男的添女的下面高潮视频| 欧美国产精品一级二级三级| 亚洲综合精品二区| 最新中文字幕久久久久| 久久久久久久久久人人人人人人| av网站免费在线观看视频| 亚洲第一区二区三区不卡| 免费播放大片免费观看视频在线观看| 婷婷色麻豆天堂久久| 22中文网久久字幕| 哪个播放器可以免费观看大片| 激情五月婷婷亚洲| 精品卡一卡二卡四卡免费| 亚洲成人一二三区av| 日韩视频在线欧美| 久久女婷五月综合色啪小说| 如日韩欧美国产精品一区二区三区 | 超色免费av| 九色成人免费人妻av| 亚洲综合精品二区| 内地一区二区视频在线| 久久av网站| 天天躁夜夜躁狠狠久久av| 777米奇影视久久| 国产免费视频播放在线视频| 赤兔流量卡办理| 制服诱惑二区| 2021少妇久久久久久久久久久| 久热这里只有精品99| 哪个播放器可以免费观看大片| 丰满少妇做爰视频| 在线观看免费视频网站a站| 国产黄频视频在线观看| 婷婷色综合www| 99久久精品一区二区三区| 国产黄频视频在线观看| 中文字幕精品免费在线观看视频 | 男女啪啪激烈高潮av片| 99九九在线精品视频| 久久这里有精品视频免费| 日本与韩国留学比较| 国产成人免费无遮挡视频| 国产日韩欧美在线精品| 国产国语露脸激情在线看| 老司机亚洲免费影院| 亚洲欧美成人精品一区二区| 色吧在线观看| 少妇熟女欧美另类| 熟女电影av网| 久久精品久久精品一区二区三区| 国产免费又黄又爽又色| 欧美日韩在线观看h| 丝袜美足系列| 蜜桃在线观看..| 精品久久久久久久久亚洲| 婷婷色综合www| 国产精品不卡视频一区二区| 精品午夜福利在线看| 麻豆精品久久久久久蜜桃| 国产男女超爽视频在线观看| 天堂8中文在线网| 伊人久久国产一区二区| 午夜福利网站1000一区二区三区| 久久久a久久爽久久v久久| 久久久国产精品麻豆| 街头女战士在线观看网站| 精品一区在线观看国产| 亚洲av免费高清在线观看| 丁香六月天网| 国产精品久久久久久久电影| 菩萨蛮人人尽说江南好唐韦庄| 一二三四中文在线观看免费高清| 婷婷色av中文字幕| 99国产精品免费福利视频| 国产淫语在线视频| 国产精品秋霞免费鲁丝片| 97精品久久久久久久久久精品| 成人免费观看视频高清| 狂野欧美激情性xxxx在线观看| 午夜精品国产一区二区电影| 午夜日本视频在线| 99久久精品国产国产毛片| 亚洲欧美成人精品一区二区| 久久人人爽人人爽人人片va| 极品少妇高潮喷水抽搐| 3wmmmm亚洲av在线观看| 美女国产高潮福利片在线看| 成人亚洲精品一区在线观看| 观看美女的网站| 日日啪夜夜爽| 日韩av在线免费看完整版不卡| 久久 成人 亚洲| 久热这里只有精品99| 亚洲美女视频黄频| 91精品国产九色| 永久网站在线| 热re99久久国产66热| 亚洲精品久久成人aⅴ小说 | 亚洲人与动物交配视频| 日本-黄色视频高清免费观看| 丰满迷人的少妇在线观看| 极品少妇高潮喷水抽搐| 日本午夜av视频| 99久久精品国产国产毛片| 伊人久久精品亚洲午夜| 亚洲内射少妇av| 中文字幕亚洲精品专区| 国产精品成人在线| 国产 精品1| 国产白丝娇喘喷水9色精品| 国产亚洲午夜精品一区二区久久| 九九爱精品视频在线观看| 欧美精品人与动牲交sv欧美| 午夜福利影视在线免费观看| 亚洲经典国产精华液单| 国产综合精华液| 男人添女人高潮全过程视频| 最近最新中文字幕免费大全7| 欧美亚洲日本最大视频资源| 免费高清在线观看视频在线观看| 黄色视频在线播放观看不卡| 免费观看在线日韩| 丰满少妇做爰视频| 黄色一级大片看看| 黄色怎么调成土黄色| 在线观看一区二区三区激情| 少妇丰满av| 亚洲欧美一区二区三区国产| 成年美女黄网站色视频大全免费 | 中文字幕人妻丝袜制服| 久久韩国三级中文字幕| 亚洲久久久国产精品| 国产男女内射视频| 亚洲国产毛片av蜜桃av| 国产一区二区在线观看av| 韩国高清视频一区二区三区| 久久久亚洲精品成人影院| 精品国产国语对白av| 99re6热这里在线精品视频| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕亚洲精品专区| 久久久午夜欧美精品| 日韩免费高清中文字幕av| 欧美激情极品国产一区二区三区 | 99热6这里只有精品| 亚洲第一区二区三区不卡| 黄色毛片三级朝国网站| 日日摸夜夜添夜夜添av毛片| 五月玫瑰六月丁香| 黑人欧美特级aaaaaa片| 一区二区日韩欧美中文字幕 | 国产片内射在线| 国产日韩欧美在线精品| 少妇人妻 视频| 亚洲av综合色区一区| 久久免费观看电影| 美女国产高潮福利片在线看| 久久99一区二区三区| 成人无遮挡网站| 亚洲在久久综合| 国产视频首页在线观看| 在线观看免费视频网站a站| 99久久中文字幕三级久久日本| 国产精品久久久久久精品古装| 我的老师免费观看完整版| av卡一久久| 亚洲丝袜综合中文字幕| 少妇的逼好多水| 蜜桃久久精品国产亚洲av| 超色免费av| 黄色视频在线播放观看不卡| 中文天堂在线官网| 久久99热这里只频精品6学生| 久热这里只有精品99| 久久久久视频综合| 久久精品国产a三级三级三级| 街头女战士在线观看网站| 免费黄色在线免费观看| 精品人妻偷拍中文字幕| 免费日韩欧美在线观看| 免费观看av网站的网址| 大香蕉97超碰在线| 你懂的网址亚洲精品在线观看| 毛片一级片免费看久久久久| 岛国毛片在线播放| 中文字幕av电影在线播放| 在线播放无遮挡| 夫妻午夜视频| 亚洲精品久久成人aⅴ小说 | 极品少妇高潮喷水抽搐| 免费播放大片免费观看视频在线观看| 亚洲人成网站在线播| 国产黄色免费在线视频| 国产乱来视频区| 中文天堂在线官网| 水蜜桃什么品种好| 91午夜精品亚洲一区二区三区| 女性被躁到高潮视频| 色网站视频免费| 久久韩国三级中文字幕| 国产成人精品在线电影| 99九九在线精品视频| 看十八女毛片水多多多| 卡戴珊不雅视频在线播放| 日韩,欧美,国产一区二区三区| 制服人妻中文乱码| 国产av一区二区精品久久| 亚州av有码| 亚洲精品一区蜜桃| 国产成人免费观看mmmm| av在线app专区| av福利片在线| 亚洲国产成人一精品久久久| av线在线观看网站| www.色视频.com| 97超碰精品成人国产| 国产精品久久久久久精品电影小说| 高清午夜精品一区二区三区| av免费在线看不卡| 国产亚洲精品第一综合不卡 | 国产午夜精品久久久久久一区二区三区| 一区二区日韩欧美中文字幕 | 成人二区视频| 国产精品无大码| 麻豆乱淫一区二区| 日产精品乱码卡一卡2卡三| 黄色视频在线播放观看不卡| 国产免费又黄又爽又色| 午夜激情久久久久久久| 人妻 亚洲 视频| 国产精品三级大全| 国产成人午夜福利电影在线观看| 日韩强制内射视频| 麻豆成人av视频| 9色porny在线观看| 国产精品99久久久久久久久| 青青草视频在线视频观看| 亚洲精品一二三| 久久午夜综合久久蜜桃| 91精品三级在线观看| 欧美性感艳星| 亚洲精华国产精华液的使用体验| 国产综合精华液| 国产精品99久久久久久久久| 免费观看无遮挡的男女| 国产高清不卡午夜福利| 午夜老司机福利剧场| 99国产综合亚洲精品| 丰满少妇做爰视频| 寂寞人妻少妇视频99o| 五月天丁香电影| 亚洲欧美精品自产自拍| 亚洲精品日本国产第一区| 制服丝袜香蕉在线| 精品一区二区三区视频在线| 亚洲精品亚洲一区二区| 啦啦啦啦在线视频资源| 日韩伦理黄色片| 成年av动漫网址| 国产精品秋霞免费鲁丝片| 久久精品国产鲁丝片午夜精品| 99热国产这里只有精品6| 久久久久久人妻| 日韩伦理黄色片| 亚洲不卡免费看| 欧美bdsm另类| 中文字幕亚洲精品专区| 亚洲国产精品专区欧美| 免费黄频网站在线观看国产| 日韩av免费高清视频| 日韩欧美一区视频在线观看| 成人18禁高潮啪啪吃奶动态图 | 日本vs欧美在线观看视频| 国产亚洲精品第一综合不卡 | 亚洲精品日本国产第一区| 中文天堂在线官网| a级毛色黄片| 在线观看免费日韩欧美大片 | 久久久久久久久大av| 久久久国产欧美日韩av| 一级a做视频免费观看| 久久毛片免费看一区二区三区| 国产精品一区二区在线不卡| 亚洲精品美女久久av网站| 卡戴珊不雅视频在线播放| 国产男女超爽视频在线观看| 亚洲av.av天堂| 人妻系列 视频| 交换朋友夫妻互换小说| 91精品国产国语对白视频| 国产av一区二区精品久久| 亚洲av.av天堂| 亚洲av不卡在线观看| 精品人妻偷拍中文字幕| 丰满少妇做爰视频| 看免费成人av毛片| av一本久久久久| 亚洲第一av免费看| 亚洲欧洲国产日韩| 久久99热6这里只有精品| 肉色欧美久久久久久久蜜桃| 免费观看性生交大片5| 国产精品不卡视频一区二区| 大片电影免费在线观看免费| 老熟女久久久| 亚洲熟女精品中文字幕| 97精品久久久久久久久久精品| 三级国产精品欧美在线观看| 18禁在线无遮挡免费观看视频| 欧美日本中文国产一区发布| 日韩强制内射视频| 一级毛片aaaaaa免费看小| 亚洲精品色激情综合| 欧美日韩视频高清一区二区三区二| 精品人妻在线不人妻| 亚洲一级一片aⅴ在线观看| 久久久久久人妻| 女人精品久久久久毛片| 一区二区日韩欧美中文字幕 | 在线观看免费高清a一片| 熟女电影av网| a 毛片基地| 91国产中文字幕| 999精品在线视频| 日韩精品有码人妻一区| 日本91视频免费播放| av免费在线看不卡| av视频免费观看在线观看| 欧美性感艳星| 国产免费现黄频在线看| 国产成人免费无遮挡视频| 你懂的网址亚洲精品在线观看| a 毛片基地| 欧美日韩在线观看h| 乱人伦中国视频| 又粗又硬又长又爽又黄的视频| 99re6热这里在线精品视频| 一区二区三区四区激情视频| 最近中文字幕2019免费版| 99久国产av精品国产电影| 母亲3免费完整高清在线观看 | 91在线精品国自产拍蜜月| 国产成人精品在线电影| 下体分泌物呈黄色| 日本午夜av视频| 丁香六月天网| 精品一区在线观看国产| 女性生殖器流出的白浆| 亚洲四区av| 一级,二级,三级黄色视频| 久热久热在线精品观看| 婷婷色综合大香蕉| 丝袜喷水一区| 成人18禁高潮啪啪吃奶动态图 | 色哟哟·www| 精品一品国产午夜福利视频| 久久青草综合色| av.在线天堂| 国产日韩欧美视频二区| 99热国产这里只有精品6| 午夜影院在线不卡| 久久人人爽av亚洲精品天堂| 夫妻性生交免费视频一级片| 最后的刺客免费高清国语| 91久久精品电影网| 亚洲av不卡在线观看| 亚洲av.av天堂| 午夜视频国产福利| 日本av手机在线免费观看| 全区人妻精品视频| 91精品国产国语对白视频| videosex国产| 亚洲国产最新在线播放| 人妻人人澡人人爽人人| 日韩成人伦理影院| av天堂久久9| 80岁老熟妇乱子伦牲交| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美亚洲二区| 一区二区av电影网| 内地一区二区视频在线| av福利片在线| 久热久热在线精品观看| 国产 一区精品| 丝袜在线中文字幕| 国产一区二区在线观看日韩| 国产一级毛片在线| 观看av在线不卡| 久久精品久久久久久久性| 欧美日韩视频精品一区| 蜜桃国产av成人99| 日韩中字成人| 内地一区二区视频在线| 国产伦精品一区二区三区视频9| 久久久久久久久久久丰满| 人人妻人人澡人人看| 欧美成人午夜免费资源| 女人精品久久久久毛片| 在线观看一区二区三区激情| 亚洲内射少妇av| 高清在线视频一区二区三区| 国产成人91sexporn| 女的被弄到高潮叫床怎么办| av免费观看日本| 少妇人妻精品综合一区二区| 两个人的视频大全免费| 久久久久网色| 三级国产精品欧美在线观看| 日本欧美国产在线视频| 精品国产露脸久久av麻豆| 插阴视频在线观看视频| 亚洲第一区二区三区不卡| 亚洲国产色片| 高清黄色对白视频在线免费看| 欧美日韩av久久| 汤姆久久久久久久影院中文字幕| 国产亚洲一区二区精品| 18在线观看网站| 国产乱来视频区| 亚洲精品日韩av片在线观看| 亚洲精品456在线播放app| 日韩中字成人| 97在线人人人人妻| 五月玫瑰六月丁香| 午夜免费观看性视频| 青春草亚洲视频在线观看| 不卡视频在线观看欧美| av卡一久久| 免费观看av网站的网址| 久久久久精品性色| 超色免费av| 亚洲国产成人一精品久久久| 亚洲国产av影院在线观看| 国产色爽女视频免费观看| 亚洲av福利一区| 国产精品国产av在线观看| 国产成人av激情在线播放 | 母亲3免费完整高清在线观看 | 日本与韩国留学比较| 国产精品久久久久久久久免| 亚洲怡红院男人天堂| 久久久国产欧美日韩av| 国产国拍精品亚洲av在线观看| 久久久欧美国产精品| 18禁在线播放成人免费| 国产一区二区三区综合在线观看 | 午夜激情久久久久久久| 免费黄频网站在线观看国产| 国产男女内射视频| 在线观看免费视频网站a站| 色哟哟·www| 久久亚洲国产成人精品v| 综合色丁香网| 国产免费现黄频在线看| 国内精品宾馆在线| 91午夜精品亚洲一区二区三区| 欧美3d第一页| 国产精品秋霞免费鲁丝片| 日本欧美视频一区| 狂野欧美激情性xxxx在线观看| 亚洲国产日韩一区二区| av电影中文网址| 男的添女的下面高潮视频| 国产亚洲一区二区精品| 日本wwww免费看| 亚洲精品久久成人aⅴ小说 | 久热久热在线精品观看| 日韩不卡一区二区三区视频在线| 精品人妻一区二区三区麻豆| 日韩av免费高清视频| 亚洲,欧美,日韩| 王馨瑶露胸无遮挡在线观看| 成年美女黄网站色视频大全免费 | 国产免费现黄频在线看| 一本一本综合久久| 亚洲精品,欧美精品| 亚洲精品乱码久久久v下载方式| 18禁裸乳无遮挡动漫免费视频| 久久精品熟女亚洲av麻豆精品| 亚洲情色 制服丝袜| 国产成人精品在线电影| 曰老女人黄片| av播播在线观看一区| 亚洲成人一二三区av| 99热网站在线观看| 一级毛片aaaaaa免费看小| 天堂8中文在线网| 99视频精品全部免费 在线| 狂野欧美激情性bbbbbb|