• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Particle-filter-based walking prediction model for occlusion situations*

    2013-11-01 02:10:55YoonchangSungWoojinChung

    Yoonchang Sung, Woojin Chung

    (School of Mechanical Engineering, Korea University, Seoul 136-713, Korea)

    Particle-filter-based walking prediction model for occlusion situations*

    Yoonchang Sung, Woojin Chung

    (School of Mechanical Engineering, Korea University, Seoul 136-713, Korea)

    In the field of mobile robotics, human tracking has emerged as an important objective for facilitating human-robot interaction. In this paper, we propose a particle-filter-based walking prediction model that will address an occlusion situation. Since the target being tracked is a human leg, a motion model for a leg is required. The validity of the proposed model is verified experimentally.

    human-following; particle filter; motion model

    0 Introduction

    Human-following, combined with human-friendly technology, is currently being actively developed. Human-following can be applied in many service areas, including guide robots in a museum, nursing robots in a hospital, or porter robots in a factory.

    In order to achieve human-following functionality, an estimation process is required. There are many Bayesian approaches to estimate a target of interest. A particle filter is a well-known one of these approaches. The advantages of a particle filter over a Kalman filter or extended Kalman filter are that multimodal states of a target can be represented and that nonlinear and non-Gaussian motion can be handled. A description of a particle filter can be found in Ref.[1]. Moreover, a particle filter can deal with an occlusion over a short time period. In this paper, we propose a walking prediction model that considers the occlusion situation and implement it into a particle filter.

    Various sensors can be adopted to visualize a human from the viewpoint of a mobile robot. In the tracking community, Refs.[2] and [3], vision sensors and laser sensors are the most popular. In our method, we use a laser range finder (LRF) as our sensor. An LRF is able to obtain accurate distance information. The target being tracked is a human leg. A human leg is chosen, not only because obstacles are normally placed at the height of a human leg, but also because it is easy to integrate with an autonomous navigation function. There have been many human leg tracking studies, for example, Refs.[4] and [5]. Our proposed walking prediction model, therefore, is based on a leg motion.

    It is very important to keep track of a target when the target person is occluded from the robot's view by an obstacle. This paper is based on our previous research[6]. In Ref.[6], to extract leg data from sensor information, a novel outlier detection method, supported by a vector data description, is described. The walking prediction model is presented and applied using a particle filter.

    The rest of this paper is organized as follows. In section 1, sampling importance resampling related to a particle filter is explained briefly. Section 2 presents the proposed walking prediction model. Experimental results are shown in section 3. Section 4 concludes this paper.

    1 Particle filter

    Particle filtering is a Monte Carlo method that has been studied for several decades[7]. The method of particle filtering is to represent a set of random samples with associated weights for posterior probability, which is represented by

    {xi(k), wi(k)}Ni=1.

    Conventional particle filtering, however, has a problem of sample degeneracy that could lower the diversity of the samples. To address this problem, the use of a sampling importance resampling (SIR) filter is suggested in Refs.[8] and [9]. Due to its resampling step, the concentration of samples with large weights can be realized maintaining the diversity of samples. According to Ref.[1], the posterior probability of the particle filter at time k can be computed as

    (1)

    where N is the total number of samples used.

    (2)

    Eq.(2) presents the motion model for a leg. εkis the process noise at time k. In this manner, we implement stepped impedance resonator (SIR) filter to estimate the states of targets about legs. The next step is to define the motion model for a leg so that we can propose the walking prediction model.

    2 Walking prediction model

    We propose the walking prediction model as the motion model for application to an SIR filter in order to address occlusion situations.

    Human walking consists of straight walking and rotating walking in a 2-D plane. According to Mochon’s research[10], we can assume that straight walking is a uniformly accelerated motion. By using previously extracted leg data, we can predict rotating walking as well.

    In this paper, we consider the case when another pedestrian passes between the target person and the robot, that is, an occlusion over a short time period. The objective of the walking prediction model is to predict the motion of straight walking and that of rotating walking on next time step based on 10 time steps of extracted leg information before the occlusion occurs.

    As shown in Fig.1(a), assuming that straight walking is a uniformly accelerated motion, the maximum velocity of straight walking,V, for T seconds can be computed in the following equation using the previous walking information.

    (3)

    Fig.1 Walking prediction model

    In the case of rotating walking, previous walking information must be transformed into the local coordinate system of the time step that the target person is missed, as shown in Fig.1(b). The rotated degree can be obtained by the difference between θ1and θ2according to

    θ1=arctan2((y1-y0),(x1-x0))×180/π,

    θ2=arctan2((y2-y1),(x2-x1))×180/π.

    (4)

    For each time step, the values of Eqs.(3) and (4) are obtained for the prediction process. In other words, samples are predicted on the basis of this walking prediction model.

    3 Experimental results

    To evaluate the performance of our method, we experimented with a mobile robot, Pioneer 3DX, in a real-world environment. The used LRF is Sick LMS-200. The sensor frequency is set to 100 ms.

    Fig.2 shows the mobile robot platform and experimental environment where another pedestrian passes between the target person and mobile robot.

    Fig.2 Experimental environment for occlusion situation

    Fig.3 illustrates the results of the experiment is illustrated using a Matlab simulation. The different colored marks imply different samples for the target.

    In Fig.3(a), the target person is occluded by another pedestrian, and therefore the legs of the target person, at that time, cannot be detected. Consequently, samples for targets of the target person’s legs are diverged as there are no observed measurements with respect to the target person.

    However, after the occlusion has occurred, as shown in Fig.3(b), the target person is rediscovered. The time difference between Fig.3(a) and Fig.3(b) is 2 s.

    Fig.3 Results of the case

    Fig.4 indicates the error distance of the proposed walking prediction model applied to the experiment.

    Fig.4 Error distance of walking prediction model

    The errors are obtained by Euclidean distance between the measurement and the center of the samples of the targets. As seen in Fig.4, at the time of the occlusion, the amount of error is increases in order to search for the target in a larger area. According to the proposed walking prediction model, it can be seen that the mobile robot platform can retrack the target person after the occlusion.

    4 Conclusion

    In this paper, we propose a walking prediction model using a particle filter. The proposed walking prediction model considers both straight walking and rotating walking simultaneously. We conduct experiments to show that our method can robustly deal with an occlusion over a short time period.

    [1] Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.

    [2] Suzuki S, Mitsukura Y, Takimoto H, et al. A human tracking mobile-robot with face detection. In: Proceedings of the 35th Annual Conference of IEEE Industrial Electronics (IECON’09), Porto, Portugal, 2009: 4217-4222.

    [3] CUI Jin-shi, ZHA Hong-bin, ZHAO Hui-jing, et al. Laser based detection and tracking of multiple people in crowds. Computer Vision and Image Understanding, 2007, 106(2/3): 300-312.

    [4] SHAO Xiao-wei, ZHAO Hui-jing, Nakamura K, et al. Detection and tracking of multiple pedestrians by using laser range scanners. In: Proceedings of IEE/RSJ International Conference on Intelligence Robots and Systems, San Diego, California, USA, 2007: 2174-2179.

    [5] Lee J H, Tsubouchi T, Yammamoto K, et al. People tracking using a robot in motion with laser range finder. In: Proceedings of IEE/RSJ International Conference on Intelligence Robots and Systems, Beijing, China, 2006: 2936-2942.

    [6] Chung W J, Kim H Y, Yoo Y K, et al. The detection and following of human legs through inductive approaches for a mobile robot with a single laser range finder. IEEE Transactions on Industrial Electronics, 2012, 59(8): 3156-3166.

    [7] Doucet A, de Freitas N, Gordon N. An introduction to sequential Monte Carlo methods// Doucet A, de Freitas N, Gordon N. Sequential Monte Carlo methods in practice. Springer-Verlag, New York, 2001.

    [8] Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear and non-Gaussian Bayesian models. In: IEE Proceedings on Radar and Signal Processing, 1993, 140(2): 107-113.

    [9] Almeida A, Almeida J, Araujo R. Real-time tracking of multiple moving objects using particle filters and probabilistic data association. Automatika, 2005, 46(1/2): 39-48.

    [10] Mochon S, McMahon T A. Ballistic walking. Journal of Biomechanics, 1980, 13(1): 49-57.

    date: 2013-05-11

    The MKE(Ministry of Knowledge Economy), Korea, under the ITRC(Information Technology Research Center) support program (NIPA-2013-H0301-13-2006) supervised by the NIPA(National IT Industry Promotion Agency); The National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (2013-029812); The MKE(Ministry of Knowledge Economy), Korea, under the Human Resources Development Program for Convergence Robot Specialists support program supervised by the NIPA (National IT Industry Promotion Agency) (NIPA-2013-H1502-13-1001)

    Woojin Chung (smartrobot@korea.ac.kr)

    CLD number: TP242.6 Document code: A

    1674-8042(2013)03-0263-04

    10.3969/j.issn.1674-8042.2013.03.013

    亚洲国产精品成人综合色| 一边亲一边摸免费视频| 乱系列少妇在线播放| 春色校园在线视频观看| 国产精品伦人一区二区| 六月丁香七月| 亚洲欧美中文字幕日韩二区| 一级av片app| 国产成人精品一,二区| 91精品一卡2卡3卡4卡| 欧美人与善性xxx| 欧美区成人在线视频| 又粗又爽又猛毛片免费看| 亚洲欧洲国产日韩| av在线天堂中文字幕| 亚洲高清免费不卡视频| 国内精品宾馆在线| 亚洲av福利一区| 日韩精品青青久久久久久| 国产乱来视频区| 免费不卡的大黄色大毛片视频在线观看 | 国产极品天堂在线| 成人av在线播放网站| 两个人的视频大全免费| 91精品国产九色| 久久亚洲精品不卡| 日本熟妇午夜| 亚洲国产成人一精品久久久| 午夜亚洲福利在线播放| 国产午夜精品久久久久久一区二区三区| 日韩大片免费观看网站 | 91久久精品电影网| 国产单亲对白刺激| 亚洲av熟女| 精品久久久久久久久亚洲| 天天一区二区日本电影三级| 如何舔出高潮| 国模一区二区三区四区视频| 最新中文字幕久久久久| 白带黄色成豆腐渣| 国产乱人偷精品视频| 日本一二三区视频观看| 亚洲欧美日韩高清专用| 插阴视频在线观看视频| 亚洲欧美日韩高清专用| 非洲黑人性xxxx精品又粗又长| 九九爱精品视频在线观看| 三级国产精品片| 啦啦啦啦在线视频资源| 特大巨黑吊av在线直播| 女的被弄到高潮叫床怎么办| 乱系列少妇在线播放| 成人二区视频| 乱码一卡2卡4卡精品| 国产又黄又爽又无遮挡在线| 久久精品国产鲁丝片午夜精品| 久久草成人影院| 精品一区二区三区视频在线| 精品无人区乱码1区二区| 三级国产精品片| 三级国产精品片| 欧美激情在线99| 少妇人妻一区二区三区视频| 国产综合懂色| 国产精品三级大全| 亚洲,欧美,日韩| 国模一区二区三区四区视频| 欧美性猛交黑人性爽| 日本与韩国留学比较| 日本五十路高清| 日本与韩国留学比较| 国产精品无大码| 国产一区二区三区av在线| 国产精品无大码| 高清视频免费观看一区二区 | 中文亚洲av片在线观看爽| 青春草亚洲视频在线观看| 久久欧美精品欧美久久欧美| 神马国产精品三级电影在线观看| 亚洲色图av天堂| 看免费成人av毛片| 伊人久久精品亚洲午夜| 欧美潮喷喷水| 精品久久久噜噜| 精品久久久噜噜| 国产欧美日韩精品一区二区| 联通29元200g的流量卡| 欧美日韩综合久久久久久| 国产午夜精品久久久久久一区二区三区| 变态另类丝袜制服| 久99久视频精品免费| 国产又黄又爽又无遮挡在线| www.av在线官网国产| 亚洲精品日韩av片在线观看| 午夜亚洲福利在线播放| 亚洲美女搞黄在线观看| 亚洲经典国产精华液单| 午夜a级毛片| av国产久精品久网站免费入址| 晚上一个人看的免费电影| 国产精品不卡视频一区二区| 中文字幕av成人在线电影| 91久久精品国产一区二区三区| 国产片特级美女逼逼视频| 老女人水多毛片| 99久久九九国产精品国产免费| 亚洲自拍偷在线| 婷婷六月久久综合丁香| 亚洲熟妇中文字幕五十中出| 中文精品一卡2卡3卡4更新| 色噜噜av男人的天堂激情| 亚洲电影在线观看av| 国产精品99久久久久久久久| 三级经典国产精品| 日本-黄色视频高清免费观看| 日本黄色视频三级网站网址| 国产免费福利视频在线观看| 久久久久久九九精品二区国产| 亚洲精品自拍成人| 久久久午夜欧美精品| 亚洲精品久久久久久婷婷小说 | 亚洲欧美成人综合另类久久久 | 久久人妻av系列| 亚洲成色77777| 日本与韩国留学比较| 少妇丰满av| 日本五十路高清| 亚洲欧美精品自产自拍| 国产熟女欧美一区二区| 夫妻性生交免费视频一级片| av.在线天堂| 一级黄色大片毛片| 永久网站在线| 久久久久久九九精品二区国产| 蜜臀久久99精品久久宅男| 国产av码专区亚洲av| 久久久久久久亚洲中文字幕| 中文字幕久久专区| 三级经典国产精品| 日本色播在线视频| 精品午夜福利在线看| 国产真实乱freesex| 黄色欧美视频在线观看| 国产乱人视频| a级毛片免费高清观看在线播放| 99在线视频只有这里精品首页| 亚洲在线观看片| 亚洲欧美精品自产自拍| a级毛片免费高清观看在线播放| 亚洲欧美一区二区三区国产| 欧美高清成人免费视频www| 欧美又色又爽又黄视频| 一级二级三级毛片免费看| 久久人人爽人人片av| 成人综合一区亚洲| 久久精品91蜜桃| 五月玫瑰六月丁香| 亚洲最大成人手机在线| 久久精品熟女亚洲av麻豆精品 | 中文在线观看免费www的网站| 伊人久久精品亚洲午夜| 菩萨蛮人人尽说江南好唐韦庄 | 男人狂女人下面高潮的视频| 中文资源天堂在线| 男女啪啪激烈高潮av片| 九九热线精品视视频播放| 久久人人爽人人片av| 色5月婷婷丁香| 91av网一区二区| 久久精品久久精品一区二区三区| 亚洲av成人精品一区久久| 边亲边吃奶的免费视频| 免费看美女性在线毛片视频| 直男gayav资源| 日日摸夜夜添夜夜添av毛片| 成人毛片60女人毛片免费| 91午夜精品亚洲一区二区三区| 夜夜看夜夜爽夜夜摸| 亚洲av中文字字幕乱码综合| 国产91av在线免费观看| 精品久久久久久电影网 | 国产一区二区在线观看日韩| 日韩人妻高清精品专区| 女人久久www免费人成看片 | 亚洲乱码一区二区免费版| 国产精品福利在线免费观看| 国产伦理片在线播放av一区| 国产午夜精品一二区理论片| 少妇的逼水好多| 国产探花极品一区二区| 赤兔流量卡办理| 可以在线观看毛片的网站| 最近最新中文字幕大全电影3| 99久久人妻综合| 亚洲欧美一区二区三区国产| 在现免费观看毛片| 久久国内精品自在自线图片| 中文乱码字字幕精品一区二区三区 | 日本一本二区三区精品| 老师上课跳d突然被开到最大视频| 久久久久久久国产电影| 国产乱来视频区| 日韩 亚洲 欧美在线| 亚洲欧美日韩高清专用| 在现免费观看毛片| 成人无遮挡网站| 毛片一级片免费看久久久久| 狠狠狠狠99中文字幕| 深爱激情五月婷婷| 成人午夜高清在线视频| 国模一区二区三区四区视频| 国产乱来视频区| 国产淫语在线视频| 村上凉子中文字幕在线| 热99在线观看视频| 欧美性猛交╳xxx乱大交人| 亚洲成人久久爱视频| 久久人妻av系列| 人人妻人人澡人人爽人人夜夜 | 久久久欧美国产精品| 日本免费在线观看一区| 免费播放大片免费观看视频在线观看 | 精品国产露脸久久av麻豆 | 国产乱人偷精品视频| 成人综合一区亚洲| 精品少妇黑人巨大在线播放 | 岛国在线免费视频观看| 成人午夜高清在线视频| 日韩一区二区三区影片| 国产日韩欧美在线精品| 一卡2卡三卡四卡精品乱码亚洲| 乱系列少妇在线播放| 性插视频无遮挡在线免费观看| 亚洲国产欧美在线一区| 日韩成人av中文字幕在线观看| 男人的好看免费观看在线视频| 精品久久久久久久久久久久久| 亚洲图色成人| 午夜激情欧美在线| 最近手机中文字幕大全| 国产精品伦人一区二区| 又爽又黄a免费视频| 国产午夜精品论理片| 亚洲色图av天堂| 国产高清不卡午夜福利| 精品人妻视频免费看| 国产国拍精品亚洲av在线观看| 一边摸一边抽搐一进一小说| 禁无遮挡网站| 国产单亲对白刺激| 亚洲精品456在线播放app| 亚洲图色成人| 国产在线一区二区三区精 | 中文资源天堂在线| 亚洲欧洲国产日韩| 免费在线观看成人毛片| 精品不卡国产一区二区三区| 搡老妇女老女人老熟妇| 国产日韩欧美在线精品| 麻豆久久精品国产亚洲av| 深爱激情五月婷婷| 日本一本二区三区精品| 亚洲欧美精品专区久久| 国产精华一区二区三区| 一个人看视频在线观看www免费| 精品久久久久久电影网 | av在线蜜桃| 中国国产av一级| 蜜桃久久精品国产亚洲av| 麻豆久久精品国产亚洲av| 我要看日韩黄色一级片| 国产精品麻豆人妻色哟哟久久 | 日本色播在线视频| 插阴视频在线观看视频| av在线亚洲专区| 国产av不卡久久| 建设人人有责人人尽责人人享有的 | 国产69精品久久久久777片| 成年版毛片免费区| 亚洲内射少妇av| 亚洲国产色片| 色尼玛亚洲综合影院| 欧美精品一区二区大全| 最近中文字幕高清免费大全6| 尤物成人国产欧美一区二区三区| 亚洲av中文av极速乱| 搡老妇女老女人老熟妇| 精品人妻一区二区三区麻豆| av福利片在线观看| 亚洲最大成人av| 精品久久久久久成人av| 日韩av不卡免费在线播放| 偷拍熟女少妇极品色| 亚洲精品乱码久久久v下载方式| 麻豆久久精品国产亚洲av| 视频中文字幕在线观看| 精品久久久噜噜| 亚洲乱码一区二区免费版| 午夜免费激情av| 欧美变态另类bdsm刘玥| 美女国产视频在线观看| 能在线免费观看的黄片| 国产精品.久久久| 一边亲一边摸免费视频| 国产精品永久免费网站| 天堂中文最新版在线下载 | 成人亚洲欧美一区二区av| 天美传媒精品一区二区| 国产成人精品一,二区| 亚洲精品日韩av片在线观看| 国产黄色视频一区二区在线观看 | 最近中文字幕高清免费大全6| 国产一区有黄有色的免费视频 | 成人毛片a级毛片在线播放| 午夜亚洲福利在线播放| 秋霞伦理黄片| 日本wwww免费看| 久久精品夜色国产| 人人妻人人澡人人爽人人夜夜 | 久久久久久久午夜电影| 国产 一区 欧美 日韩| 2022亚洲国产成人精品| 好男人视频免费观看在线| 国产伦在线观看视频一区| 最近最新中文字幕免费大全7| 国产v大片淫在线免费观看| 午夜福利在线观看免费完整高清在| 免费看美女性在线毛片视频| 青春草视频在线免费观看| 欧美日韩在线观看h| 18禁在线无遮挡免费观看视频| av在线亚洲专区| 一边亲一边摸免费视频| 国产精品永久免费网站| 婷婷色麻豆天堂久久 | 欧美不卡视频在线免费观看| 亚洲av成人av| 亚洲天堂国产精品一区在线| 少妇人妻一区二区三区视频| 久久久久网色| 亚洲av二区三区四区| 欧美性猛交╳xxx乱大交人| 亚洲人成网站高清观看| 亚洲欧洲国产日韩| 99热全是精品| 亚洲电影在线观看av| 免费不卡的大黄色大毛片视频在线观看 | 我要搜黄色片| 成人一区二区视频在线观看| 我的女老师完整版在线观看| 高清在线视频一区二区三区 | 日韩av在线大香蕉| 久久久久免费精品人妻一区二区| 亚洲怡红院男人天堂| a级毛色黄片| 你懂的网址亚洲精品在线观看 | 天堂av国产一区二区熟女人妻| 蜜臀久久99精品久久宅男| 最近手机中文字幕大全| 99久久九九国产精品国产免费| 婷婷六月久久综合丁香| 如何舔出高潮| 自拍偷自拍亚洲精品老妇| 亚洲精品国产av成人精品| 91狼人影院| 久久久精品欧美日韩精品| 久久久精品大字幕| 久久久久精品久久久久真实原创| 成人二区视频| 三级国产精品欧美在线观看| 毛片女人毛片| 国产精品1区2区在线观看.| av在线天堂中文字幕| 国产免费又黄又爽又色| 久久婷婷人人爽人人干人人爱| 99热全是精品| 国产午夜精品久久久久久一区二区三区| 国产精品久久久久久精品电影小说 | 九九久久精品国产亚洲av麻豆| 如何舔出高潮| 精品久久久久久久久亚洲| 国产精品伦人一区二区| 少妇被粗大猛烈的视频| 晚上一个人看的免费电影| 日本与韩国留学比较| 婷婷色av中文字幕| 亚洲精品日韩av片在线观看| 91精品国产九色| 亚洲国产精品sss在线观看| 欧美3d第一页| 亚洲精品日韩在线中文字幕| 99热6这里只有精品| 波多野结衣高清无吗| 国产淫片久久久久久久久| 熟女电影av网| 毛片女人毛片| 91久久精品电影网| 国产精品美女特级片免费视频播放器| 日韩欧美 国产精品| 欧美激情在线99| 亚洲国产日韩欧美精品在线观看| 亚洲欧洲日产国产| 欧美极品一区二区三区四区| 国产三级在线视频| 国产视频内射| 男人舔奶头视频| 久久久色成人| 岛国毛片在线播放| 视频中文字幕在线观看| 国产伦在线观看视频一区| 国国产精品蜜臀av免费| 国产高清三级在线| 日韩大片免费观看网站 | 99视频精品全部免费 在线| 国产黄色小视频在线观看| 免费观看精品视频网站| 国产成年人精品一区二区| 欧美成人午夜免费资源| 亚洲乱码一区二区免费版| 中文字幕精品亚洲无线码一区| 大话2 男鬼变身卡| 日本一二三区视频观看| 夜夜看夜夜爽夜夜摸| 久久国内精品自在自线图片| 亚洲经典国产精华液单| 久久99热这里只频精品6学生 | 五月伊人婷婷丁香| 麻豆av噜噜一区二区三区| 久久久亚洲精品成人影院| 日本欧美国产在线视频| 成人亚洲欧美一区二区av| 一本一本综合久久| 国内精品美女久久久久久| 欧美成人一区二区免费高清观看| 一个人看的www免费观看视频| 欧美成人a在线观看| 国产高清有码在线观看视频| 精品国产一区二区三区久久久樱花 | 少妇的逼好多水| 又黄又爽又刺激的免费视频.| 99热网站在线观看| 亚洲精品乱码久久久v下载方式| 亚洲国产精品专区欧美| 99久久人妻综合| 九九久久精品国产亚洲av麻豆| 成年av动漫网址| 日本与韩国留学比较| 国产精品蜜桃在线观看| www日本黄色视频网| 男人狂女人下面高潮的视频| 哪个播放器可以免费观看大片| 晚上一个人看的免费电影| 黄片wwwwww| 国产精品伦人一区二区| av国产免费在线观看| 99热这里只有是精品在线观看| av在线蜜桃| 成人无遮挡网站| 三级经典国产精品| 亚洲国产最新在线播放| 成人亚洲欧美一区二区av| 超碰av人人做人人爽久久| av专区在线播放| 久久久久久久久大av| 亚洲人成网站高清观看| 国产国拍精品亚洲av在线观看| 黄色欧美视频在线观看| 爱豆传媒免费全集在线观看| 国产色爽女视频免费观看| 黄片wwwwww| 国产精品永久免费网站| 国内揄拍国产精品人妻在线| 成年av动漫网址| 国产精品久久久久久精品电影| 欧美成人免费av一区二区三区| 国产高潮美女av| 18禁裸乳无遮挡免费网站照片| 国产av码专区亚洲av| 一本久久精品| 精品一区二区三区人妻视频| 韩国av在线不卡| 亚洲精品乱码久久久久久按摩| 午夜激情福利司机影院| 国产精品福利在线免费观看| 亚洲久久久久久中文字幕| 久久精品久久久久久噜噜老黄 | 五月伊人婷婷丁香| 国产91av在线免费观看| 国产高清视频在线观看网站| 免费人成在线观看视频色| 精品久久久久久久久亚洲| 99热这里只有精品一区| 日韩精品有码人妻一区| 久久人妻av系列| 国产精品一区二区三区四区久久| 亚洲在线观看片| 亚洲av成人av| 成人午夜精彩视频在线观看| 我要搜黄色片| 97超碰精品成人国产| 国产高清有码在线观看视频| 人人妻人人澡人人爽人人夜夜 | av国产久精品久网站免费入址| 亚洲成人av在线免费| 亚洲综合精品二区| 日韩av不卡免费在线播放| 日韩一区二区三区影片| 91av网一区二区| 成年av动漫网址| 亚洲av成人精品一二三区| 国产av一区在线观看免费| 丰满人妻一区二区三区视频av| 亚洲人成网站高清观看| АⅤ资源中文在线天堂| 精品久久久久久久人妻蜜臀av| 舔av片在线| 两性午夜刺激爽爽歪歪视频在线观看| 女人十人毛片免费观看3o分钟| 亚洲av二区三区四区| 国产在视频线精品| 1000部很黄的大片| 欧美xxxx性猛交bbbb| 蜜臀久久99精品久久宅男| 干丝袜人妻中文字幕| 免费观看a级毛片全部| 九九爱精品视频在线观看| 色吧在线观看| 亚洲三级黄色毛片| 中文字幕熟女人妻在线| 伊人久久精品亚洲午夜| 久久午夜福利片| 少妇高潮的动态图| 欧美性猛交╳xxx乱大交人| 欧美一级a爱片免费观看看| 中文资源天堂在线| 又爽又黄a免费视频| 97人妻精品一区二区三区麻豆| 午夜激情欧美在线| av天堂中文字幕网| 久久综合国产亚洲精品| 中文资源天堂在线| 久久国产乱子免费精品| 久久久色成人| 亚洲丝袜综合中文字幕| 国产精品一及| 免费黄色在线免费观看| av天堂中文字幕网| 乱人视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品日韩av片在线观看| 成年免费大片在线观看| 日韩av在线免费看完整版不卡| 国产精华一区二区三区| 亚洲国产精品合色在线| 久久久精品94久久精品| 一级爰片在线观看| 亚洲欧美成人综合另类久久久 | 99热这里只有是精品50| 婷婷色综合大香蕉| 熟女人妻精品中文字幕| 午夜福利高清视频| 久久久久性生活片| 精品人妻视频免费看| 亚洲国产精品久久男人天堂| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 熟女电影av网| a级毛色黄片| 两个人的视频大全免费| 狠狠狠狠99中文字幕| 国产午夜福利久久久久久| 国产真实乱freesex| 国产午夜精品久久久久久一区二区三区| 亚洲不卡免费看| 日韩强制内射视频| 成人亚洲欧美一区二区av| 午夜激情欧美在线| 国产精品国产三级国产av玫瑰| 看黄色毛片网站| 日日干狠狠操夜夜爽| 国产高潮美女av| 老司机福利观看| 天堂√8在线中文| 91精品一卡2卡3卡4卡| 男女视频在线观看网站免费| 亚洲激情五月婷婷啪啪| 在线播放国产精品三级| 91久久精品国产一区二区三区| 精品不卡国产一区二区三区| 桃色一区二区三区在线观看| 久久久久久久久大av| 欧美日韩国产亚洲二区| 毛片女人毛片| 成人三级黄色视频| 真实男女啪啪啪动态图| 最近中文字幕高清免费大全6| 永久网站在线| 国产精品伦人一区二区| 日韩欧美三级三区| 久久久久久久久久成人| 精品一区二区三区视频在线| 美女大奶头视频| 精品久久久久久久人妻蜜臀av| 亚洲精品影视一区二区三区av| 久久久午夜欧美精品| 天堂网av新在线| 久久精品久久精品一区二区三区| 又粗又爽又猛毛片免费看| 蜜桃久久精品国产亚洲av| 一级二级三级毛片免费看| 大话2 男鬼变身卡| 国产精品永久免费网站| 国产高清国产精品国产三级 | 国产精品久久视频播放| 边亲边吃奶的免费视频| 精品一区二区三区人妻视频|