• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Trace and rare earth elemental geochemistry of carbonate succession in the Middle Gaoyuzhuang Formation, Pingquan Section: Implications for Early Mesoproterozoic ocean redox conditions

    2013-09-27 02:36:58GuoHuaDuYuanshengZhouLianYangJianghaiHuangHu
    Journal of Palaeogeography 2013年2期

    Guo Hua, Du Yuansheng, , Zhou Lian, Yang Jianghai, Huang Hu

    1.State Key Laboratory of Biogeology and Environmentary Geology, China University of Geosciences(Wuhan), Wuhan 430074, China

    2.State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences(Wuhan), Wuhan 430074, China*

    1 Introduction

    Oxygenation of the Earth′s surface is increasingly thought to have occurred in two major steps.The first large increase in atmospheric oxygen levels occurred about 2.4 billion years ago, whenPo2rose from less than 10-5of the present atmospheric level (PAL)to more than 0.01 PAL(Goldblattet al., 2006; Holland, 2006).A further increase took place during the Late Neoproterozoic period, this increase may have led to oxygenation of the deep ocean and therefore the evolution of metazoans and multicellular algae in the Ediacaran period (Des Maraiset al., 1992;Knoll and Carroll, 1999; Rothmanet al., 2003; Fikeet al.,2006).Such a two-staged oxidation implies a unique ocean chemistry for much of the Proterozoic eon, in which most Mesoproterozoic surface-ocean was oxygen-rich due to active oxygenic photosynthesis, whereas the deep-ocean remained anoxic, and likely sulfidic because of the activity of sulfate-reducing microorganisms (Canfield, 1998;Johnstonet al., 2008).The redox-stratification may have played a role in biological evolution, but much more detailed constraints on the redox conditions remain scarce and are worthy of further study (Shenet al., 2003).

    Redox-sensitive trace and rare earth element (REE)concentrations recorded in chemical sediments have been used to obtain information on marine environments (Frimmel,2009).The distribution of these elements is very sensitive to water depth, salinity and oxygen level.Many elements, such as U, V, Mo, Cr, Co, and Ce, can display somewhat different abundances and valences under various redox conditions, a synthesis of redox-sensitive trace elements and REEs can provide important constraints on the oxygen concentration in bottom water (Wrightet al., 1987; Geet al., 2010).

    In the current study, we conduct trace and rare earth elemental geochemistry analyses on carbonate samples from ~80 m thick marine sequences developed within the Mesoproterozoic Gaoyuzhuang Formation (~1.56 Ga)at Pingquan Section, northeastern margin of the North China Platform.This sequence spans depositional settings from deep and quiet water outer shelf to more energetic intertidal zone, thus serving as a good source to determine the redox structure in the Mesoproterozoic ocean.

    2 Geological setting

    The studied section located in Pingquan County, Hebei Province, about 300 km northeast of Beijing (Fig.1).The Mesoproterozoic strata from the Changzhougou Formation to Wumishan Formation were well developed in the study area.The Gaoyuzhuang Formation consists predominantly of microcrystalline dolostones, dolomitic limestone, argillaceous limestone and silicified dolostones interpreted to have been deposited in tidal and shallow ocean environments (Fig.1).The detailed description of the lithology,depositional environments and habitat types of the Gaoyuzhuang Formation in Pingquan Section is presented by Guoet al.(2010).Recent zircons from a tuff bed in the upper part of this formation yielded U-Pb ages of 1559±12 Ma (SHRIMP)and 1560±5 Ma (LA-MC-ICPMS)(Liet al., 2010).Lu and Li (1991)reported U-Pb ages of 1625±6 Ma for zircons separated from the underlying Dahongyu Formation volcanic ash layer.Thus, the depositional age of the Gaoyuzhuang Formation was speculated within a time span of 1600 Ma to 1550 Ma.

    Our samples were collected from a given succession from the middle part of the Gaoyuzhuang Formation with a vertical thickness nearly 80 m.Based on the analyses of macro- and micro-facies features, the succession was divided into four intervals from bottom to top as M1, M2,M3 and M4, respectively, and record a shallowing-upward trend from quiet-water outer shelf below the storm wave base level to more energetic intertidal zone.The characteristics of the lithofacies associations in the four units that constituted the succession and their interpreted palaeoenvironmental settings are summarized in Figure 2.

    The lowest interval (M1)is 19 m thick.It is composed of dark-grey bitumen-rich finely laminated micrite, containing ~1.5 m thick layer that contains oncolite-like carbonate concretions in the middle part of this interval.These concretions, 2-4 cm in diameter, display spheroidal shapes with faint concentric layers in the interior and are coated with 1-3 mm thick shells, but no nuclei in the center (Fig.3a).The shells consist of aragonite fibers most likely originated from microbially mediated precipitation.On bedding planes, they are often expressed as small domes with 2-6 mm positive relief.These oncolite-like concentrations are generally recognized as a special kind of microbial induced sedimentary structure (MISS)related to anaerobic oxidation of methane (AOM)under anoxic/euxinic conditions (CH4+SO42-+Ca2+→CaCO3+H2S+H2O)(Shiet al., 2008).Framboidal pyrites, possible products of AOM, are found within the concretions and surroundinghost rocks (Fig.3b).Densely fine laminates are well developed and no sedimentary structures indicative of scouring are observed in this interval, suggesting a relatively deep and quiet water environment, possibly below the storm wave base level in the outer shelf.

    Fig.1 a-Lithological column of the Gaoyuzhuang Formation in Pingquan Section, Hebei Province; the studied succession here is marked with grey shadow in the middle part of the Gaoyuzhuang Formation; b-Location of the studied section.

    The overlying interval (M2)is about 18 m thick and consists of dark grey, thinly laminated bituminous micrites(Figs.3c, 3d), indicative of a relatively low energy condition.Bioclastics and intraclasts are rarely found in this interval.Thus, the interval is interpreted to have been deposited in a quiet-water environment below the fair weather wave base.It should be shallower relative to the underlain M1 interval, possibly above storm wave base level on the inner shelf.

    The upper M3 interval is 25.5 m thick and is comprised predominately of massive micrites mixed with land-derived terrigenous silts and clays.Wavy lamination can be clearly observed in the outcrops (Fig.3e).These characteristics suggest that the sediments in this interval are formed under shallow and high energy environments in a subtidal setting.

    The most upper M4 interval is about 14.3 m thick.It is characterized by light grey, thick-bedded microbial mat micrite (Fig.3f).Some microbial mat chips are observed under the microscope, indicating a relatively shallow water environment.The presence of microbial mats suggests that the interval is possibly formed in an intertidal/supratidal setting.

    3 Sampling and methods

    We collected 24 samples through this succession for analysis of trace and rare earth elements (Fig.2).After removing weathered surfaces and secondary veins, thesamples were coarsely crushed with a steel jaw crusher and then powered in an agate mill down to a grain size smaller than 200 mesh (75 μm).Trace and rare earth elements were analyzed by inductively coupled plasma mass spectrometry (ICP-MS)at the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan.75 mg of each sample was dissolved in 6 mL 6N HF/6N HNO3(1:2)at 180℃ for at least 12 h and up to 24 h.For ICP-MS analyses, the samples were taken up in diluted HNO3and further diluted with ultraclean H2O to a volume of 100 mL together with 20 ppb In, Re, Rh, and Bi as internal standards.Analyticalprecision and accuracy were evaluated by duplicate analyses of samples and two international standard reference samples BHVO-1 and AGV-1.The variation in duplicate analyses was 10% or less (Zhouet al., 2008).The concentrations of redox-sensitive trace elements and relevant ratios are shown in Table 1 and the REEs concentrations are reported in Table 2.

    Fig.2 Sedimentary log of the studied succession from the Gaoyuzhuang Formation of the Pingquan Section, northeastern North China Platform, showing the vertical changes of lithofacies and palaeoenvironments.The sampling locations corresponding to the vertical succession are displayed in the right side of the lithology column.

    Fig.3 Characteristic features of the studied section of the Gaoyuzhuang Formation in the Pingquan Section, northeastern North China Platform.a-Field photo of the oncolite-like carbonate concretions from the middle part of the M1 interval; b-Photomicrograph showing oxidized pyrite framboids within the oncolite-like carbonate concretions and surrounding host rocks; c-Field photo of the thinly laminated bituminous micrites from the M2 interval; d-Horizontal layers in thin section of micrites from the M2 interval; e-Wavy lamination is visible in the M3 interval; f-Microbial mat micrites in the M4 interval.Pen is 16 cm in length.

    4 Results

    All of the samples from the four intervals have very low Mn/Sr ratios of less than 3, indicating a high degree of preservation of primary geochemical signatures (Veizer and Hoefs, 1976).In most samples from the M1, M2 and M4 intervals, Zr concentrations are less than 16 ppm,much lower than that of the average upper crust (nearly 210 ppm)(Nothdurftet al., 2004).Otherwise, the positive Y anomalies displayed in the shale-normalized REE+Y diagrams (Fig.5)also suggest that only minimal continental detritus was added (Changet al., 2012).However, samples from the marly limestones (or dolomitic limestones)dominated M3 interval have relatively higher Zr concentrations (20-30 ppm), which is indicative of a greater input of continental detritus.In order to correct the effect from the terrigenous components, Zr-normalized trace elements were used in the current study (Snowet al., 2005;Zhouet al., 2008).

    The similar evolutionary trend in the Zr-normalized concentrations of redox-sensitive elementse.g., U, V, Mo,Co, Cr and ratios of V/Cr, Ni/Co and Mo/U (mole ratio)is shown in Figure 4.The maximum values of Zr-normalized trace element concentrations and relevant ratios almost simultaneously appear in the M1 interval.They decrease gradually from the base of the M2 interval, but to a certain extent, still exhibit mild enrichment in the whole M2 interval relative to those in the M3 and M4 intervals, where

    they approximately keep invariable at much lower values.It is worth mentioning that a few samples from the M3 and M4 intervals, showing unexpected slightly higher values in Zr-normalized U and Co concentrations and Ni/Co ratios, can possibly be recognized as temporarily dyoxic indications within the microbal mat substrates in the Mesoproteorozic ocean.

    Table 1 The Zr?normalized redox?sensitive trace element concentrations and geochemical ratios of carbonate samples from the studied succession in the Gaoyuzhuang Formation, Pingquan Section

    Table 2 The REEs (including yttrium)concentrations (ppm)of carbonate samples from the studied succession in the Gaoyuzhuang Formation, Pingquan Section

    The PAAS-normalized REE+Y pattern diagrams are presented in Figure 5, where the anomalies are calculated as:(McLennan, 1989).The samples from the M1 and M2 intervals are overall relatively enriched in REEs.However, the REE+Y distributions deviate from that of PAAS by displaying markedly positive Y anomalies (mean(Y/Ho)SN= 1.45 for M1 interval and 1.48 for M2 interval), slightly positive La and Gd anomalies (meanLa/La*= 1.25 and 1.17 for M1 and M2 intervals, respectively; meanGd/Gd*= 1.16 for both M1 and M2 intervals)and weakly negative Ce anomalies(meanCe/Ce*= 0.81 and 0.84 for M1 and M2 intervals, respectively)(Figs.5a, 5b).The total REE contents have no significant correlation with Zr concentrations(R2= 0.24, not shown).Therefore, the REE+Y distributions in these samples are likely to be a primary feature of the precipitating water rather than local terrigenous influence.In contrast, samples from the M3 interval have higher total REE and Zr contents, with a good correlation with each other (most∑REE>50ppm; Zr concentrations of 20-30 ppm;R2= 0.59, not shown), suggesting a considerable infusion of continental material, although positive Y anomalies are also observed in these samples(Fig.5c).Samples in the M4 interval display obviously different REE+Y patterns from that of the former three intervals (Fig.5d).They bear features typical of seawater,such as LREE depletion (meanNdN/YbN= 0.53), markedly positive La and Y anomalies (meanLa/La*= 1.52;mean(Y/HO)N= 1.99), negative Ce anomalies as well as a weakly positive Gd anomaly (meanCe/Ce*= 0.76; meanGd/Gd*= 1.22), representative of the original water composition.

    5 Discussion

    5.1 Redox sensitive element and REE applications for palaeoenvironmental analyses

    Oxygen levels in the water column influence the oxidation state of some trace elements and control selectively their solubility in seawater and consequently their degree of enrichment in marine sediments (Arnaboldi and Meyers, 2007; Azmyet al., 2009).So, trace element abundances in sediments and sedimentary rocks allow us to estimate the likely oxygenation state of the bottom water and sediments during sediment deposition.

    Mo has very high seawater concentrations relative to crustal values and can record seawater redox conditions even with significant clastic input.Generally, molybdenum is enriched in more reducing sediments, especially in the presence of free H2S (Crusiuset al., 1996; Algeo and Maynard, 2004).Uranium is also among the redoxsensitive elements.In oxidizing environments, uranium is present as U6+in the conservative form of uranyl ions that bind to carbonate ions, forming UO2(CO3)34-, which is soluble in water.Under reducing conditions, however,U6+ions are reduced and formed lower valence compounds as UO2, U3O7or U3O8and exported into marine carbonates (Wignall and Twitchett, 1996).Similarly, vanadium is present as V5+in the form of vanadate oxyanions (HVO42-and H2VO4-)in oxic waters, it is reduced to V4+and forms insoluble VO(OH)2under mildly reducing conditions.If euxinic conditions are present, V5+will be further reduced to V3+and form solid oxide V2O3or hydroxide V(OH)3.In the last two cases, it will lead to V enrichment in marine sedimentary rocks (Breit and Wanty, 1991; Wanty and Goldhaber, 1992).Other redox-sensitive elements like Co and Cr behave in a similar way, in which they tend to be more soluble under oxidizing conditions and less soluble under reducing conditions (Algeo and Maynard,2004).Recent research suggests that the geochemical ratios of Mo/U (mole ratio), V/Cr and Ni/Co are important indicators of redox conditions in the bottom water (Mc-Manuset al., 2006).Jones and Manning (1994)pointed that the oxic-dysoxic and dysoxic-anoxic boundaries correspond respectively to V/Cr ratios of 2 and 4.25, or Ni/Co ratios of 5 and 7, by quantificationally analyzing and comparing several redox-sensitive element geochemical parameters.Algeo and Tribovillard (2009)considered Mo/U mole ratios larger than 7.9 as an indicator of anoxic/sulfidic environments by studying sediments from modern marine environments.Because these trace elements and geochemical ratios can exhibit somewhat different values to redox conditions along an oxic to sulfidic gradient, a synthesis of trace elements can provide important information on changes in bottom-water oxygen levels and redox gradations in some sedimentary systems (Tribovillardet al., 2006; Arnaboldi and Meyers, 2007).

    Besides, Ce anomalies have been used to determine depositional redox conditions, due to Ce valence and solubility,

    which varies as a function of redox potential.Under oxidizing conditions, Ce3+is oxidized to Ce4+, resulting in decoupling of Ce from the other REEs due to formation of less soluble Ce4+species and/or preferential adsorption of Ce4+species on particle surfaces.These processes will induce a pronounced negative Ce anomaly (Bau and Dulski, 1996).Based on this, negative Ce anomalies in marine carbonates have been recognized as reflecting oxidizing conditions either in the water column or at the water-sediment interface.

    Fig.4 Profiles of the Zr?normalized abundances of the redox?sensitive elements and their geochemical ratios for the studied succession in the Gaoyuzhuang Formation, Pingquan Section,northeastern North China Platform.

    Fig.5 PAAS-normalized REE+Y patterns of carbonate samples from the M1, M2, M3 and M4 intervals in the Gaoyuzhuang Formation, respectively, Pingquan Section, northeastern North China Platform.

    5.2 Redox condition of the Early Mesoproterozoic ocean

    The disappearance of banded iron formations from the geological record marks the end of a 2.5 Gyr period dominated by anoxic and iron-rich deep oceans.However, the chemistry of the oceans in the following Mid-Proterozoic interval does not appear to have changed to the conditions similar to our oxygen-rich modern oceans.Numerous studies based on iron speciation (Shenet al., 2002),sulfur isotopes (Shenet al., 2003; Sarkaret al., 2010), Mo isotopes (Arnoldet al., 2004), and organic geochemistry(Brockset al., 2005)demonstrate a stratified world, with strongly reducing (possibly sulfidic)deep-ocean conditions overlain by an oxygenated surface-ocean and atmosphere (Canfield, 1998; Poultonet al., 2004; Johnstonet al., 2008; Johnstonet al., 2009).Marine sulfate concentrations may have remained extremely low during this period(possibly <2.4 mM), perhaps induced by low atmospheric oxygen concentrations or high intensity of bacterial sulfate reduction (Shenet al., 2002; Kahet al., 2004).Recently,Brockset al.(2005)found biomarkers of phototrophic green and purple sulphur bacteria in 1.64 Gyr sedimentary sequences, and suggested that euxinic condition may have penetrated into the photic zone.Until now, Studies of Early Mesoproterozoic ocean chemistry all indicate a very shallow chemocline during that period, when the redox boundary may have been just meters or a few tens of meters below the water surface.

    The values of Zr-normalized redox-sensitive trace elemental abundances and geochemical ratios presented here show a systematic, decreasing trend along a depth gradient from the quiet-water outer shelf to the more energetic intertidal zone.Samples from the M1 interval are significantly enriched in the redox-sensitive trace elements (e.g., U, V,Mo, Co, Cr )and geochemical ratios (Fig.4).In this interval, the peaks of V/Cr and Ni/Co ratios typically are larger than 4.25 and 7 respectively, and the maxium Mo/U ratio can reach up to 8.94 (Fig.4).Samples from the interval show nearly flat PAAS-normalized REE patterns except for Y, in addition, no significant negative Ce anomalies are observed (Fig.5a).The geochemical characteristics imply a possible euxinic condition in the interval.The sedimentary features from this unit do not contradict our geochemical results.The oncolite-like carbonate concretions that developed in the interval are generally recognized as being related to CH4gas release, which may be generated either from anaerobic decomposition of buried organic matter(2CH2O→CH4+CO2)or from bacterial methanogenesis(CO2+4H2→CH4+2H2O)during shallow burial (Shiet al., 2008).Part of the methane escapes to the atmosphere,whereas another part is consumed by methanotrophs in consortium with sulfate-reducing bacteria, resulting in the production of13C-depleted authigenic carbonates and hydrogen sulfide (CH4+SO42-+Ca2+→CaCO3+H2S+H2O).Some authigenic carbonate minerals, such as rosette siderites, dumbbell-shaped aragonites, ankerites and botryoidal carbonate cements are observed within the layers containing oncolite-like concretions layers and its equivalents,providing supports for the AOM hypothesis (Shiet al.,2008).The sedimentary features and the corresponding enrichments of redox sensitive trace elements reflect together the presence of euxina in the water column or the watersediment interface in the quiet-water outer shelf setting.

    Samples from the M2 interval have moderate enrichments of Zr-normalized redox-sensitive trace elements,although an obvious decrease is present relative to the underlying M1 interval.Most V/Cr and Ni/Ci ratios fall into a range of 2.5-4.25 and 4-5 respectively, which indicate that dysoxic conditions may be dominant in this interval.Dysoxic conditions are in agreement with sedimentary features, where the dark grey thin-bedded bituminous micrites were well developed.It is thus speculated that dysoxic conditions may have been prevalent in the inner shelf environment.

    In contrast, extremely low values for Zr-normalized concentrations of redox-sensitive elements (e.g., U, V, Mo,Co and Cr)and geochemical ratios of Mo/U, V/Cr and Ni/Co are present in the overlying M3 and M4 intervals (Fig.4), with lower V/Cr and Ni/Co ratios typically near or less than 2 and 5, respectively.Negative Ce anomalies are observed in the PAAS-normalized REE+Y diagram in the M4 interval (Fig.5d), which indicates that the subtidal/intertidal zones were oxygenated.In addition, oxic conditions were probably normally developed in the high-energy shallow water environment due to frequent exchange with the overlying oxic atmosphere.

    As discussed above, the transition between euxinic, dysoxic and oxic state may occur in the quiet-water outer shelfand the high-energy subtidal zone, respectively.The redox boundary is very shallow relative to that in most modern basins (Algeo and Maynard, 2004).Our results support the interpretation of the previously proposed redox-structure in the Mesoproterozoic oceans.The presence of euxinic ocean bottom water is compatible with reduced levels of atmospheric oxygen and low concentrations of seawater sulfate.The extreme environmental conditions could have been responsible for the delayed oxygenation of the biosphere and hindered the evolution of multicellular life.

    6 Conclusions

    Trace and rare earth elemental analyses were conducted on the marine carbonate succession in the Mesoproterozoic Gaoyuzhuang Formation at Pingquan Section, northeastern margin of the North China Platform, to determine the redox condition of the Early Mesoproterozoic ocean.The values of Zr-normalized redox-sensitive trace elemental abundances in Mo, V, U, Co and Cr and relevant ratios(Mo/U, V/Cr and Ni/Co)show obvious fluctuations along a depth gradient from the quiet-water outer shelf to the more energetic intertidal zone.The maxima of Zr-normalized redox-sensitive elemental abundances and geochemical ratios were observed in the M1 interval, in addition, no significant negative Ce anomalies are found in the PAAS-normalized REE+Y diagram.These geochemical results suggest euxinic conditions possibly dominated the quietwater outer shelf setting below the storm wave base level.In contrast, a less significant enrichment of Zr-normalized redox-sensitive elemental abundances in the overlying M2 interval in association with a mild decrease in geochemical ratios is indicative of dysoxic conditions in the depth interval between the fair weather wave base and the storm wave base.The samples from the M3 and M4 intervals are mostly invariable at much lower values of Zr-normalized redox-sensitive elemental abundances and geochemical ratios.A pronounced negative Ce anomaly is observed in the M4 interval, suggesting the dominance oxygenated conditions in the subtidal/intertidal settings.Based on the analyses above, a very shallow chemocline is expected in the Early Mesoproterozoic ocean.The transitions between euxinic, dysoxic and oxic state may occur in the quiet-water outer shelf and the high-energy subtidal zone, respectively.

    Acknowledgements

    We would like to thank four reviewers for their constructive and helpful comments.This work was financially supported by National Basic Research Program of China(Grant No.2011 CB808800).

    Algeo, T.J., Maynard, J.B., 2004.Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems.Chemical Geology, 206(3-4): 289-318.

    Algeo, T.J., Tribovillard, N., 2009.Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation.Chemical Geology, 268(3-4): 211-225.

    Arnaboldi, M., Meyers, P.A., 2007.Trace element indicators of increased primary production and decreased water-column ventilation during deposition of latest Pliocene sapropels at five locations across the Mediterranean Sea.Palaeogeography, Palaeoclimatology, Palaeoecology, 249(3-4): 425-443.

    Arnold, G.L., Anbar, A.D., Barling, J., Lyons, T.W., 2004.Molybdenum isotope evidence for widespread anoxia in mid-proterozoic oceans.Science, 304(5667): 87-90.

    Azmy, K., Sylvester, P., de Oliveira, T.F., 2009.Oceanic redox conditions in the Late Mesoproterozoic recorded in the upper Vazante Group carbonates of Sao Francisco Basin, Brazil: Evidence from stable isotopes and REEs.Precambrian Research,168(3-4): 259-270.

    Bau, M., Dulski, P., 1996.Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa.Precambrian Research, 79(1-2): 37-55.

    Breit, G.N., Wanty, R.B., 1991.Vanadium accumulation in carbonaceous rocks-a review of geochemical controls during deposition and diagenesis.Chemical Geology, 91(2): 83-97.

    Brocks, J.J., Love, G.D., Summons, R.E., Knoll, A.H., Logan, G.A., Bowden, S.A., 2005.Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea.Nature,437(7060): 866-870.

    Canfield, D.E., 1998.A new model for Proterozoic ocean chemistry.Nature, 396(6710): 450-453.

    Chang Huajin, Chu Xuelei, Feng Lianjun, Huang Jing, 2012.Progressive oxidation of anoxic and ferruginous deep-water during deposition of the terminal Ediacaran Laobao Formation in South China.Palaeogeography, Palaeoclimatology, Palaeoecology,321-322: 80-87.

    Crusius, J., Calvert, S., Pedersen, T., Sage, D., 1996.Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition.Earth and Planetary Science Letters, 145(1-4): 65-78.

    Des Marais, D.J., Strauss, H., Summons, R.E., Hayes, J.M., 1992.Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment.Nature, 359(6396): 605-609.

    Fike, D.A., Grotzinger, J.P., Pratt, L.M., Summons, R.E., 2006.Oxidation of the Ediacaran Ocean.Nature, 444(7120): 744-747.

    Frimmel, H.E., 2009.Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator.Chemical Geology,258(3-4): 338-353.

    Ge Lu, Jiang Shaoyong, Swennen, R., Yang Tao, Yang Jinghong, Wu Nengyou, Liu Jian, Chen Daohua, 2010.Chemical environment of cold seep carbonate formation on the northern continental slope of South China Se: Evidence from trace and rare earth element geochemistry.Marine Geology, 277(1-4): 21-30.

    Goldblatt, C., Lenton, T.M., Watson, A.J., 2006.Bistability of atmospheric oxygen and the Great Oxidation.Nature, 443(7112): 683-686.

    Guo Hua, Du Yuansheng, Huang Junhua, Yang Jianghai, Huang Hu,Chen Yu, Zhou Yao, 2010.Habitat types and palaeoenvironments of the Mesoproterozoic Gaoyuzhuang Formation in Pingquan,Hebei Province.Journal of Palaeogeography, 12(3): 269-280 (in Chinese with English abstract).

    Holland, H.D., 2006.The oxygenation of the atmosphere and oceans.Philosophical Transactions of the Royal Society B-Biological Sciences, 361(1470): 903-915.

    Johnston, D.T., Farquhar, J., Summons, R.E., Shen, Y., Kaufman,A.J., Masterson, A.L., Canfield, D.E., 2008.Sulfur isotope biogeochemistry of the Proterozoic McArthur Basin.Geochimica Et Cosmochimica Acta, 72(17): 4278-4290.

    Johnston, D.T., Wolfe-Simon, F., Pearson, A., Knoll, A.H., 2009.Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age.Proceedings of the National Academy of Sciences of the United States of America, 106(40):16925-16929.

    Jones, B., Manning, D.A.C., 1994.Comparison of Geochemical Indexes Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones.Chemical Geology, 111(1-4): 111-129.

    Kah, L.C., Lyons, T.W., Frank, T.D., 2004.Low marine sulphate and protracted oxygenation of the proterozoic biosphere.Nature,431(7010): 834-838.

    Knoll, A.H., Carroll, S.B., 1999.Early animal evolution: Emerging views from comparative biology and geology.Science,284(5423): 2129-2137.

    Li Huaikun, Zhu Shixing, Xiang Zhenqun, Su Wenbo, Lu Songnian,Zhou Hongying, Geng Jianzhen, Li Sheng, Yang Fengjie, 2010.Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton.Acta Petrologica Sinica, 26(7): 2131-2140 (in Chinese with English abstract).

    Lu Songnian, Li Huimin, 1991.A precise U-Pb single zircon age determination for the volcanics of Dahongyu Formation, Changcheng System in Jixian.Bulletin of the Chinese Academy of Geological Sciences, 22: 137-146 (in Chinese with English abstract).

    McLennan, S.M., 1989.Rare earth elements in sedimentary rocks:influence of provenance and sedimentary processes.Reviews in Mineralogy and Geochemistry, 21(1): 169-200.

    McManus, J., Berelson, W.M., Severmann, S., Poulson, R.L., Hammond, D.E., Klinkhammer, G.P., Holm, C., 2006.Molybdenum and uranium geochemistry in continental margin sediments:Paleoproxy potential.Geochimica Et Cosmochimica Acta,70(18): 4643-4662.

    Nothdurft, L.D., Webb, G.E., Kamber, B.S., 2004.Rare earth element geochemistry of Late Devonian reefal carbonates, canning basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones.Geochimica Et Cosmochimica Acta,68(2): 263-283.

    Poulton, S.W., Fralick, P.W., Canfield, D.E., 2004.The transition to a sulphidic ocean similar to 1.84 billion years ago.Nature,431(7005): 173-177.

    Rothman, D.H., Hayes, J.M., Summons, R.E., 2003.Dynamics of the Neoproterozoic carbon cycle.Proceedings of the National Academy of Sciences of the United States of America, 100(14):8124-8129.

    Sarkar, A., Chakraborty, P.P., Mishra, B., Bera, M.K., Sanyal, P.,Paul, S., 2010.Mesoproterozoic sulphidic ocean, delayed oxygenation and evolution of early life: sulphur isotope clues from Indian Proterozoic basins.Geological Magazine, 147(2): 206-218.

    Shen, Y., Knoll, A.H., Walter, M.R., 2003.Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin.Nature,423(6940): 632-635.

    Shen, Y.N., Canfield, D.E., Knoll, A.H., 2002.Middle proterozoic ocean chemistry: Evidence from the McArthur Basin, northern Australia.American Journal of Science, 302(2): 81-109.

    Shi Xiaoying, Zhang Chuanheng, Jiang Ganqing, Liu Juan, Wang Yi, Liu Dianbei, 2008.Microbial mats in the Mesoproterozoic carbonates of the North China Platform and their potential for hydrocarbon generation.Journal of China University of Geosciences, 19(5): 549-566.

    Snow, L.J., Duncan, R.A., Bralower, T.J., 2005.Trace element abundances in the Rock Canyon Anticline, Pueblo, Colorado,marine sedimentary section and their relationship to Caribbean plateau construction and oxygen anoxic event 2.Paleoceanography, 20: PA3005.

    Tribovillard, N., Algeo, T.J., Lyons, T., Riboulleau, A., 2006.Trace metals as paleoredox and paleoproductivity proxies: An update.Chemical Geology, 232(1-2): 12-32.

    Veizer, J., Hoefs, J., 1976.The nature of O18/O16and C13/C12secular trends in sedimentary carbonate rocks.Geochimica Et Cosmochimica Acta, 40(11): 1387-1395.

    Wanty, R.B., Goldhaber, M.B., 1992.Thermodynamics and kinetics of reactions involving vanadium in natural systems-Accumulation of vanadium in sedimentary-rocks.Geochimica Et Cosmochimica Acta, 56(4): 1471-1483.

    Wignall, P.B., Twitchett, R.J., 1996.Oceanic anoxia and the end Permian Mass Extinction.Science, 272(5265): 1155-1158.

    Wright, J., Schrader, H., Holser, W.T., 1987.Paleoredox variations in ancient oceans recorded by rare-earth elements in fossil Apatite.Geochimica Et Cosmochimica Acta, 51(3): 631-644.

    Zhou Lian, Zhang Haiqiang, Wang Jin, Huang Junhua, Xie Xinong,2008.Assessment on redox conditions and organic burial of siliciferous sediments at the latest Permian Dalong Formation in Shangci, Sichuan, South China.Journal of China University of Geosciences, 19(5): 496-506.

    色视频在线一区二区三区| 日韩成人av中文字幕在线观看| 久久韩国三级中文字幕| 蜜桃亚洲精品一区二区三区| 欧美+日韩+精品| 中文字幕av成人在线电影| 七月丁香在线播放| 美女cb高潮喷水在线观看| 麻豆乱淫一区二区| 久久久欧美国产精品| 国产免费福利视频在线观看| 草草在线视频免费看| 国产亚洲最大av| 最后的刺客免费高清国语| 中文字幕制服av| 国产成人一区二区在线| 中文欧美无线码| 欧美少妇被猛烈插入视频| 亚洲成人手机| 水蜜桃什么品种好| 一区二区三区四区激情视频| 国产免费一级a男人的天堂| 国产乱人视频| 久久久亚洲精品成人影院| 成年美女黄网站色视频大全免费 | 国产成人免费观看mmmm| 亚洲精品日韩在线中文字幕| av播播在线观看一区| 日本午夜av视频| 十分钟在线观看高清视频www | 少妇丰满av| 五月玫瑰六月丁香| 最近中文字幕高清免费大全6| 国语对白做爰xxxⅹ性视频网站| 高清欧美精品videossex| 欧美少妇被猛烈插入视频| 久热这里只有精品99| 99热这里只有是精品50| 精品久久久噜噜| 久久久久久久亚洲中文字幕| 亚洲av中文字字幕乱码综合| 高清视频免费观看一区二区| 久久av网站| 欧美最新免费一区二区三区| 亚洲精品aⅴ在线观看| 免费人妻精品一区二区三区视频| 99热国产这里只有精品6| 最近最新中文字幕免费大全7| 色哟哟·www| 亚洲av男天堂| 各种免费的搞黄视频| 亚洲欧美日韩卡通动漫| 欧美高清性xxxxhd video| 97超碰精品成人国产| 国产永久视频网站| 成人18禁高潮啪啪吃奶动态图 | 日韩不卡一区二区三区视频在线| 一区二区三区四区激情视频| 尤物成人国产欧美一区二区三区| 亚洲经典国产精华液单| 国产精品av视频在线免费观看| 啦啦啦视频在线资源免费观看| 亚洲av不卡在线观看| 日本黄色日本黄色录像| 亚洲国产精品专区欧美| 夜夜骑夜夜射夜夜干| 久久久a久久爽久久v久久| 国产av码专区亚洲av| 亚洲av.av天堂| 国产在视频线精品| 久久婷婷青草| 自拍偷自拍亚洲精品老妇| 成人漫画全彩无遮挡| 久久精品夜色国产| 日韩国内少妇激情av| 一区在线观看完整版| av在线播放精品| 国产一级毛片在线| 欧美最新免费一区二区三区| 久久人人爽人人爽人人片va| 久久精品久久久久久久性| 国产精品不卡视频一区二区| 黄片wwwwww| 久久 成人 亚洲| 亚洲美女搞黄在线观看| 肉色欧美久久久久久久蜜桃| 国产亚洲91精品色在线| 熟女人妻精品中文字幕| 色5月婷婷丁香| 久久99蜜桃精品久久| 午夜免费鲁丝| 欧美成人午夜免费资源| 在线天堂最新版资源| 99久久中文字幕三级久久日本| 大香蕉97超碰在线| 免费看不卡的av| 免费人妻精品一区二区三区视频| 99久久综合免费| 精品亚洲成国产av| 亚洲av中文av极速乱| 丰满迷人的少妇在线观看| 亚洲精品中文字幕在线视频 | 全区人妻精品视频| 黑人猛操日本美女一级片| 狂野欧美激情性bbbbbb| 精品少妇黑人巨大在线播放| 日日撸夜夜添| 久久精品夜色国产| 五月开心婷婷网| 少妇人妻久久综合中文| 国产人妻一区二区三区在| 国产在线男女| 在线观看一区二区三区| 热99国产精品久久久久久7| 国产爽快片一区二区三区| 人人妻人人看人人澡| 91午夜精品亚洲一区二区三区| 国产高清国产精品国产三级 | 亚洲精品aⅴ在线观看| 我的女老师完整版在线观看| 亚洲综合精品二区| 国产欧美日韩一区二区三区在线 | 人妻一区二区av| 91aial.com中文字幕在线观看| av国产精品久久久久影院| 免费黄网站久久成人精品| 夫妻性生交免费视频一级片| 国产精品人妻久久久影院| 简卡轻食公司| 免费看光身美女| 日韩精品有码人妻一区| a 毛片基地| 亚洲人成网站在线观看播放| 日本色播在线视频| 春色校园在线视频观看| 国产精品国产av在线观看| 日产精品乱码卡一卡2卡三| 青春草亚洲视频在线观看| 国产精品伦人一区二区| 欧美日韩一区二区视频在线观看视频在线| 亚洲av福利一区| 熟女人妻精品中文字幕| 成人免费观看视频高清| 亚洲内射少妇av| 狂野欧美激情性bbbbbb| 女性生殖器流出的白浆| 精品久久国产蜜桃| 久久久久久人妻| 熟女电影av网| 久久人人爽av亚洲精品天堂 | 精品国产乱码久久久久久小说| 少妇猛男粗大的猛烈进出视频| 在线观看人妻少妇| 久久99蜜桃精品久久| 毛片一级片免费看久久久久| 男女无遮挡免费网站观看| 日韩人妻高清精品专区| 国产免费一区二区三区四区乱码| 亚洲丝袜综合中文字幕| 婷婷色综合大香蕉| 简卡轻食公司| 欧美最新免费一区二区三区| 青春草亚洲视频在线观看| 国产欧美日韩一区二区三区在线 | 网址你懂的国产日韩在线| 18禁裸乳无遮挡动漫免费视频| a 毛片基地| 99国产精品免费福利视频| 色婷婷av一区二区三区视频| 少妇人妻精品综合一区二区| 国产欧美亚洲国产| 国国产精品蜜臀av免费| 久久精品国产鲁丝片午夜精品| 纵有疾风起免费观看全集完整版| 啦啦啦视频在线资源免费观看| 国产成人a区在线观看| 亚洲精品久久久久久婷婷小说| 久久 成人 亚洲| 久久国产精品男人的天堂亚洲 | 又爽又黄a免费视频| 22中文网久久字幕| 一二三四中文在线观看免费高清| 亚洲av中文字字幕乱码综合| 亚洲美女视频黄频| 国产亚洲一区二区精品| av.在线天堂| 成人18禁高潮啪啪吃奶动态图 | 性色avwww在线观看| 国产午夜精品一二区理论片| www.色视频.com| 欧美xxxx性猛交bbbb| 免费大片黄手机在线观看| 精品午夜福利在线看| 国产亚洲一区二区精品| 日韩欧美 国产精品| 一级毛片久久久久久久久女| 国产精品麻豆人妻色哟哟久久| 男女边摸边吃奶| 久久国产亚洲av麻豆专区| 国产日韩欧美在线精品| 免费播放大片免费观看视频在线观看| 三级国产精品片| 99精国产麻豆久久婷婷| 超碰av人人做人人爽久久| 老师上课跳d突然被开到最大视频| 国产女主播在线喷水免费视频网站| 色视频在线一区二区三区| 久久久a久久爽久久v久久| 国产黄频视频在线观看| 人妻少妇偷人精品九色| 国产成人freesex在线| 亚洲av男天堂| 亚洲国产成人一精品久久久| freevideosex欧美| av国产久精品久网站免费入址| 成人午夜精彩视频在线观看| 最近最新中文字幕免费大全7| 天堂俺去俺来也www色官网| 亚洲成人av在线免费| 成人特级av手机在线观看| 免费黄网站久久成人精品| 久久久亚洲精品成人影院| 亚洲婷婷狠狠爱综合网| 久久久久久久久久成人| 五月玫瑰六月丁香| 亚洲国产精品国产精品| 3wmmmm亚洲av在线观看| 国产 精品1| 成人免费观看视频高清| 色视频在线一区二区三区| 精品久久久噜噜| 久久精品国产自在天天线| 国产精品久久久久成人av| 亚洲性久久影院| 中国三级夫妇交换| 高清毛片免费看| 亚洲一区二区三区欧美精品| 美女cb高潮喷水在线观看| 麻豆成人av视频| 欧美精品国产亚洲| 亚洲成人一二三区av| 亚洲国产精品999| 日本wwww免费看| 在线免费观看不下载黄p国产| 久久女婷五月综合色啪小说| 国产精品精品国产色婷婷| 国产高清三级在线| 日韩不卡一区二区三区视频在线| 蜜桃亚洲精品一区二区三区| 国内少妇人妻偷人精品xxx网站| 久久午夜福利片| 色5月婷婷丁香| 一级片'在线观看视频| 国产欧美日韩一区二区三区在线 | 国产免费一级a男人的天堂| 卡戴珊不雅视频在线播放| 蜜桃在线观看..| 国产精品人妻久久久影院| 狠狠精品人妻久久久久久综合| 天天躁夜夜躁狠狠久久av| 欧美xxxx黑人xx丫x性爽| 亚洲性久久影院| 久久久国产一区二区| 直男gayav资源| 亚洲欧美日韩无卡精品| 秋霞在线观看毛片| 男的添女的下面高潮视频| 午夜老司机福利剧场| 在线精品无人区一区二区三 | 国产一区二区三区综合在线观看 | 国产精品.久久久| 免费久久久久久久精品成人欧美视频 | 亚洲人成网站在线播| 日日啪夜夜撸| 国产精品99久久99久久久不卡 | 久久女婷五月综合色啪小说| 精品少妇久久久久久888优播| 成人综合一区亚洲| 亚洲精品久久久久久婷婷小说| 日日撸夜夜添| 国产亚洲5aaaaa淫片| 亚洲av电影在线观看一区二区三区| 内地一区二区视频在线| 亚洲电影在线观看av| 精品久久久久久久久av| 欧美成人精品欧美一级黄| 亚洲国产高清在线一区二区三| 色哟哟·www| 日韩一区二区三区影片| 日韩,欧美,国产一区二区三区| 日本与韩国留学比较| 99九九线精品视频在线观看视频| 97超碰精品成人国产| 日韩一区二区视频免费看| 永久免费av网站大全| 在线观看国产h片| 欧美 日韩 精品 国产| 亚洲成人av在线免费| 亚洲内射少妇av| 一级黄片播放器| 国产精品不卡视频一区二区| 97在线视频观看| 日本欧美视频一区| 亚洲自偷自拍三级| 亚洲人成网站高清观看| 七月丁香在线播放| 涩涩av久久男人的天堂| 国产成人免费观看mmmm| 精品人妻一区二区三区麻豆| 99久久精品热视频| av线在线观看网站| 搡女人真爽免费视频火全软件| 干丝袜人妻中文字幕| 久久久久久九九精品二区国产| 亚洲精品国产av成人精品| 人人妻人人澡人人爽人人夜夜| 91在线精品国自产拍蜜月| 免费看不卡的av| 有码 亚洲区| 免费少妇av软件| 一级毛片 在线播放| 中文字幕免费在线视频6| 国产精品成人在线| 建设人人有责人人尽责人人享有的 | 亚洲av中文av极速乱| 在线免费十八禁| 精品熟女少妇av免费看| 国产精品久久久久成人av| 亚洲成人av在线免费| 久久韩国三级中文字幕| 波野结衣二区三区在线| av国产久精品久网站免费入址| 成人免费观看视频高清| 天天躁日日操中文字幕| 亚洲成人av在线免费| 亚洲成人手机| 国产精品一区二区在线观看99| 久久6这里有精品| 日韩国内少妇激情av| 欧美一区二区亚洲| 高清视频免费观看一区二区| 久久久久久久精品精品| www.av在线官网国产| 国产黄片视频在线免费观看| 国产在线视频一区二区| 久久97久久精品| 国产伦在线观看视频一区| 伦理电影免费视频| 18+在线观看网站| 国产亚洲午夜精品一区二区久久| 小蜜桃在线观看免费完整版高清| 丰满乱子伦码专区| 欧美日本视频| 天堂8中文在线网| 亚洲精品一二三| 成人影院久久| 国产精品99久久久久久久久| 最近中文字幕高清免费大全6| 99re6热这里在线精品视频| 在线观看国产h片| 日韩在线高清观看一区二区三区| 免费大片18禁| 九草在线视频观看| 久久韩国三级中文字幕| 欧美日韩综合久久久久久| 成人无遮挡网站| 国产av精品麻豆| 亚洲国产最新在线播放| 永久网站在线| 亚洲国产色片| 日韩av在线免费看完整版不卡| 日韩 亚洲 欧美在线| 日韩一本色道免费dvd| 欧美xxxx性猛交bbbb| 亚洲一区二区三区欧美精品| 国产69精品久久久久777片| 国产精品偷伦视频观看了| 久久久久性生活片| 国产精品福利在线免费观看| 晚上一个人看的免费电影| 精品久久久久久久久亚洲| 国产精品蜜桃在线观看| 视频区图区小说| 久久久久久久久久久丰满| 亚洲av.av天堂| 久久久a久久爽久久v久久| 亚州av有码| 夜夜爽夜夜爽视频| 97在线视频观看| 人人妻人人看人人澡| 我要看日韩黄色一级片| 日本黄色日本黄色录像| 美女内射精品一级片tv| 日本-黄色视频高清免费观看| 在现免费观看毛片| 亚洲精品自拍成人| 欧美3d第一页| 搡女人真爽免费视频火全软件| 高清在线视频一区二区三区| 爱豆传媒免费全集在线观看| 国产伦精品一区二区三区四那| 91久久精品国产一区二区三区| 国产精品国产av在线观看| 青春草亚洲视频在线观看| 久久久久久久久久成人| 国产精品久久久久久av不卡| 亚洲第一区二区三区不卡| 色婷婷久久久亚洲欧美| 国产乱人视频| 成人二区视频| 国内揄拍国产精品人妻在线| 国产高清三级在线| 国国产精品蜜臀av免费| 在线精品无人区一区二区三 | 身体一侧抽搐| 亚洲人与动物交配视频| 亚洲欧美日韩无卡精品| 直男gayav资源| 日韩三级伦理在线观看| 少妇的逼水好多| 我要看日韩黄色一级片| 少妇高潮的动态图| 午夜福利影视在线免费观看| 22中文网久久字幕| 亚洲成人一二三区av| 少妇丰满av| 精品亚洲成a人片在线观看 | 人妻制服诱惑在线中文字幕| 亚洲高清免费不卡视频| 精品熟女少妇av免费看| 国产中年淑女户外野战色| 在线观看免费日韩欧美大片 | 三级国产精品片| 哪个播放器可以免费观看大片| 中文字幕免费在线视频6| 美女国产视频在线观看| h视频一区二区三区| 国产精品精品国产色婷婷| 亚洲最大成人中文| 一本久久精品| 在线观看av片永久免费下载| 欧美丝袜亚洲另类| 成人黄色视频免费在线看| 亚洲美女搞黄在线观看| 在线观看三级黄色| 中文资源天堂在线| 高清不卡的av网站| 国产精品久久久久久久电影| 午夜福利高清视频| 欧美成人a在线观看| 人体艺术视频欧美日本| 黄色视频在线播放观看不卡| 亚洲熟女精品中文字幕| 高清在线视频一区二区三区| 国产精品三级大全| 国产成人freesex在线| 国模一区二区三区四区视频| av网站免费在线观看视频| 性色av一级| 少妇被粗大猛烈的视频| 精品亚洲成国产av| 国产视频首页在线观看| 少妇高潮的动态图| 老司机影院成人| 国产亚洲5aaaaa淫片| 狠狠精品人妻久久久久久综合| 国产精品国产三级国产av玫瑰| 日韩电影二区| 亚洲精品久久午夜乱码| 你懂的网址亚洲精品在线观看| 亚洲国产色片| 免费观看a级毛片全部| 亚洲精品一区蜜桃| 国国产精品蜜臀av免费| 岛国毛片在线播放| 老司机影院成人| 自拍偷自拍亚洲精品老妇| 九九爱精品视频在线观看| 777米奇影视久久| 日日摸夜夜添夜夜添av毛片| 久久午夜福利片| 中文天堂在线官网| 晚上一个人看的免费电影| 一本色道久久久久久精品综合| 国产午夜精品一二区理论片| 在线观看免费高清a一片| 欧美日韩一区二区视频在线观看视频在线| 少妇 在线观看| 日韩伦理黄色片| 亚洲第一av免费看| 少妇裸体淫交视频免费看高清| 国产精品一区二区在线观看99| 在线免费十八禁| 少妇人妻一区二区三区视频| 精品亚洲成a人片在线观看 | 欧美最新免费一区二区三区| 日韩 亚洲 欧美在线| 精品久久久久久久久亚洲| 少妇精品久久久久久久| 偷拍熟女少妇极品色| h日本视频在线播放| 亚洲av免费高清在线观看| 国产精品国产三级专区第一集| 国产欧美日韩一区二区三区在线 | 久久久成人免费电影| 日韩一区二区视频免费看| 一区二区三区四区激情视频| 人妻夜夜爽99麻豆av| 欧美3d第一页| 免费不卡的大黄色大毛片视频在线观看| 日韩在线高清观看一区二区三区| videossex国产| 亚洲精品自拍成人| 国产在线一区二区三区精| 男女边吃奶边做爰视频| 精品酒店卫生间| 国产精品久久久久久精品电影小说 | 国产片特级美女逼逼视频| 亚洲美女黄色视频免费看| 观看免费一级毛片| 18禁在线播放成人免费| 夜夜看夜夜爽夜夜摸| 少妇熟女欧美另类| 精品一区二区免费观看| av视频免费观看在线观看| 国产免费视频播放在线视频| 国产女主播在线喷水免费视频网站| 蜜桃亚洲精品一区二区三区| 国产男人的电影天堂91| 亚洲最大成人中文| 亚洲精品日本国产第一区| 观看av在线不卡| 大又大粗又爽又黄少妇毛片口| 久久青草综合色| 成人毛片60女人毛片免费| 亚洲av不卡在线观看| 亚洲内射少妇av| 大香蕉久久网| 亚洲人与动物交配视频| 亚洲伊人久久精品综合| 欧美日本视频| 我要看黄色一级片免费的| 日本av免费视频播放| 少妇精品久久久久久久| 国产黄片视频在线免费观看| 边亲边吃奶的免费视频| 狠狠精品人妻久久久久久综合| 有码 亚洲区| 三级经典国产精品| 秋霞在线观看毛片| 最近最新中文字幕免费大全7| 国产毛片在线视频| 日本一二三区视频观看| 亚洲天堂av无毛| 国产成人精品一,二区| 国产黄片视频在线免费观看| 亚洲精品aⅴ在线观看| 国产爽快片一区二区三区| 一级毛片电影观看| 久久女婷五月综合色啪小说| 日韩一区二区三区影片| 久久久久视频综合| 精品少妇黑人巨大在线播放| 亚洲国产精品成人久久小说| 日韩不卡一区二区三区视频在线| 国产又色又爽无遮挡免| 最近手机中文字幕大全| 欧美日韩视频精品一区| 一级毛片aaaaaa免费看小| 一二三四中文在线观看免费高清| 在线观看av片永久免费下载| 伊人久久国产一区二区| 国产综合精华液| 午夜福利网站1000一区二区三区| 蜜桃久久精品国产亚洲av| 丰满乱子伦码专区| 国产熟女欧美一区二区| 热re99久久精品国产66热6| 中文精品一卡2卡3卡4更新| 成人高潮视频无遮挡免费网站| 乱系列少妇在线播放| 国产成人91sexporn| 91精品一卡2卡3卡4卡| 我要看黄色一级片免费的| 美女主播在线视频| 久热这里只有精品99| 丰满少妇做爰视频| 只有这里有精品99| 中文字幕久久专区| 91精品国产国语对白视频| 2022亚洲国产成人精品| 日本欧美视频一区| 国产成人a∨麻豆精品| 2022亚洲国产成人精品| 日本欧美视频一区| 欧美成人a在线观看| 久久99蜜桃精品久久| 最近最新中文字幕大全电影3| 国国产精品蜜臀av免费| 伊人久久精品亚洲午夜| 亚洲欧美清纯卡通| 亚洲精品自拍成人| 久久久久久久国产电影| 国产欧美另类精品又又久久亚洲欧美| 欧美97在线视频| 噜噜噜噜噜久久久久久91| 十八禁网站网址无遮挡 | 日本欧美国产在线视频| freevideosex欧美| 狠狠精品人妻久久久久久综合| 亚洲精品色激情综合| 中文资源天堂在线| 好男人视频免费观看在线| 两个人的视频大全免费| 超碰97精品在线观看|