• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鍵阻斷原理構(gòu)建中孔A型沸石

    2013-09-15 03:03:48薛招騰馬靜紅亢玉紅李瑞豐
    關(guān)鍵詞:中孔化工學(xué)院精細(xì)化工

    王 鵬 薛招騰 馬靜紅 亢玉紅 李瑞豐

    (太原理工大學(xué)煤科學(xué)與技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,化學(xué)化工學(xué)院,精細(xì)化工研究所,太原 030024)

    0 Introduction

    Zeolites are microporous aluminosilicate extensively used in the separation,purification and catalysis fields.They exhibit unique properties in above processes owing to the uniform,small pore size,the high surface area,a wide variety of exchangeable cations,the flexible frameworks,and the controlled chemical properties[1-8].However,the major shortcoming of zeolites is that intrinsic micropore sizes impose not only a serious diffusion limit,but also a high backpressure on the flow system,restricting their practical applications in relevant chemical industry[2-5].

    To improve the diffusion property of large molecules in zeolites,in the past decades,various attempts have been made to modify the intrinsic structure of zeolites by introducing mesoporous structure,for example,via steaming,acid leaching,base leaching or chemical treatment[9-14];the synthesis of nanosized zeolite with interparticle mesopores[15-18];using mesoporous templates during synthesis,for examplecarbon black[19],carbon nanotubes[20],nanosized CaCO3[21],aerogel[22].With the aid of amphiphilic organosilane,Ryoo et al.[23-24]synthesized zeolite LTA and MFI with tunable mesoporosity.After that,a lot of research efforts were devoted to using organosilane as the mesoporous structure directing agent in zeolite synthesis.

    Recently,we have demonstrated a synthesis method using organosilane to create intracrystal mesopores in conventional zeolite LTA and ZSM-5 by bond blocking effects[25-27].The key of the method is the blocking actions of Si-C covalent bonds on the microcrystal surface during the growth process of crystals.During the organic functionalization of fumed silica,the hydrophilic moiety of the organosilane is hydrolyzed into hydroxyl,which can undergo a condensation or dehydration with the hydroxyl on the surface of fumed silica.Thus,the hydrophobic moiety of organosilane links the surface of fumed silica through Si-C covalent bond,which is stable enough under synthesis conditions[28-29].During the synthesis process,the fumed silica enters into the framework of zeolite through covalent bonds of Si-O-Si or Si-O-Al,whereas the hydrophobic moiety still links with the Si atoms through Si-C covalent bonds.The Si-C covalent bonds hinder the growth of zeolite crystal in the corresponding direction.Thus the crystal defects in the zeolite are generated,and after calcination,these defects turn into mesopores.

    Herein,we report the synthesis of zeolite LTA with intracrystalline mesopores by optimizing synthesis conditions,including alkalinity,synthesis mixture Si/Al molar ratio and crystallization time.We also discuss the controlling factors of mesoporous size and volume.

    1 Experimental

    1.1 Synthesis

    The organosilanes were Phenylaminopropyl-trimethoxysilane(Y-5669,Sigma-Aldrich),N-(Vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride solution (Z-6032,40wt%in methanol,Dow Corning),KH-613 (Nanjing Capatue Chemical Co.,China),and octadecyldimethylammonium chloride(TPOAC,Sigma-Aldrich),respectively.

    Scheme 1 Chemical structures of organosilanes in synthesis of mesoporous zeolites

    1.1.1 Organic function of fumed silica

    Fumed silica was organic functionalized by an organosilane with the following molar ratio:SiO2∶60H2O∶m organosilane:30x CH3OH.m was from 0 to 0.2.The organosilane modified fumed silica is denoted as O-SiO2.

    1.1.2 Synthesis of mesoporous zeolite LTA

    Mesoporous zeolite LTA samples were prepared from a mixture with the following molar composition:x Na2O∶Al2O3∶y O-SiO2∶185H2O,where x was from 3 to 7 and y from 1.3 to 2.4.Sodium hydroxide was added into distilled water with stirring,O-SiO2and sodium aluminate solution were then added with stirring.The result mixture was stirred for 5 h at room temperature to obtain a homogeneous mixture.This mixture was heated at 363 K in a Teflon-coated stainless-steel autoclave for 2 to 20 h.Then the final samples were washed with distilled water,filtered by centrifugation,and dried at 373 K and calcined at 823 K.

    As an example,the molar composition of 5Na2O∶Al2O3∶2O-SiO2∶180H2O was used for the synthesis mixture,where the silica source was fumed silica with different Y-5669 modified degrees.The crystallization time was 20 h.The zeolitic samples are denoted as NaA-n for Na-type zeolite,and CaA-n for Ca-type zeolite(n=0,1,2,3,4,5),corresponding molar ratios of organosilane Y-5669 and silica (m=0,0.05,0.07,0.10,0.12,0.16).

    The used silica source was Y-5669 modified SiO2with a molar ratio m=0.16 for the synthesis mixture x Na2O∶Al2O3∶2O-SiO2∶180H2O,where x=4,5,6 and 7,and the crystallization time was 20 h.The samples are denoted as NaA-x4~NaA-x7 for Na-type zeolites,and CaA-x4~CaA-x7 for Ca-type zeolites.

    Under the same conditions for the synthesis mixture 5Na2O ∶Al2O3∶y O-SiO2∶180H2O,where y=1.3,1.6,2.0 and 2.4,the samplesare denoted as NaA-y1.3~NaA-y2.4 for Na-type zeolite,and CaA-y1.3~CaA-y2.4 for Ca-type zeolite.

    A reference zeolite sample (denoted as zeolite NaA-0)was synthesized following the same procedure(x=5,y=2),but the silica source was pure fumed silica without organic functional group.

    1.2 Ca2+exchange

    Ca2+exchangeof as-synthesized Na-zeolitesamples was carried out by stirring the samples in a 0.5 mol·L-1aqueous solution of CaCl2for 2 h at room temperature.This process was repeated for 3 times.Then,all Ca-zeolite samples were washed with distilled water to free from Cl-.

    1.3 Characterization

    All samples were characterized by conventional techniques.XRD measurements were taken in a Shimadzu XRD-6000 using scintillation counter and Cu Kα radiation (λ =0.154 18 nm,by a CM-3121 Monochromater)operated at 40 kV and 30 mA with step size of 0.02°.The 2θvalue was scanned in the range of 5~35°with a resolution of 5 min-1.Nitrogen adsorption-desorption isotherms at 77 K were obtained in a Quantachrome NOVA 1200e.The samples were first outgassed at 613K in vacuum for 5 h.The total surface area was obtained by BET equation whereas the external surface area and micropore volume were calculated by the t-plot method.The BJH pore size distribution was derived from the adsorption branch.Field emission scanning electron microscope(SEM)images were obtained in a JEOL JSM-6700F(accelerated voltage 10 kV).FTIR spectra were recorded in a Shimadzu IRAffinity-1 Fourier Transform infrared spectrophotometer.

    2 Results and discussion

    2.1 Effect of organosilane

    As shown in Fig.1,the XRD patterns of the samples prepared with different organosilane functionalized O-SiO2correspond to that of the highly crystalline zeolite NaA-0,which suggest that all samples are well-crystalline zeolite LTA.Compared with the pattern of the zeolite NaA-0,decreased intensity and broadened width of the diffraction peaks can be observed for the samples except NaA-613,which indicates that crystalline sizes of the samples prepared with TPOAC,Z-6032 and Y-5669 are somewhat decreased owing to use of organosilanated O-SiO2.The XRD pattern of NaA-613 shows almost the same as that of zeolite NaA-0.

    As shown in Fig.2,obvious difference of the sample morphologies emerges in the SEM images.The image of zeolite NaA-0 exhibits an intrinsic cubic shape of zeolite LTA with truncated edges,whereas the zeolite NaA-5669 and NaA-6032 exhibit global morphology with the rugged surfaces.

    Fig.1 XRD patterns for meso-zeolite LTA synthesized with different organosilanated O-SiO2 and the reference sample NaA-0

    Fig.2 SEM images of the zeolite samples NaA a:NaA-0;b:NaA-5669;c:NaA-6032

    Fig.3 N2 adsorption-desorption isotherms at 77 K(A)and BJH pore size distribution derived from the adsorption branch(B)of zeolite CaA synthesized with different organosilanated O-SiO2

    Fig.3 provides the N2adsorption-desorption isotherms of Ca-exchanged zeolite samples at 77 K(Fig.3A)and the BJH pore size distribution derived from adsorption branch (Fig.3B).The N2adsorption isotherm of the zeolite CaA-0 is a traditional typeⅠisotherm according to the IUPAC,without obvious N2condensation in the pressure range of 0.2 ~0.9.In contrast,the isotherms of the other four samples prepared with the organosilane functionalized O-SiO2showa remarkabledifference fromthereference sample CaA-0.All the isotherms exhibit a strong adsorption at low relative pressure (p/p0<0.1)corresponding to the filling of the microporous structure.However,a rather remarkable adsorption is also observed at p/p0=0.2~0.9,which is owing to the capillary condensation inside the mesopores,suggesting the presence of mesopores inside the zeolite crystals.This remarkable difference can be observed especially for the samples prepared using Y-5669,Z-6032 and TPOAC silanes.For the zeolites CaA-5669 and CaA-613,the obvious enhance of adsorption amount occurs at p/p0=0.2~0.6,showing the existence of small mesopores inside the zeolite crystals.For the samples CaA-TPOAC and CaA-6032,the enhancive amounts arise at p/p0=0.5~0.7 and 0.5~0.9,respectively,corresponding to relative large mesopores inside the zeolite crystals.These can be observed intuitively from the pore size distributions derived from the adsorption branch as shown in Fig.3B.The organic moiety sizes of Y-5669 and KH-613 are about the same,being smaller than the sizes of TPOAC and Z-6032.So the size of mesopores created inside the zeolite crystals is identical for the samples of NaA-5669 and NaA-613,whereas the samples prepared using O-SiO2with NaA-TPOAC and NaA-6032 have larger intracrystal mesoporous diameters.The full width at half maximum(FWHM)of pore size distribution for these samples is different.For CaA-5669,CaA-613 and CaA-TPOAC,a narrower distribution of mesoporous diameters can be observed,whereas a relatively wide pore size distribution can be noticed for the sample of CaA-6032.As depicted in Fig.3B,the mesoporous diameter of the samples CaA-5669 and CaA-613 are centered at ca.2.8 nm,but that of the sample CaA-TPOAC is 5.3 nm,whereasthat of the sample CaA-6032 centers at ca.6.5 nm with a relative wide FWHM.Therefore, the intracrystal mesopore diameter in the zeolite LTA samples is affected and modulated by using the organosilanated O-SiO2with different organosilanes.

    Table 1 Pore structure parameters of zeolite samples synthesized with different organosilanes

    The pore structure parameters of the zeolitic samples in Table 1 indicate that the mesoporous zeolite materials prepared with the organosilane functionalized O-SiO2present higher BET surface area,external surface area and mesoporous volume.For the sample prepared with Y-5669,the BET area,external surface area and mesoporous volume reach 608 m2·g-1,360 m2·g-1and 0.27 mL·g-1,respectively,while the corresponding values for sample CaA-0 are only 510 m2·g-1,29 m2·g-1and 0.02 mL·g-1.The data listed in Table 1 reflects also that the formation mechanism of mesopores in the samples is different from each other.

    From an evaluation of the results of the samples prepared from four different organosilanes,the sample CaA-5669 is the best mesoporous zeolite LTA because of its higher full surface area and external surface area from the mesopores,as well as its narrower pore size distribution inside the zeolite crystals.

    2.2 Influence of synthesis conditions

    It is remarkable that the zeolite sample CaA-5669 prepared with functionalized O-SiO2by organosilane Y-5669 shows a maximum mesoporous amount and a narrow pore size distribution.We have found that synthesis conditions have important influences on the mesostructured zeolite LTA too.

    As shown in Fig.4,all samples are high crystalline zeolite LTA and their crystallinity degrees are almost identical,though with the different

    Fig.4 XRD patterns for meso-zeolite NaA synthesized by different basicities

    The nitrogen adsorption-desorption isotherms in Fig.5A show typical mesoporous characteristics of thestudied.The samples CaA-x5,CaA-x6 and CaA-x7 exhibit higher nitrogen adsorption volumes than sample CaA-x4,while the pore size distributions remain the same outline for all samples and center at 2.8~3 nm with a narrow FWHM shown in Fig.5B.The structure parameters in Table 2 derived from the nitrogen adsorption-desorption isotherms confirm that all synthesized samplesprocesshighmesoporousvolume compared with the reference zeolite sample CaA-0 with only low mesoporous volume of 0.01 cm3·g-1.

    2.2.2 SiO2/Al2O3ratio

    As shown the XRD patterns in Fig.6,all samples are assigned to high crystalline zeolite LTA.However,as increasing SiO2/Al2O3molar ratio of the synthesis mixture reaches to larger than 2.4,the zeolite X phase is produced,and as decreasing the SiO2/Al2O3molar ratio to smaller than 1.3,the crystallinity degree of the sample begins to reduce.

    Fig.7 shows the nitrogen adsorption-desorption isotherms of the samples and the BJH pore sizedistributions.The four isotherms own all typical mesoporous characteristics as illustrated in Fig.6.Zeolite CaA-y2.0 and CaA-y1.6 have higher nitrogen adsorption volume than other two samples.The pore size distribution shown in Fig.7B indicates that the narrow pore size distribution of all samples is centered at 2.8~3.0 nm.The corresponding structure parameters of the samples are included in Table 3.

    Table 2 Pore structure parameters of meso-zeolite samples synthesized by different nN2O/nAl2O3

    Fig.5 N2 adsorption-desorption isotherms at 77 K(A)and BJH pore size distribution derived from the adsorption branch(B)of meso-zeolite NaA synthesized by different basicities

    Fig.6 XRD patterns for meso-zeolite NaA synthesized with different Si/Al molar ratios

    2.2.3 Crystallization time

    The crystalline process of zeolite presents a distinct S-type curve.As depicted in Fig.8,no zeolite crystalline phase is detected after one hour′s hydrothermal crystallization,while the zeolite LTA crystal appears after 2 h,and the crystallinity degree increases with time.After 5 hours′hydrothermal crystallization,the crystallinity degree of the samples is kept constant and the stable state could be held to more than 20 h,showing the structural stability of the mesoporous zeolite LTA prepared by the organosilanation silica.

    Fig.7 N2 adsorption-desorption isotherms at 77 K(A)and BJH pore size distribution derived from he adsorption branch(B)of meso-zeolite CaA synthesized with different Si/Al molar ratios

    Table 3 Pore structure parameter of meso-zeolite CaA synthesized with different n SiO2/n Al2O3

    Fig.8 XRD patterns for meso-zeolite NaA synthesized with different crystallization times

    2.3 Formation of mesoporous structure

    Fig.9 FTIR spectra of as-synthesized LTA samples with different crystallization times

    To clarify the formation of the mesoporous structure in zeolite crystals,the crystallization of the samples was tracked by IR spectroscopy,XRD and SEM.The corresponding XRD pattern is shown in Fig.8.FTIR spectra of as-synthesized zeolitic samples are shown in Fig.9.After one hour′s hydrothermal crystallization,a clear shoulder in the region of zeolitic framework vibrations(500~1 000 cm-1)can be seen,revealing signs of zeolite,though XRD patterns display only an amorphous framework structure.After two hours′hydrothermal crystallization, X-ray diffraction characteristics of zeolite LTA appear as shown clearly in Fig.8.The results indicate that zeolitic seeds have formed within one hour and grown to long range order within two hours.The vibration wavenumbers at about 2 975 cm-1,2 930 cm-1,2 853 cm-1,1 600 cm-1,1 500 cm-1and 1 450 cm-1confirm that the organosilane is grafted on the external surface of zeolite LTA crystals successfully.

    The SEM images of the zeolitic samples at different hydrothermal crystallization times are presented in Fig.10.For hydrothermal crystallization after 1 h,only amorphous particles are found,which corresponds to X-ray amorphous results.Though large numbers of uniform spherical particles about 500~700 nm appear in the sample,some amorphous components still exist after 2 hours′crystallization.With the increase of the crystallization time,the crystallinity of the sample increases but the diameters of the spherical particles remain unchanged.The final products show typical spherical morphology with the rugged surface(see Fig.2b too).

    Surface areas and pore volumes of the assynthesized zeolitic samples are determined using nitrogen adsorption-desorption isotherms at 77 K(Fig.11 and Table 4).As shown in Fig.11A,the mesoporous structurein thezeolitic samplebeginstobeconstructed during the earliest crystallization.The mesoporous diameters in the zeolitic samples contract gradually from 3.8 nm to 2.8 nm with increasing crystallization time (Fig.11B).Incidentally,full surface area and external surface area increase (Table 4).The results are from the formation and regulation(high crytallinity and narrow pore distribution)of the intracrystalline mesoporous structure in the zeolitic crystals.

    Fig.10 SEM images for meso-zeolite NaA synthesized with different crystallization time

    Fig.11 N2 adsorption-desorption isotherms at 77 K(A)and BJH pore size distribution derived from the adsorption branch(B)of meso-zeolite CaA synthesized with different crystallization times

    Table 4 Pore structure parameters of meso-zeolite samples synthesized with different crystallization times

    It is clear that the construction of intracrystalline pores begins from the earliest stage. The organofunctioned and the unorganofunctioned silica as elemental units autonomically congregate spherules to be crystallized during the hydrothermal reaction.Growth of crystals and Si-C bond-blocking arise at one time,resulting in the formation of microporous zeolite and mesoporous structure in the small beads.Finally,the centripetal force of crystalline growth and the repelling force of bond-blocking keep a balance to create a spherical mesostructured zeolite LTA.

    2.4 Influence of organic function degree

    In the formation of the mesoporous structure,how is the influence of organofunctioned degree of silica on the mesostructured zeolite LTA?The fumed silica with different Y-5669 modified degree was used in the mesoporous materials.As illustrated in Fig.12,XRD patterns of the samples prepared with different organic function degrees agree well with highly crystalline zeolite NaA-0.They have the same crystalline size and are not aggregated nanocrystals.During the hydrothermal crystallization process, more hydrophobic moiety hinders the growth of zeolite crystals in that position,thus more mesopores are created.This confirms that the synthesis method demonstrated is a practical way for hydrothermal synthesis of zeolite LTA with tunable intracrystalline mesopores.

    Fig.12 XRD patterns for meso-zeolite NaA synthesized with different organic function degrees

    Fig.13 N2 adsorption-desorption isotherms at 77 K(A)and BJH pore size distribution derived from the adsorption branch(B)of meso-zeolite CaA synthesized with different organic function degrees

    3 Conclusions

    In conclusion,the zeolite LTA with intracrystalline mesopores was synthesized using organic functionalized SiO2as silica source.The synthesis mixturecrystallization time longer than 7 h is the best synthesis condition for producing mesoporous zeolite LTA.Four different organosilanes are selected and Y-5669 isthebest onetocreateintracrystalline mesopores in zeolite LTA crystal.The mesoporous sizes can be modulated by selecting different kinds of organosilanes.Within a certain range,the external surface area and mesoporous volume increase along with the increase of the organic function degree of the silica source.This conforms that the synthesis method in this work is a suitable way for hydrothermal synthesis of zeolite LTA with tunable intracrystalline mesopores.

    Acknowledgment:This work was financially supported by the National Nature Science Foundation of China(Grant No.50872087).

    [1]Corma A.Chem.Rev.,1997,97:2373-2420

    [2]Meng X,Nawaz F,Xiao F S.Nano Today,2009,4:292-301

    [3]Tao Y,Kanoh H,Kaneko K,et al.Chem.Rev.,2006,106:896-910

    [4]Pérez-Ramírez J,Christensen C H,Egeblad K,et al.Chem.Soc.Rev.,2008,37:2530-2542

    [5]Kresten E,Christina H C,Marina K,et al.Chem.Mater.,2008,20:946-960

    [6]Sander Van D,Andries H J,Johannes H B,et al.Catal.Rev.,2003,45:297-319

    [7]Lopez-Orozco S,Inayat A,Schwab A,et al.Adv.Mater.,2011,23:2602-2615

    [8]Le H,Zhou J,Shi J,Chem.Commun.,2011,47:10536-10547

    [9]Pérez-Ramírez J,Abello S,Bonilla A,et al.Adv.Funct.Mater.,2009,19:164-172

    [10]Corma A,Fornes V,Pergher S B,et al.Nature,1998,396:353-356

    [11]Groen J C,Moulijn J A,Pérez-Ramírez J.J.Mater.Chem.,2006,16:2121-2131

    [12]Groen J C,Abello S,Villaescusa L A,et al.Micropor.Mesopor.Mat.,2008,114:93-102

    [13]Danny V,Pérez-Ramírez J.Chem.-Eur.J.,2011,17:1137-1147

    [14]Groen JC,Hamminga G M,Moulijn JA,et al.Phys.Chem.Chem.Phys.,2007,9:4822-4830

    [15]Serrano D P,Aguado J,Escola J M,et al.Chem.Mater.,2006,18:2462-2464

    [16]Larsen SC.J.Phys.Chem.C,2007,111:18464-18474

    [17]Rakoczy R A,Traa Y.Micropor.Mesopor.Mat.,2003,60:69-78

    [18]Lubomira T,Valtchev VP.Chem.Mater.,2005,17:2494-2513

    [19]Jacobsen C J H,Madsen C,Houzvicka J,et al.J.Am.Chem.Soc.,2000,122:7116-7117

    [20]Schmidt I,Boisen A,Gustavsson E,et al.Chem.Mater.,2001,13(12):4416-4418

    [21]Zhu H,Liu Z,Wang Y,et al.Chem.Mater.,2008,20:1134-1139

    [22]Tao Y,Kanoh H,Kaneko K.J.Phys.Chem.B,2003,107:10974-10976

    [23]Choi M,Cho H S,Srivastava R,et al.Nat.Mater.,2006,5:718-723

    [24]Cho K,Cho H S,Menorval De L C,et al.Chem.Mater.,2009,21:5664-5673

    [25]Xue Z,Ma J,Hao W,et al.J.Mater.Chem.,2012,22:2532-2538

    [26]Xue Z,Ma J,Zhang T,et al.Mater.Lett.,2012,68:1-3

    [27]Xue Z,Zhang T,Ma J,et al.Micropor.Mesopor.Mat.,2012,151:271-276

    [28]Katsuyuki T,Christopher WJ,Davis ME.Micropor.Mesopor.Mat.,1999,29:339-349

    [29]Christopher WJ,Katsuyuki T,Davis ME.Micropor.Mesopor.Mat.,1999,33:223-240

    猜你喜歡
    中孔化工學(xué)院精細(xì)化工
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    北京華立精細(xì)化工公司
    泉州永春駿能精細(xì)化工有限公司
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    航空發(fā)動(dòng)機(jī)維修中孔探技術(shù)的應(yīng)用分析
    電子制作(2019年12期)2019-07-16 08:45:46
    精細(xì)化工車間“三字訣” 讓精益安全理念落地生根
    烏東德大壩首個(gè)中孔鋼襯澆筑完成
    精細(xì)化工廢水污染特性分析及控制策略
    化工管理(2017年23期)2017-03-04 07:59:02
    《化工學(xué)報(bào)》贊助單位
    两个人看的免费小视频| 午夜免费观看网址| 男人舔女人下体高潮全视频| 新久久久久国产一级毛片| 国产成年人精品一区二区 | 69精品国产乱码久久久| 别揉我奶头~嗯~啊~动态视频| 亚洲一码二码三码区别大吗| 18禁黄网站禁片午夜丰满| 美女 人体艺术 gogo| 欧美成人免费av一区二区三区| 在线免费观看的www视频| 欧美av亚洲av综合av国产av| 神马国产精品三级电影在线观看 | 欧美黄色片欧美黄色片| 国产成人精品在线电影| 亚洲美女黄片视频| 国产精品一区二区三区四区久久 | 夜夜夜夜夜久久久久| 夫妻午夜视频| 老司机午夜福利在线观看视频| 我的亚洲天堂| 国产1区2区3区精品| 婷婷丁香在线五月| 国产又色又爽无遮挡免费看| 亚洲成av片中文字幕在线观看| 亚洲国产精品一区二区三区在线| 久久久国产成人免费| 国产亚洲欧美98| 精品久久久久久久久久免费视频 | 自线自在国产av| 国产在线观看jvid| 午夜福利在线免费观看网站| 免费看十八禁软件| 欧美丝袜亚洲另类 | 亚洲视频免费观看视频| 女性生殖器流出的白浆| 色精品久久人妻99蜜桃| e午夜精品久久久久久久| 国产高清videossex| 国产aⅴ精品一区二区三区波| 国产1区2区3区精品| 国产精品98久久久久久宅男小说| 免费在线观看影片大全网站| 免费看a级黄色片| 黄色女人牲交| 久久久久久久精品吃奶| www.自偷自拍.com| 天天躁狠狠躁夜夜躁狠狠躁| 黄色女人牲交| 国产精品国产av在线观看| 91麻豆精品激情在线观看国产 | 在线天堂中文资源库| 嫩草影院精品99| 69av精品久久久久久| 日韩精品免费视频一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 成人av一区二区三区在线看| 悠悠久久av| 搡老岳熟女国产| a级片在线免费高清观看视频| 啦啦啦 在线观看视频| 亚洲成人久久性| 亚洲成人精品中文字幕电影 | 长腿黑丝高跟| 777久久人妻少妇嫩草av网站| 国产精品一区二区在线不卡| 一级毛片精品| 一边摸一边抽搐一进一出视频| 精品国产亚洲在线| 久久婷婷成人综合色麻豆| 色老头精品视频在线观看| 纯流量卡能插随身wifi吗| 伊人久久大香线蕉亚洲五| 美女午夜性视频免费| 亚洲精品一区av在线观看| 亚洲精品久久成人aⅴ小说| 久久精品影院6| 性色av乱码一区二区三区2| 性色av乱码一区二区三区2| 热re99久久国产66热| 757午夜福利合集在线观看| 色尼玛亚洲综合影院| 亚洲欧美精品综合一区二区三区| 老汉色av国产亚洲站长工具| 成人精品一区二区免费| 久久精品亚洲av国产电影网| 久久国产精品影院| 精品一区二区三区四区五区乱码| 美女午夜性视频免费| 国产aⅴ精品一区二区三区波| 国产精品久久久人人做人人爽| xxx96com| 69av精品久久久久久| 热re99久久精品国产66热6| 亚洲色图 男人天堂 中文字幕| 自线自在国产av| 99香蕉大伊视频| 国产精品久久久av美女十八| 久久人妻av系列| 嫩草影院精品99| 两性午夜刺激爽爽歪歪视频在线观看 | 大香蕉久久成人网| 国产99白浆流出| 又大又爽又粗| 一二三四在线观看免费中文在| 久久久精品国产亚洲av高清涩受| 新久久久久国产一级毛片| av片东京热男人的天堂| 国产亚洲精品第一综合不卡| 级片在线观看| 亚洲专区中文字幕在线| 国产国语露脸激情在线看| 亚洲专区国产一区二区| 国产亚洲欧美在线一区二区| 亚洲免费av在线视频| 大型黄色视频在线免费观看| 精品国产一区二区久久| 日本五十路高清| 日本vs欧美在线观看视频| 婷婷精品国产亚洲av在线| 老司机福利观看| 午夜福利一区二区在线看| 91大片在线观看| 日本wwww免费看| 国产精品久久久久久人妻精品电影| 亚洲成人国产一区在线观看| 国产野战对白在线观看| 动漫黄色视频在线观看| 欧美国产精品va在线观看不卡| 国产成人av激情在线播放| 欧美成人免费av一区二区三区| tocl精华| 亚洲一码二码三码区别大吗| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品中文字幕一二三四区| 日日干狠狠操夜夜爽| 久久久久国内视频| 精品国产一区二区久久| 久久久久精品国产欧美久久久| 欧美最黄视频在线播放免费 | 精品第一国产精品| 精品一区二区三区四区五区乱码| 电影成人av| 国产精品九九99| 久久久久久大精品| 最近最新中文字幕大全免费视频| 欧美日本中文国产一区发布| 巨乳人妻的诱惑在线观看| 欧美日本亚洲视频在线播放| 老司机靠b影院| 一边摸一边抽搐一进一出视频| 精品国产乱子伦一区二区三区| 婷婷丁香在线五月| av片东京热男人的天堂| 久久久精品国产亚洲av高清涩受| 在线观看日韩欧美| 高清毛片免费观看视频网站 | 视频区图区小说| 亚洲一卡2卡3卡4卡5卡精品中文| 色精品久久人妻99蜜桃| 欧美日韩乱码在线| 91av网站免费观看| 天天添夜夜摸| 亚洲av成人av| 啦啦啦 在线观看视频| 天堂√8在线中文| 亚洲片人在线观看| 欧美在线黄色| 国产av在哪里看| 最近最新中文字幕大全电影3 | 亚洲精品美女久久av网站| 国产av一区在线观看免费| 亚洲 欧美 日韩 在线 免费| 亚洲九九香蕉| 手机成人av网站| 中文欧美无线码| 曰老女人黄片| 久久精品国产综合久久久| 亚洲av五月六月丁香网| 黄色成人免费大全| 精品电影一区二区在线| 久久久久亚洲av毛片大全| 啦啦啦免费观看视频1| 国产精品国产av在线观看| 亚洲第一青青草原| 午夜福利免费观看在线| 免费观看人在逋| 嫁个100分男人电影在线观看| 精品熟女少妇八av免费久了| 视频区图区小说| av网站在线播放免费| 日日夜夜操网爽| 色婷婷久久久亚洲欧美| 国产精品99久久99久久久不卡| 国产精品 欧美亚洲| 精品久久久久久久久久免费视频 | 又黄又爽又免费观看的视频| 亚洲色图av天堂| 久久香蕉精品热| 亚洲 国产 在线| 精品一区二区三卡| 国产黄a三级三级三级人| 天天添夜夜摸| 午夜免费激情av| 精品国产一区二区久久| 久久草成人影院| 免费久久久久久久精品成人欧美视频| www.熟女人妻精品国产| 国产精品电影一区二区三区| 99国产精品一区二区三区| 变态另类成人亚洲欧美熟女 | 黄网站色视频无遮挡免费观看| 久久人人97超碰香蕉20202| 村上凉子中文字幕在线| 国产精品免费一区二区三区在线| 午夜福利在线免费观看网站| 欧美在线一区亚洲| 大香蕉久久成人网| av片东京热男人的天堂| 国产精品一区二区在线不卡| 国产99久久九九免费精品| 一本大道久久a久久精品| 国产亚洲av高清不卡| 国产av在哪里看| 在线观看免费视频网站a站| 欧美日韩中文字幕国产精品一区二区三区 | 真人做人爱边吃奶动态| 一边摸一边抽搐一进一出视频| 国产一区二区三区视频了| 欧美av亚洲av综合av国产av| 日韩欧美三级三区| cao死你这个sao货| 精品欧美一区二区三区在线| 国产日韩一区二区三区精品不卡| 日韩大尺度精品在线看网址 | 可以在线观看毛片的网站| 亚洲精品一卡2卡三卡4卡5卡| 亚洲 国产 在线| 1024香蕉在线观看| 俄罗斯特黄特色一大片| 亚洲人成电影观看| 中出人妻视频一区二区| 中文字幕av电影在线播放| 欧美日韩精品网址| 涩涩av久久男人的天堂| 亚洲成av片中文字幕在线观看| 亚洲欧美一区二区三区黑人| 亚洲色图 男人天堂 中文字幕| 久久草成人影院| 91精品国产国语对白视频| 欧美日韩瑟瑟在线播放| 欧美日韩黄片免| 欧美在线黄色| 色综合站精品国产| 最近最新免费中文字幕在线| 99久久精品国产亚洲精品| 久久国产精品人妻蜜桃| 老熟妇乱子伦视频在线观看| 黑人巨大精品欧美一区二区蜜桃| 另类亚洲欧美激情| а√天堂www在线а√下载| 如日韩欧美国产精品一区二区三区| 成人亚洲精品av一区二区 | www.999成人在线观看| 精品免费久久久久久久清纯| 免费在线观看黄色视频的| 久久影院123| 女性被躁到高潮视频| 亚洲精品在线观看二区| 亚洲精品美女久久久久99蜜臀| 99国产精品一区二区蜜桃av| 日韩有码中文字幕| 男女高潮啪啪啪动态图| 欧美乱色亚洲激情| 自线自在国产av| 免费在线观看完整版高清| 亚洲aⅴ乱码一区二区在线播放 | 亚洲第一欧美日韩一区二区三区| 亚洲欧美一区二区三区久久| 久久久久久免费高清国产稀缺| 欧美老熟妇乱子伦牲交| 亚洲五月天丁香| 色尼玛亚洲综合影院| 高清欧美精品videossex| 好男人电影高清在线观看| 国产一区二区三区综合在线观看| 国产色视频综合| 制服人妻中文乱码| 成人特级黄色片久久久久久久| 亚洲激情在线av| 国产成人影院久久av| 国产高清videossex| 日韩精品中文字幕看吧| 波多野结衣av一区二区av| 久久人妻福利社区极品人妻图片| aaaaa片日本免费| 亚洲欧美一区二区三区久久| av天堂在线播放| 亚洲精品国产精品久久久不卡| 69精品国产乱码久久久| 一级毛片女人18水好多| 在线观看www视频免费| 欧美激情 高清一区二区三区| 亚洲中文av在线| 性色av乱码一区二区三区2| 可以免费在线观看a视频的电影网站| 午夜91福利影院| 免费看a级黄色片| 精品国产乱码久久久久久男人| 最新在线观看一区二区三区| 一级毛片女人18水好多| 不卡一级毛片| 美女高潮喷水抽搐中文字幕| 黄片大片在线免费观看| 成人影院久久| 亚洲精品成人av观看孕妇| 国产蜜桃级精品一区二区三区| 又大又爽又粗| 欧美大码av| 国产一区二区三区视频了| 一二三四社区在线视频社区8| 波多野结衣一区麻豆| 丁香六月欧美| 伊人久久大香线蕉亚洲五| 成在线人永久免费视频| 十分钟在线观看高清视频www| 欧美乱色亚洲激情| 国产精品香港三级国产av潘金莲| 亚洲国产精品一区二区三区在线| 亚洲国产中文字幕在线视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品一二三| 午夜精品在线福利| 50天的宝宝边吃奶边哭怎么回事| 免费在线观看影片大全网站| 在线天堂中文资源库| 久99久视频精品免费| 日日摸夜夜添夜夜添小说| 国产欧美日韩一区二区三区在线| 露出奶头的视频| 久久久国产成人精品二区 | 久久久国产精品麻豆| 色婷婷av一区二区三区视频| 国产伦一二天堂av在线观看| 男女午夜视频在线观看| 叶爱在线成人免费视频播放| 一级片'在线观看视频| 亚洲成人免费电影在线观看| 日本黄色日本黄色录像| 一进一出抽搐动态| 91在线观看av| 国产一区在线观看成人免费| 这个男人来自地球电影免费观看| 两个人看的免费小视频| 村上凉子中文字幕在线| 视频在线观看一区二区三区| 欧美大码av| 亚洲精品国产区一区二| 女生性感内裤真人,穿戴方法视频| 久久久精品国产亚洲av高清涩受| 搡老熟女国产l中国老女人| av在线播放免费不卡| 十八禁人妻一区二区| 精品国内亚洲2022精品成人| 亚洲国产欧美日韩在线播放| av有码第一页| 老司机午夜十八禁免费视频| 色老头精品视频在线观看| 久久天堂一区二区三区四区| 中文欧美无线码| 99久久99久久久精品蜜桃| 丁香欧美五月| 18禁裸乳无遮挡免费网站照片 | 日韩免费av在线播放| 香蕉丝袜av| 级片在线观看| 老汉色∧v一级毛片| videosex国产| 成人三级做爰电影| 亚洲成人免费电影在线观看| 久久久水蜜桃国产精品网| 国产亚洲欧美98| 水蜜桃什么品种好| 亚洲av成人av| 首页视频小说图片口味搜索| 变态另类成人亚洲欧美熟女 | 午夜免费观看网址| 男人操女人黄网站| 香蕉久久夜色| 国产高清激情床上av| 十八禁人妻一区二区| 日日夜夜操网爽| 国产深夜福利视频在线观看| av网站免费在线观看视频| 亚洲在线自拍视频| 欧美一区二区精品小视频在线| 国产伦人伦偷精品视频| 免费av中文字幕在线| 黄色 视频免费看| 日韩欧美免费精品| 精品久久久久久成人av| 9热在线视频观看99| 另类亚洲欧美激情| av福利片在线| 岛国在线观看网站| 欧美激情 高清一区二区三区| 人人妻人人澡人人看| 久久精品亚洲精品国产色婷小说| 在线观看一区二区三区| 午夜精品在线福利| 超碰成人久久| 日本 av在线| 国产av又大| 国产精品乱码一区二三区的特点 | 好男人电影高清在线观看| 少妇裸体淫交视频免费看高清 | 大型av网站在线播放| 免费久久久久久久精品成人欧美视频| 在线观看www视频免费| 大陆偷拍与自拍| 法律面前人人平等表现在哪些方面| 热re99久久精品国产66热6| 国内毛片毛片毛片毛片毛片| 人妻久久中文字幕网| 日韩精品中文字幕看吧| 国产精品久久久人人做人人爽| 在线观看免费午夜福利视频| 欧美国产精品va在线观看不卡| 亚洲第一青青草原| 免费不卡黄色视频| 不卡av一区二区三区| 国产主播在线观看一区二区| 女人被狂操c到高潮| 欧美日韩视频精品一区| 91在线观看av| 国产91精品成人一区二区三区| 国产极品粉嫩免费观看在线| 久久精品亚洲熟妇少妇任你| 99精品欧美一区二区三区四区| 无人区码免费观看不卡| 国产精品99久久99久久久不卡| 欧美激情极品国产一区二区三区| 精品午夜福利视频在线观看一区| 久热爱精品视频在线9| 久久久久久大精品| svipshipincom国产片| 欧美一区二区精品小视频在线| 精品久久久久久久毛片微露脸| 伦理电影免费视频| 久久久国产欧美日韩av| 久久精品成人免费网站| 亚洲av成人一区二区三| 午夜免费观看网址| 国产97色在线日韩免费| 在线观看www视频免费| 日日干狠狠操夜夜爽| 黄色a级毛片大全视频| 伊人久久大香线蕉亚洲五| 18美女黄网站色大片免费观看| 久久国产亚洲av麻豆专区| 欧美黑人精品巨大| 操美女的视频在线观看| 亚洲精品在线美女| 午夜亚洲福利在线播放| 真人做人爱边吃奶动态| 天堂动漫精品| 最近最新中文字幕大全电影3 | 免费看十八禁软件| 一级毛片女人18水好多| 亚洲精品在线观看二区| 超色免费av| 99国产精品一区二区三区| 亚洲精品美女久久av网站| www.精华液| 亚洲精品一区av在线观看| 午夜精品久久久久久毛片777| 日韩精品中文字幕看吧| 90打野战视频偷拍视频| 国产日韩一区二区三区精品不卡| 在线观看一区二区三区激情| 国产熟女午夜一区二区三区| 老熟妇乱子伦视频在线观看| 99精国产麻豆久久婷婷| 久久青草综合色| avwww免费| 久久久久久亚洲精品国产蜜桃av| 色哟哟哟哟哟哟| av超薄肉色丝袜交足视频| 免费一级毛片在线播放高清视频 | 男人舔女人下体高潮全视频| 精品无人区乱码1区二区| 亚洲精品国产区一区二| 久久精品91无色码中文字幕| 国产成+人综合+亚洲专区| 亚洲久久久国产精品| 国产精品 欧美亚洲| 午夜福利欧美成人| 97超级碰碰碰精品色视频在线观看| 亚洲国产欧美日韩在线播放| 亚洲人成电影观看| 777久久人妻少妇嫩草av网站| 中文字幕另类日韩欧美亚洲嫩草| 看免费av毛片| 美女高潮喷水抽搐中文字幕| 黑人猛操日本美女一级片| 天天躁狠狠躁夜夜躁狠狠躁| 男人操女人黄网站| 侵犯人妻中文字幕一二三四区| 国产伦人伦偷精品视频| 精品高清国产在线一区| www.999成人在线观看| 两个人看的免费小视频| 国产xxxxx性猛交| 老司机午夜十八禁免费视频| 999精品在线视频| 亚洲精华国产精华精| 免费日韩欧美在线观看| 国产精品自产拍在线观看55亚洲| 天堂影院成人在线观看| 啦啦啦免费观看视频1| 免费在线观看黄色视频的| 夜夜看夜夜爽夜夜摸 | 热99re8久久精品国产| 亚洲精品中文字幕在线视频| 色精品久久人妻99蜜桃| 老司机亚洲免费影院| 大陆偷拍与自拍| 看片在线看免费视频| 天堂√8在线中文| 久久人妻av系列| 日韩精品免费视频一区二区三区| 最新在线观看一区二区三区| 日韩精品青青久久久久久| 久9热在线精品视频| 国产成人欧美| 免费看十八禁软件| 美女国产高潮福利片在线看| 香蕉丝袜av| 精品久久久精品久久久| 成人亚洲精品一区在线观看| 日日摸夜夜添夜夜添小说| 国产黄a三级三级三级人| www.熟女人妻精品国产| 精品人妻在线不人妻| 亚洲国产中文字幕在线视频| 国产真人三级小视频在线观看| 无人区码免费观看不卡| 亚洲精品国产区一区二| 两性夫妻黄色片| 在线观看免费视频日本深夜| 国产精品久久视频播放| 亚洲专区国产一区二区| 天堂中文最新版在线下载| 国产伦一二天堂av在线观看| 亚洲狠狠婷婷综合久久图片| netflix在线观看网站| 90打野战视频偷拍视频| 丁香六月欧美| 国产精品九九99| 一级毛片高清免费大全| 欧美激情极品国产一区二区三区| av国产精品久久久久影院| 亚洲av成人av| 欧美最黄视频在线播放免费 | 中文欧美无线码| 国产99白浆流出| 国产av又大| 久久婷婷成人综合色麻豆| 如日韩欧美国产精品一区二区三区| 超碰97精品在线观看| 一区在线观看完整版| 亚洲精品中文字幕在线视频| 久9热在线精品视频| 每晚都被弄得嗷嗷叫到高潮| 中文欧美无线码| 午夜免费观看网址| 国产精品久久电影中文字幕| av欧美777| 黑人猛操日本美女一级片| 国产精品久久久人人做人人爽| 欧美日韩亚洲国产一区二区在线观看| 日本欧美视频一区| 久久久国产一区二区| 两个人免费观看高清视频| 日本三级黄在线观看| 国产av一区二区精品久久| 国产高清videossex| 91麻豆精品激情在线观看国产 | 亚洲成人精品中文字幕电影 | 岛国在线观看网站| 久久99一区二区三区| 一级a爱视频在线免费观看| 大香蕉久久成人网| 国产高清视频在线播放一区| 国产成人一区二区三区免费视频网站| 涩涩av久久男人的天堂| 老司机午夜福利在线观看视频| av在线播放免费不卡| 夫妻午夜视频| 深夜精品福利| av国产精品久久久久影院| 成人亚洲精品一区在线观看| av电影中文网址| 99国产精品一区二区蜜桃av| 黑人巨大精品欧美一区二区mp4| 十八禁人妻一区二区| 欧美亚洲日本最大视频资源| 精品熟女少妇八av免费久了| 精品人妻1区二区| 可以免费在线观看a视频的电影网站| 午夜a级毛片| 久久午夜综合久久蜜桃| 深夜精品福利| 精品高清国产在线一区|