• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cu/Co/Fe 水滑石衍生的復(fù)合氧化物催化高氯酸銨熱分解的研究

    2013-08-20 00:57:24劉洪博黃志勇郭冰之矯慶澤
    關(guān)鍵詞:北京理工大學(xué)珠海化工

    劉洪博 黃志勇 郭冰之,2 矯慶澤*,,2

    (1 北京理工大學(xué)珠海學(xué)院化工與材料學(xué)院,珠海 519088)

    (2 北京理工大學(xué)化工與環(huán)境學(xué)院,北京 100081)

    Ammonium perchlorate (AP) is the most commonly used oxidizer in composite solid propellants. Thermal decomposition characteristics of AP are highly relevant to the combustion behavior of the propellants.Transition metal oxides (TMO) such as CuO, Co3O4,Fe2O3, MnO2, Cr2O3have shown good activity for thermal decomposition of AP, and their mixtures(Mixed oxides, MOs) exhibit even better catalytic property than the single oxide[1-5]. Several methods have been employed to prepare MOs, such as solid state reaction[6], homogeneous precipitation[7], sol-gel method[8], citric acid complexing approach[9], autocombustion[10]and layered double hydroxides (LDHs)derived MOs[11]. LDHs are a family of lamellar solids,whose structure can be represented by the general formula of [M2+(1-x)M3+x(OH)2]x+·An-x/n·zH2O, where M2+and M3+are di- and trivalent cations, respectively, the value of x is equal to the molar ratio of nM3+/(nM2++nM3+)and An-is an anion[12]. LDHs derived MOs have attracted increasing attention due to their large surface area, small crystallite size and stability against sintering. Cu/Co and Cu/Fe-MOs derived from Cu/Co and Cu/Fe-LDHs, respectively, were used as good catalysts for thermal decomposition of AP in our previous work[13-14]. With the addition of Cu/Co-MOs,thermal decomposition temperature of AP can be lowered by 113 ℃. However, Cu/Co and Cu/Fe-MOs are not easy to form due to the “Jahn-Teller” effect of Cu, the only M2+in the layer. Furthermore, Co is prevented from consideration in practical application because of its high price. In the present work, Fe was introduced into Cu/Co-LDHs on the base of our previous work in order to take advantage of synergistic effect between different metals. Cu/Co/Fe-LDHs were prepared by co-precipitation reaction without hydrothermal treatment. Cu/Co/Fe-MOs were then obtained by calcination of Cu/Co/Fe-LDHs precursors.The catalytic property of Cu/Co/Fe-MOs for improving thermal decomposition of AP was investigated. The catalytic mechanism was also discussed.

    1 Experimental

    1.1 Synthesis of Cu/Co/Fe-LDHs and Cu/Co/Fe-MOs

    A series of Cu/Co/Fe-LDHs with Cu/Co/Fe molar ratio of 1 ∶1 ∶1, 2 ∶4 ∶3, 1 ∶3 ∶2, 2 ∶8 ∶5 and 1 ∶5 ∶3,respectively, (assigned as Cu1Co1Fe1, Cu2Co4Fe3,Cu1Co3Fe2, Cu2Co8Fe5and Cu1Co5Fe3-LDHs, respectively) were prepared using a co-precipitation method[10].An aqueous solution of Cu(NO3)2·3H2O/Co(NO3)2·6H2O/Fe(NO3)3·9H2O was added into an aqueous solution of Na2CO3/NaOH under vigorous stirring. The pH value was adjusted to 9 and the resulting slurry was then aged at 80 ℃for 24 h. The final precipitate was filtered off and thoroughly washed with distilled water before being dried overnight at 80 ℃in an oven. The Cu/Co/Fe-MOs catalysts were obtained by calcination of as-obtained Cu/Co/Fe-LDHs precursors in muffle furnace with a temperature controller. The sample was heated at a constant heating rate of 3 ℃·min-1up to 400, 500, 600, 700 and 800 ℃, respectively, maintained at the assigned temperature for 3 h and then cooled down to ambient temperature.

    1.2 Characterizations

    Elemental chemical analysis for Cu, Co and Fe were performed by inductively coupled plasma emission (ICP), on a JY, model ULTIMA, using solutions prepared by dissolving the sample in 0.1 mol·L-1HNO3.Powder X-ray diffraction(XRD)patterns were recorded using a PANalytical X′Pert PRO MPD diffractometer, Cu Kα (λ=0.154 06 nm) radiation operating with 40 kV and 40 mA. The receiving slit size is 12.75 mm. A scan rate of 0.04°·s-1was used to record the patterns in the 2θ range of 5° ~80° .Transmission electron microscope (TEM) was taken on a Hitach-800 electron microscope, working at 100 kV.Low temperature N2-adsorption measurements were taken in a Quantachrome NOVA 1200e Surface Area& Pore Size Analyzer. Prior to analysis, the samples were outgassed in vacuum at 120 ℃. BET method was used to obtain the specific surface area.

    1.3 Catalytic performance

    To test the catalytic activity of Cu/Co/Fe-MOs in the thermal decomposition of AP, both the AP and appropriate amount of Cu/Co/Fe-MOs were dispersed in absolute ethanol by grinding to achieve a uniform dispersion. These samples were then dried in vacuum oven at 80 ℃for 1 h. Finally, the powder mixtures were characterized by differential thermal analysis(DTA). The test was carried out on a Beijing Optical Instrument Factory WCR-1100, in a N2atmosphere with a flow of 20 mL·min-1over the range of 50~500℃(heating rate of 20 ℃·min-1) to investigate thermal decomposition behavior of AP. The samples were also tested by thermal gravimetric analyzer coupled with an online mass spectrometer (TG-MS, PerkinElmer Diamond, model Thermostar TM), operated under flowing argon (50 mL min-1) with a heating rate of 10℃·min-1over 50~500 ℃.

    2 Results and discussion

    2.1 Composition of Cu/Co/Fe-LDHs

    Elemental chemical analysis data for metals in Cu/Co/Fe-LDHs precursors are listed in Table 1. The results of Cu/Co/Fe molar ratio in the solid are close to the values used in the reaction stoichiometries,which means the precipitation of Cu, Co and Fe is efficient.

    2.2 Structure of Cu/Co/Fe-LDHs and Cu/Co/Fe-MOs

    Table 1 Selected data for Cu/Co/Fe-LDHs and their derived Cu/Co/Fe-MOs

    Fig.1 XRD Patterns for Cu/Co/Fe-LDHs (A) and Cu/Co/Fe-MOs (B) prepared with differeent molar ratios

    The XRD patterns for Cu/Co/Fe-LDHs precursors with different molar ratios of Cu/Co/Fe are shown in Fig.1A. In each case, the XRD patterns exhibit the characteristic reflections of LDHs materials. Sharp,intense peaks at low diffraction angles (peaks close to 2θ= 11.7°, 23.5°, 34.1°) are ascribed to diffraction by basal plane of (003), (006) and (009), respectively,indicating relatively well-formed crystalline layered structures with rhombohedral symmetry (PDF: 41-1428)[12]. No other phases are observed for all Cu/Co/Fe-LDHs samples except a little Cu2(OH)2CO3impurity for Cu1Co1Fe1-LDHs sample. This can be attributed to the “Jahn-Teller” effect caused by high content of Cu,which leads to a difficulty for Cu to be introduced into the layers. On the other hand the board diffraction peaks at 38° and 47° corresponding to the (015) and(018) crystal planes are characteristic of LDHs. The well defined (110) and (113) diffraction peaks at 59.9°and 61.2° reveal a reasonable dispersion of metal ions in the hydroxide layers. Remarkable changes are observed for Cu/Co/Fe-LDHs samples after calcination at 500 ℃as shown in Fig.1B. CuFe2O4(PDF: 77-0010) and (CoFe2)O4(PDF: 79-1744) spinel phase with board peaks at 2θ=19°, 31°, 36°, 43°, 57° and 63° are observed for all the samples. This drastic change in the diffract patterns reveals that thermal decomposition of the LDHs takes place via a highly disordered structure. And a little CuO phase is seen for the Cu1Co1Fe1-MOs sample, which can be ascribed to the existence of Cu2(OH)2CO3impurity in the Cu1Co1Fe1-LDHs precursor.

    BET surface areas and grain sizes (calculated by Scherrer formula using XRD data) of Cu/Co/Fe-LDHs and Cu/Co/Fe-MOs catalysts are also listed in Table 1. The BET results show that Cu/Co/Fe-LDHs and Cu/Co/Fe-MOs catalysts have specific surface area in the range of 110 ~130 m2·g-1and 70 ~110 m2·g-1,respectively. Grain size is around 40~50 nm and 10 nm, respectively. Higher specific surface area and smaller grain size are obtained than the previous Cu/Co and Cu/Fe-MOs[13-14].

    2.3 Morphology of Cu/Co/Fe-LDHs and Cu/Co/Fe-MOs

    The TEM images of Cu2Co8Fe5-LDHs precursors and Cu2Co8Fe5-MOs catalysts are shown in Fig.2. The micrographs of the Cu2Co8Fe5-LDHs precursors show homogenous regular flakes with particle size of 40~50 nm. Cu2Co8Fe5-MOs obtained by calcination at 500 ℃exhibits well dispersed particles with particle size of 20 ~30 nm. These particles are smaller than those obtained by auto-combustion and other methods[7,10].

    Fig.2 TEM photos forCu2Co8Fe5-LDHs (a) andCu2Co8Fe5-MOs (b)

    2.4 Catalytic performance on thermal decomposition of AP

    Fig.3 DTA curves for thermal decomposition of AP

    The catalytic thermal decomposition of pure AP and AP with Cu/Co/Fe-MOs (4wt%) in different Cu/Co/Fe molar ratios are shown in Fig.3. It can be observed that the addition of Cu/Co/Fe-MOs in AP leads to a significant reduction of the ending decomposition temperature of AP. Thermal decomposition of pure AP has apparently three peaks similar to the previous results[15].With the addition of Cu/Co/Fe-MOs,the same peak at 251 ℃ appear in all cases,indicating that the Cu/Co/Fe-MOs have little effect on the crystallographic transition temperature of AP.However, dramatic changes in the exothermic peak of AP decomposition are observed in a relatively high temperature region after adding Cu/Co/Fe-MOs catalysts. The first exothermic peak disappears for all cases and the high temperature decomposition peaks shift to lower temperature region. The thermal decomposition temperature of AP is lowered by 104~115 ℃. Cu/Co/Fe-MOs show better catalytic activity than Cu/Co and Cu/Fe-MOs reported by our previous work[13-14].

    DTA curves for thermal decomposition of AP with Cu2Co8Fe5-MOs prepared at different calcination temperatures are shown in Fig.4. For 400 and 500 ℃calcined sample, only one exothermic peak is observed at 323 and 348 ℃, respectively. With the increase of calcination temperature, another peak appears and becomes more and more obvious.Furthermore, the temperature of the second exothermic peak shifts to high temperature region. It indicates that the catalytic activity of Cu/Co/Fe-MOs in thermal decomposition of AP depends on their calcination temperature. Samples calcined at lower temperature show higher catalytic activity than those calcined at higher temperature.

    Fig.4 DTA curves for thermal decomposition of AP catalyzed by Cu2Co8Fe5-MOs with different calcination temperatures

    As shown in Fig.5, the decomposition temperature of AP decreases from 352 to 316 ℃when the catalyst amount is increased from 1wt% to 10wt%. It is clear that the catalytic activity of Cu/Co/Fe-MOs depends on the percentage of Cu/Co/Fe-MOs catalysts in AP. Higher amount of Cu/Co/Fe-MOs favors the further decrease of the thermal decomposition temperature of AP. These results are the same as what we obtained before[13-14]but different from those obtained by Liu et al.[10]who reported the opposite results. The reason leading to this difference is the different catalytic mechanism for the two catalysts. Liu′ s catalyst promotes the transfer of electrons, which makes the activation energy of thermal decomposition of AP reduced, so the decomposition temperature of AP decreases and the decomposition rate of AP accelerates. When the content of the catalyst exceeds certain value, the positive holes and electrons are partially annihilated, so the catalytic activity decreases. While for our catalysts, the improvement of thermal decomposition of AP is achieved via the superoxide ion (O2-) on the surface of the catalysts.The higher amount of the catalyst, the more O2-on the surface, thus the higher catalytic activity.

    Fig.5 Relationship between decomposition temperature of AP and Cu2Co8Fe5-MOs catalyst amount

    2.5 Catalytic mechanism

    TG-MS results are listed in Table 2. The results show that the products of thermal decomposition of pure AP are H2O, NH3, O2, N2O, NO, NO2, HCl, and a small amount of Cl2, NOCl, ClO, ClO2and ClO3(which are the intermediate products). In the presence of Cu/Co/Fe-MOs, the products are almost the same as those of pure AP. However, the intensity of N2O, NO,NO2ions are much higher than pure AP, which indicates that the NH3produced by the decomposition of AP is more completely oxidized. These results are similar to the previous results obtained by Yu[16].According to our experimental results and literature data[16-19], the catalytic mechanism of Cu/Co/Fe-MOs is suggested. The schematic presentation of catalytic thermal decomposition of AP is shown in Fig.6. The thermal decomposition of AP is possibly preceded by the following main reactions:

    Table 2 Assignment and intensity maxima of the mass spectroscopic ions during the thermal decomposition of AP

    Fig.6 Schematic presentation of catalytic decomposition process of AP by Cu/Co/Fe-Mos

    Note: 1. (a): adsorbed; 2. ClOxrefers to ClO-, ClO2-, ClO3-and ClO4-. The relative amount of the four species is uncertain in the present study; 3. NOxrefers to NO, NO2and N2O. The relative amount of the three species can not be defined clearly in this study.

    The mechanism of catalytic action is based on the presence of superoxide ion (O2-) on the surface of Cu/Co/Fe-MOs. During the thermal decomposition of AP, the O2-ions, which are formed from the oxygen adsorbed on the surface of Cu/Co/Fe-MOs, are proton traps, and they can simplify thermal decomposition of AP.

    3 Conclusions

    In summary, Cu/Co/Fe-MOs as new catalysts for thermal decomposition of AP were prepared by calcination of Cu/Co/Fe-LDHs precursors. The Cu/Co/Fe-MOs catalysts exhibit CuFe2O4and CoFe2O4phase with high specific surface areas and they have homogenous particles with particle size around 25 nm.Cu/Co/Fe-MOs catalysts show excellent catalytic performance on thermal decomposition of AP. The decomposition temperature of AP is lowered by 139℃with 4wt% of 400 ℃calcined Cu/Co/Fe-MOs. The improvement in thermal decomposition of AP is achieved via the superoxide ion (O2-) on the surface of Cu/Co/Fe-MOs.

    [1] Kapoor I P S, Srivastava P, Singh G. Propell. Explos.Pyrotech., 2009,34(4):351-356

    [2] YU Zong-Xue(余宗學(xué)), LU Lu-De(陸路德), YANG Xu-Jie(楊 緒 杰), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2010,26(12):2155-2159

    [3] Li L P, Sun X F, Qiu X Q, et al. Inorg. Chem., 2008,47(19):8839-8846

    [4] Zhang L L, Zhang W G, Zhong H, et al. Mater. Chem. Phys.,2011,125(3):322-325

    [5] Ebrahim A G, Behrouz S, Ali K, et al. Powder Technol.,2012,217:330-339

    [6] Said A A,Al-Qasmi R.Thermochim.Acta,1996,275(1):83-91

    [7] Singh G, Kapoor I P S, Dubey S. Propell. Explos. Pyrotech.,2009,34(1):72-77

    [8] Srivastava P, Kapoor I P S, Singh G. J. Alloys Compd.,2009,485(1-2):88-92

    [9] Li W, Cheng H. Solid State Sci., 2007,9(8):750-755

    [10]Liu T, Wang L S, Yang P, et al. Mater. Lett., 2008,62(24):4056-4058

    [11]Hansen H C B, Koch C B. Appl. Clay Sci., 1995,10(1-2):5-19

    [12]Cavani F, Trifiro F, Vaccari A. Catal. Today, 1991,11(2):173-301

    [13]Liu H B, Jiao Q Z, Zhao Y, et al. J. Alloys Compd., 2010,496(1-2):317-323

    [14]Liu H B, Jiao Q Z, Zhao Y, et al. Mater. Lett., 2010,64(15):1698-1700

    [15]Boldyev V V. Thermochim. Acta, 2006,443(1):1-36

    [16]Yu Z X, Sun Y, Wei W, et al. J. Therm. Anal. Calorim.,2009,97(3):903-909

    [17]Zhao F Q, Chen P, Li S W. Thermochim. Acta, 2004,416(1-2):75-78

    [18]Chen L J, Li L P, Li G S. J. Alloys Compd., 2008,464(1-2):532-536

    [19]YU Zong-Xue(余宗學(xué)), JIANG Xiao-Hong(江曉紅), LU Lu-De(陸 路 德), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2009,25(10):1747-1752

    猜你喜歡
    北京理工大學(xué)珠海化工
    北京理工大學(xué)機(jī)械與車輛學(xué)院簡(jiǎn)介
    《化工管理》征稿簡(jiǎn)則
    化工管理(2022年30期)2022-11-15 05:05:10
    《化工管理》征稿簡(jiǎn)則
    化工管理(2022年15期)2022-11-15 04:12:20
    一起化工安全事故的警示
    北京理工大學(xué)通信與網(wǎng)絡(luò)實(shí)驗(yàn)室
    珠海開放大學(xué)
    這條魚今日在珠海掀起熱浪!7.7億詮釋珠海水產(chǎn)業(yè)發(fā)展新態(tài)勢(shì)
    珠海之旅
    風(fēng)口浪尖上的珠海銀隆
    能源(2017年8期)2017-10-18 00:47:51
    Design of Two-wheeled Mobile Control Robot with Holographic Projection
    大又大粗又爽又黄少妇毛片口| 国产午夜福利久久久久久| 国产免费一级a男人的天堂| 国产一区二区在线观看日韩| 午夜亚洲福利在线播放| 99热6这里只有精品| 啦啦啦观看免费观看视频高清| 网址你懂的国产日韩在线| 男人舔奶头视频| 国产亚洲91精品色在线| 男人的好看免费观看在线视频| 99热这里只有精品一区| 国产精品不卡视频一区二区| 人人妻,人人澡人人爽秒播| 亚洲18禁久久av| 嫩草影院入口| 老师上课跳d突然被开到最大视频| 日韩精品中文字幕看吧| 日韩欧美精品v在线| 精品久久国产蜜桃| 亚洲人与动物交配视频| 亚洲午夜理论影院| 欧美日本亚洲视频在线播放| 在线观看美女被高潮喷水网站| 在线免费观看不下载黄p国产 | 国产精品福利在线免费观看| 超碰av人人做人人爽久久| 很黄的视频免费| a级一级毛片免费在线观看| 国产精品一区二区性色av| 欧美日韩精品成人综合77777| 偷拍熟女少妇极品色| 18禁黄网站禁片午夜丰满| 成人综合一区亚洲| 亚洲 国产 在线| 少妇的逼好多水| 亚洲最大成人手机在线| 精品久久久久久久人妻蜜臀av| 成人特级黄色片久久久久久久| 亚洲精品亚洲一区二区| 成人av一区二区三区在线看| 91久久精品电影网| 亚洲精品在线观看二区| 一区福利在线观看| 一进一出好大好爽视频| 午夜福利欧美成人| 国产精品久久久久久精品电影| 深爱激情五月婷婷| 欧美成人a在线观看| xxxwww97欧美| 亚洲av成人精品一区久久| 欧美国产日韩亚洲一区| a级一级毛片免费在线观看| 九九在线视频观看精品| 人妻制服诱惑在线中文字幕| 国内精品一区二区在线观看| 国产成人一区二区在线| 国产乱人伦免费视频| 小说图片视频综合网站| 在线天堂最新版资源| 在线天堂最新版资源| 成人国产一区最新在线观看| 日本与韩国留学比较| 欧美日韩精品成人综合77777| 在线免费观看的www视频| 日本精品一区二区三区蜜桃| 国产精品日韩av在线免费观看| 听说在线观看完整版免费高清| 国产日本99.免费观看| 日日摸夜夜添夜夜添av毛片 | 午夜爱爱视频在线播放| 亚洲人成伊人成综合网2020| 精品午夜福利视频在线观看一区| 亚洲欧美精品综合久久99| 色尼玛亚洲综合影院| 国内久久婷婷六月综合欲色啪| 欧美国产日韩亚洲一区| 成人美女网站在线观看视频| 日韩欧美在线乱码| 国产精品一区二区三区四区免费观看 | 日本欧美国产在线视频| 国产麻豆成人av免费视频| 久久久国产成人精品二区| 99热这里只有精品一区| 欧美一级a爱片免费观看看| 日日干狠狠操夜夜爽| 亚洲七黄色美女视频| 真人一进一出gif抽搐免费| 无人区码免费观看不卡| 亚洲久久久久久中文字幕| 天堂av国产一区二区熟女人妻| 色5月婷婷丁香| 99视频精品全部免费 在线| 此物有八面人人有两片| 精品国产三级普通话版| 88av欧美| 天堂动漫精品| 乱人视频在线观看| 欧美黑人巨大hd| 嫁个100分男人电影在线观看| 性色avwww在线观看| 中出人妻视频一区二区| 国产精品永久免费网站| 日韩欧美在线乱码| 久久香蕉精品热| 美女免费视频网站| 日韩欧美国产一区二区入口| 国产伦精品一区二区三区视频9| 国产91精品成人一区二区三区| 久久久久久久午夜电影| 91久久精品国产一区二区成人| 亚洲图色成人| 亚洲一区二区三区色噜噜| 国产欧美日韩精品亚洲av| 亚洲成人久久爱视频| 免费av观看视频| 搡老岳熟女国产| 亚洲国产精品成人综合色| 国产大屁股一区二区在线视频| 精品一区二区三区视频在线观看免费| 偷拍熟女少妇极品色| 欧美3d第一页| 午夜日韩欧美国产| 成人国产综合亚洲| 日本成人三级电影网站| 国产精品久久久久久亚洲av鲁大| 国产极品精品免费视频能看的| 自拍偷自拍亚洲精品老妇| 97人妻精品一区二区三区麻豆| 九九久久精品国产亚洲av麻豆| 少妇被粗大猛烈的视频| 床上黄色一级片| 亚洲性夜色夜夜综合| 日韩高清综合在线| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲av天美| 免费一级毛片在线播放高清视频| 成人高潮视频无遮挡免费网站| 精品不卡国产一区二区三区| 22中文网久久字幕| 18禁黄网站禁片免费观看直播| 国产精品一及| 69人妻影院| 无人区码免费观看不卡| 免费观看的影片在线观看| 校园人妻丝袜中文字幕| 性色avwww在线观看| 啦啦啦韩国在线观看视频| 亚洲 国产 在线| 国产一区二区在线av高清观看| 亚洲国产精品成人综合色| 中亚洲国语对白在线视频| av在线天堂中文字幕| 国模一区二区三区四区视频| 免费在线观看成人毛片| 亚洲欧美日韩高清在线视频| 波多野结衣巨乳人妻| 伦理电影大哥的女人| 免费观看在线日韩| 亚洲精品在线观看二区| 国产精品,欧美在线| 91在线精品国自产拍蜜月| 亚洲av第一区精品v没综合| 一区二区三区四区激情视频 | 日韩精品青青久久久久久| 精华霜和精华液先用哪个| 免费高清视频大片| 俺也久久电影网| 免费观看精品视频网站| 一级a爱片免费观看的视频| 一区二区三区免费毛片| 久久久久久久久中文| 午夜a级毛片| 给我免费播放毛片高清在线观看| 日韩,欧美,国产一区二区三区 | 欧美日本视频| 99热只有精品国产| 又爽又黄无遮挡网站| av福利片在线观看| 噜噜噜噜噜久久久久久91| 蜜桃久久精品国产亚洲av| 成年女人看的毛片在线观看| 精品免费久久久久久久清纯| 亚洲在线自拍视频| 99在线视频只有这里精品首页| 国产精品99久久久久久久久| 十八禁网站免费在线| 男人狂女人下面高潮的视频| 亚洲一区二区三区色噜噜| 亚洲av一区综合| 国产综合懂色| 人人妻人人澡欧美一区二区| 毛片女人毛片| 精品福利观看| 欧美性感艳星| 直男gayav资源| 成人国产一区最新在线观看| 男人的好看免费观看在线视频| 小蜜桃在线观看免费完整版高清| 黄色女人牲交| 中出人妻视频一区二区| 久久热精品热| 日韩av在线大香蕉| 欧美日本视频| 精品久久久久久久久av| 免费高清视频大片| 免费黄网站久久成人精品| 麻豆久久精品国产亚洲av| 国国产精品蜜臀av免费| 日本一本二区三区精品| 少妇丰满av| 真人一进一出gif抽搐免费| 伊人久久精品亚洲午夜| 国产精品日韩av在线免费观看| 亚洲久久久久久中文字幕| 久久热精品热| 国产高清有码在线观看视频| 天堂网av新在线| av国产免费在线观看| 亚洲国产色片| 欧美日韩综合久久久久久 | 国产在线精品亚洲第一网站| 少妇被粗大猛烈的视频| 色视频www国产| 全区人妻精品视频| 免费人成视频x8x8入口观看| 成人永久免费在线观看视频| 久久久久久大精品| 淫妇啪啪啪对白视频| av国产免费在线观看| 成人性生交大片免费视频hd| 一区二区三区激情视频| 中亚洲国语对白在线视频| 国产亚洲精品av在线| 香蕉av资源在线| 在线看三级毛片| 日韩中文字幕欧美一区二区| 男女视频在线观看网站免费| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲91精品色在线| 又爽又黄a免费视频| av在线观看视频网站免费| 给我免费播放毛片高清在线观看| 三级男女做爰猛烈吃奶摸视频| 露出奶头的视频| 久久国产精品人妻蜜桃| 国产高清激情床上av| 51国产日韩欧美| 欧美最新免费一区二区三区| or卡值多少钱| 在线播放国产精品三级| 国产午夜福利久久久久久| 免费电影在线观看免费观看| 国产精品嫩草影院av在线观看 | 熟女电影av网| 亚洲内射少妇av| 女人十人毛片免费观看3o分钟| 嫁个100分男人电影在线观看| 国产高清三级在线| 精品一区二区三区视频在线观看免费| 99久久中文字幕三级久久日本| 91久久精品国产一区二区成人| 日本一二三区视频观看| 免费人成在线观看视频色| 国产精品亚洲一级av第二区| 亚洲乱码一区二区免费版| 舔av片在线| 日韩 亚洲 欧美在线| 亚洲中文日韩欧美视频| 一区二区三区激情视频| 深夜精品福利| 久久午夜福利片| 日本在线视频免费播放| 三级男女做爰猛烈吃奶摸视频| 在线观看一区二区三区| 女人十人毛片免费观看3o分钟| 久久精品国产亚洲av天美| 日韩精品青青久久久久久| 给我免费播放毛片高清在线观看| 国产熟女欧美一区二区| 亚洲aⅴ乱码一区二区在线播放| 小蜜桃在线观看免费完整版高清| 有码 亚洲区| 国产综合懂色| 国产精品一及| 亚洲不卡免费看| 国产精品福利在线免费观看| xxxwww97欧美| 亚洲真实伦在线观看| 一本一本综合久久| 在线天堂最新版资源| 69av精品久久久久久| 在线国产一区二区在线| 丰满乱子伦码专区| 成人美女网站在线观看视频| 88av欧美| 精品一区二区三区av网在线观看| 亚洲av免费在线观看| 欧美另类亚洲清纯唯美| 一a级毛片在线观看| 国内精品久久久久久久电影| 神马国产精品三级电影在线观看| 国产麻豆成人av免费视频| 夜夜看夜夜爽夜夜摸| 欧美黑人巨大hd| 国产探花极品一区二区| 日本爱情动作片www.在线观看 | 国产av在哪里看| 国产精品嫩草影院av在线观看 | 亚洲欧美日韩卡通动漫| 老司机深夜福利视频在线观看| 成人特级av手机在线观看| 国产色婷婷99| 天堂动漫精品| 免费观看精品视频网站| 亚洲内射少妇av| 成人美女网站在线观看视频| 波多野结衣高清作品| 日日摸夜夜添夜夜添av毛片 | 国产黄色小视频在线观看| 在线观看一区二区三区| 在线免费十八禁| 国产毛片a区久久久久| 国产一区二区激情短视频| 国产精品久久电影中文字幕| 久久精品人妻少妇| 色精品久久人妻99蜜桃| 联通29元200g的流量卡| 欧美一区二区精品小视频在线| 精品免费久久久久久久清纯| 精品久久久久久久人妻蜜臀av| 美女大奶头视频| 俺也久久电影网| 真人做人爱边吃奶动态| 久久婷婷人人爽人人干人人爱| 夜夜夜夜夜久久久久| 久久香蕉精品热| 极品教师在线免费播放| 乱码一卡2卡4卡精品| 欧美又色又爽又黄视频| 99国产精品一区二区蜜桃av| 一卡2卡三卡四卡精品乱码亚洲| 亚洲欧美日韩东京热| 久久精品夜夜夜夜夜久久蜜豆| 97热精品久久久久久| 久久久久久久久久久丰满 | 男女下面进入的视频免费午夜| 一级毛片久久久久久久久女| 又爽又黄a免费视频| 99久久久亚洲精品蜜臀av| 亚洲精品国产成人久久av| 久久久国产成人精品二区| 国产精品1区2区在线观看.| 少妇的逼好多水| 中文在线观看免费www的网站| 日韩精品有码人妻一区| 人人妻,人人澡人人爽秒播| 亚洲va在线va天堂va国产| 国产毛片a区久久久久| 最近中文字幕高清免费大全6 | 欧美性猛交黑人性爽| 大又大粗又爽又黄少妇毛片口| 亚洲一级一片aⅴ在线观看| 国产又黄又爽又无遮挡在线| 国产男人的电影天堂91| 国产欧美日韩精品一区二区| 日韩欧美三级三区| 啦啦啦韩国在线观看视频| 九色成人免费人妻av| 99热精品在线国产| 亚洲无线在线观看| 亚洲午夜理论影院| 乱人视频在线观看| 天天一区二区日本电影三级| 免费人成视频x8x8入口观看| 女同久久另类99精品国产91| 精品欧美国产一区二区三| 色哟哟哟哟哟哟| 国产精品嫩草影院av在线观看 | 一边摸一边抽搐一进一小说| 日本-黄色视频高清免费观看| 成年人黄色毛片网站| 夜夜看夜夜爽夜夜摸| 国产亚洲av嫩草精品影院| 精品一区二区三区视频在线观看免费| 国产真实乱freesex| 在线观看av片永久免费下载| 51国产日韩欧美| 日韩人妻高清精品专区| 99热这里只有是精品在线观看| 村上凉子中文字幕在线| 欧美极品一区二区三区四区| 久久精品久久久久久噜噜老黄 | 国产国拍精品亚洲av在线观看| 成人综合一区亚洲| 露出奶头的视频| 搡老熟女国产l中国老女人| 少妇裸体淫交视频免费看高清| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲黑人精品在线| 久久香蕉精品热| 亚洲最大成人手机在线| 国内少妇人妻偷人精品xxx网站| 午夜激情欧美在线| 亚洲国产精品sss在线观看| 人妻久久中文字幕网| 午夜a级毛片| 精品久久久久久久久久久久久| 国产蜜桃级精品一区二区三区| 国产 一区 欧美 日韩| 国产高清视频在线观看网站| 成人一区二区视频在线观看| or卡值多少钱| 久久久久国产精品人妻aⅴ院| 啪啪无遮挡十八禁网站| 国产精品久久久久久久电影| 国产人妻一区二区三区在| 午夜福利高清视频| 亚洲一区高清亚洲精品| 精品国产三级普通话版| 国产成人a区在线观看| 国产黄a三级三级三级人| 国产精品人妻久久久久久| 少妇裸体淫交视频免费看高清| 欧美激情久久久久久爽电影| 亚洲精品国产成人久久av| 伦精品一区二区三区| 我要搜黄色片| 三级男女做爰猛烈吃奶摸视频| 色播亚洲综合网| 不卡视频在线观看欧美| 久久精品夜夜夜夜夜久久蜜豆| 精品一区二区免费观看| 国内精品宾馆在线| 日本黄色视频三级网站网址| 午夜福利在线观看吧| 久久久久久久亚洲中文字幕| 此物有八面人人有两片| 在线观看午夜福利视频| 精华霜和精华液先用哪个| 性插视频无遮挡在线免费观看| 91狼人影院| 亚洲av日韩精品久久久久久密| 亚洲欧美日韩高清在线视频| 最近视频中文字幕2019在线8| 日韩国内少妇激情av| 性插视频无遮挡在线免费观看| 动漫黄色视频在线观看| 国产成人av教育| 免费看a级黄色片| 欧美3d第一页| 亚洲国产精品sss在线观看| 简卡轻食公司| 91久久精品电影网| 久久久久久久久久黄片| 麻豆国产av国片精品| 校园人妻丝袜中文字幕| 亚洲,欧美,日韩| 日本免费a在线| 久久久久免费精品人妻一区二区| 18禁在线播放成人免费| 国产免费男女视频| 超碰av人人做人人爽久久| 久久精品国产亚洲av涩爱 | 欧美日韩瑟瑟在线播放| 丰满乱子伦码专区| 久久久久久久久中文| 舔av片在线| 欧美+日韩+精品| 一夜夜www| 两性午夜刺激爽爽歪歪视频在线观看| 狠狠狠狠99中文字幕| 亚洲av五月六月丁香网| 久久亚洲真实| 黄色日韩在线| 夜夜爽天天搞| 日本成人三级电影网站| 99riav亚洲国产免费| 亚洲第一区二区三区不卡| 亚洲国产精品成人综合色| 国产成人一区二区在线| 91在线精品国自产拍蜜月| 亚洲色图av天堂| 国产精品国产三级国产av玫瑰| 亚洲不卡免费看| 丰满的人妻完整版| 国产又黄又爽又无遮挡在线| 国产精品人妻久久久影院| 成人美女网站在线观看视频| 久久中文看片网| 国内精品久久久久精免费| 十八禁网站免费在线| 精品久久久噜噜| 国产黄a三级三级三级人| a级一级毛片免费在线观看| 听说在线观看完整版免费高清| 欧美日韩国产亚洲二区| 一区二区三区四区激情视频 | 一区二区三区四区激情视频 | 色视频www国产| 国产午夜精品久久久久久一区二区三区 | 日韩人妻高清精品专区| 亚洲国产色片| 亚洲精品在线观看二区| 成人二区视频| 91av网一区二区| 欧美日韩亚洲国产一区二区在线观看| 婷婷六月久久综合丁香| 久久人妻av系列| 91麻豆精品激情在线观看国产| 国产大屁股一区二区在线视频| 色综合站精品国产| 真人做人爱边吃奶动态| 亚洲精品国产成人久久av| 亚洲国产日韩欧美精品在线观看| 我要搜黄色片| 国语自产精品视频在线第100页| 精品久久久久久久末码| 亚洲最大成人中文| 欧美成人a在线观看| 黄色配什么色好看| 男女下面进入的视频免费午夜| 中文在线观看免费www的网站| 亚洲自偷自拍三级| 黄色欧美视频在线观看| 91午夜精品亚洲一区二区三区 | 国产午夜精品论理片| 国产精品女同一区二区软件 | 国产精品爽爽va在线观看网站| 国产高清三级在线| 国产亚洲91精品色在线| 日日摸夜夜添夜夜添小说| 丰满乱子伦码专区| 91在线观看av| а√天堂www在线а√下载| 99久久九九国产精品国产免费| 亚洲黑人精品在线| 女同久久另类99精品国产91| 99久久精品热视频| 午夜精品在线福利| 在线播放无遮挡| 男女之事视频高清在线观看| 久久久久国产精品人妻aⅴ院| 国产黄色小视频在线观看| 成人综合一区亚洲| 国产欧美日韩精品亚洲av| 真人做人爱边吃奶动态| avwww免费| 淫妇啪啪啪对白视频| 噜噜噜噜噜久久久久久91| 国产欧美日韩精品一区二区| 深爱激情五月婷婷| 看十八女毛片水多多多| 一本久久中文字幕| 身体一侧抽搐| 非洲黑人性xxxx精品又粗又长| 亚洲欧美日韩无卡精品| 亚洲久久久久久中文字幕| 欧美bdsm另类| 淫妇啪啪啪对白视频| 黄色视频,在线免费观看| 亚洲av二区三区四区| 亚洲av免费高清在线观看| 身体一侧抽搐| xxxwww97欧美| 国产精品无大码| 精品久久久久久久久久久久久| 国产成人福利小说| 国产伦在线观看视频一区| 久久天躁狠狠躁夜夜2o2o| 身体一侧抽搐| 国产成人aa在线观看| 亚洲精品一区av在线观看| 韩国av在线不卡| 少妇人妻一区二区三区视频| 亚洲精品乱码久久久v下载方式| 我的女老师完整版在线观看| 中出人妻视频一区二区| 久久精品国产清高在天天线| 国产在视频线在精品| avwww免费| 九色国产91popny在线| 精品久久久久久久久av| 国产伦一二天堂av在线观看| 两个人视频免费观看高清| 波野结衣二区三区在线| 男人的好看免费观看在线视频| 一进一出抽搐gif免费好疼| 欧美色欧美亚洲另类二区| 亚洲真实伦在线观看| 亚洲精品乱码久久久v下载方式| 久久精品国产清高在天天线| 日日夜夜操网爽| 超碰av人人做人人爽久久| 国产精品1区2区在线观看.| 久久久色成人| 久久人人精品亚洲av| 级片在线观看| 听说在线观看完整版免费高清| 国产高清不卡午夜福利| 亚洲人成伊人成综合网2020| avwww免费| 成人一区二区视频在线观看| 欧美成人性av电影在线观看| 一区二区三区激情视频| 国产精品美女特级片免费视频播放器| 久久精品国产自在天天线| 国内精品久久久久精免费| 亚洲av一区综合| 日韩中文字幕欧美一区二区| 国产精品美女特级片免费视频播放器| 亚洲国产精品sss在线观看| 美女高潮的动态| 久久精品国产亚洲av香蕉五月| 国内精品久久久久精免费|