• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation and Characterization of Ni0.5Zn0.5Fe2O4 Nanomaterials via Sol-GelTechnique

    2013-08-16 14:33:44ZHUXiangrongXUZhongpingZHUZhigangCHENCheng
    關(guān)鍵詞:溶膠納米材料紅外

    ZHU Xiang-rong,XU Zhong-ping,ZHU Zhi-gang,CHEN Cheng

    Preparation and Characterization of Ni0.5Zn0.5Fe2O4 Nanomaterials via Sol-GelTechnique

    ZHU Xiang-rong,XU Zhong-ping,ZHU Zhi-gang,CHEN Cheng

    (Schoolof Urban Developmentand EnvironmentalEngineering,ShanghaiSecond Polytechnic University, Shanghai201209,P.R.China)

    Ni0.5Zn0.5Fe2O4powderis synthesized by sol-geltechnique and sintered at600°C—950°C.Structural,infrared and magnetic properties of materials,as wellas microwave absorbing testwere investigated.Both X-ray diffraction(XRD) spectra and atomic force microscopy(AFM)topography image demonstrate thatthe powdersize is on nanometer scale level. Infrared absorbing band over 500 cm-1—600 cm-1are clearly observed forthe powder.High sintering temperature leads to larger grain size,as wellas lower coercivity field and saturating filed appearing in the sample for the magnetic properties. The microwave reflection attenuation could reach to 1.8 dBm over the frequency range from 6 GHz to 10 GHz forthe samples with an average thickness of0.33 mm.

    Ni0.5Zn0.5Fe2O4;nanomaterials;characteristics;sol-geltechnique

    0 Introduction

    The spinel Ni-Zn ferrites,NixZn1-xFe2O4,have been widely studied forseveraldecades due to theirextensive application prospects on microwave and electronics devices,or environmentalengineering field[1-9]. Recently,many scientists are devoting to exploring the potentiality on stealth or anti-microwave radiation of Ni0.5Zn0.5Fe2O4,due to its large molecular magnetic momentand large magnetic losses[7].The properties of Ni0.5Zn0.5Fe2O4,including structure and magnetism, should be wellcontrolled to obtain excellentmicrowave absorbing properties,such as widerband gap and higher working frequencies nearcentimeterwave.Meanwhile, nano-Ni0.5Zn0.5Fe2O4powder is increasingly become a hot topic because its nanosized effect would help to adjustorimprove the magnetic loss and microwave absorbing properties[2,7,10-11].

    Nanosized Ni0.5Zn0.5Fe2O4powder could be synthesized by many techniques such as combustion synthesis,hydrothermal method,sol-gel technique and oxalate precipitation method[2,4-5,8-9].Among above methods,sintering is a key step,and the sintering temperature is normally chosen above 1 000°C.In this paper,we adopt lower sintering temperature beneath 1 000°C to synthesize nanosized Ni0.5Zn0.5Fe2O4materials by means of sol-geltechnique.The characteristics ofthe materials including structural,infrared,magnetic and microwave absorbing properties were investigated.

    1 Experimental

    To synthesize Ni0.5Zn0.5Fe2O4samples by sol-gel technique,analytical grade nickel nitrate hexahydrate ((Ni(NO3)2·6H2O,w(mass fraction)>98.5%),ferric nitrate nonahydrate((Fe(NO3)3·9H2O,w>98.5 %),zinc nitrate hexahydrate((Zn(NO3)2·6H2O,w>99%)were chosen as the sources of Ni,Zn and Fe. They were accurately weighed in such way that their molar ratio could meet the nominal composition of Ni0.5Zn0.5Fe2O4.These materia chemicals were dissolved in deionized water in one beaker to form uniform solution by ultrasonic vibration and then magnetic force stirring for 1 hour.The beaker with the nitrate solution was placed in 80°C waterbath surroundings.During the water bath,some reagents including acylamide,N,N′-methylenebisacrylamide and ammonium persulfate were added into the solution.Then the finalprecursorsolution was obtained,which was placed in one vacuum drying box for 12 hours’baking at 90°C.After baking,the solution became drying gel.The gelwas sintered at600°C,800°C and 950°C for 90 minutes,respectively.The samples were slowly cooled down to room temperature(RT)aftersintering.Finally, the samples were milled into powders for characterization.

    Powder X-ray diffraction(XRD)technology was used to investigate the crystallization of the samples.The surface morphology of the samples was observed by Shimadzu SPM-9600 atomic force microscope(AFM).The infrared properties were measured by Burkers IFS 66v/S Fourier transform infrared (FTIR)spectrometer.One vibrating sample magnetometer(VSM)was used to measure the magnetic properties of the samples at room temperature.Finally,reflecting method was adopted to measure the microwave absorbing properties ofthe samples.

    2 Results and discussion

    Figure 1 shows the XRD spectra of Ni0.5Zn0.5Fe2O4samples underdifferentsintering temperatures.According to Figure 1,the samples present typical polycrystalline spinel structural characterization.The high intensity of(311)peak reveals the crystallinity of Ni0.5Zn0.5Fe2O4.The additionalβpeaks imply there are few secondary phases in these samples, which mightbe Fe2O3.On the one hand,the strength of (311)peak increases with sintering temperature.On the other hand,the strength ratio between strongest(311) peak andβpeak is lowest for the sample which sintered at 600°C,and highest for the sample sintered at 950°C.Thus,itcould be concluded thatthe sample sintered at950°C presents bestcrystallinity.The crystallite or grain size of the samples for the most intense, (311)plane was determined from the X-ray data using Debye–Scherrerformula[5]:

    whereλis the wavelength of X-ray;βthe full width athalfmaximum(FWHM);θis the Bragg’s diffraction angle of(311)peak.

    Fig.1 The XRD spectra ofthe Ni0.5Zn0.5Fe2O4samples

    Accordingly,the grain size of all the samples could be estimated beneath 100 nm.Thus allthe samples are nanosized.However,the full width at halfmaximum is largestfor sample sintered at950°C,implying thatthe grain size ofthe samples would increasing with sintering temperature.This result is similar to that reported by Coasta et al.[11],where the sintering temperate vary from 1 100°C to 1 400°C.Furthermore,the 2θposition ofthe samples is very similar,revealing thatthe samples presentclose lattice constants although they were sintered atdifferenttemperatures.

    AFM is a relative simple instrument to observe the morphologies ofmaterials.Comparing to the scanning electron microscopy(SEM)or transmission electron microscopy(TEM),while observing ferromagnetic samples,AFMis more suitable since the samples might contaminate the lens of SEM or TEM.To prepare the sample forAFM,few Ni0.5Zn0.5Fe2O4powdersamples were uniformly dispersed into ethanolby ultrasonic vibration to form suspension liquid.Then the liquid was dropped onto one mica slice.When mostof the ethanol on the mica slice was vaporized,the morphology ofthe powders could be observed.Figure 2 shows the AFM topography image of the sample sintered at 950°C. Nanoparticles with less than 100 nm are clearly visualized on AFMimage.Forthe samples sintered atother temperatures,similar morphologies were also observed by AFM.

    Fig.2 The AFMtopography image of the sample sintered at950°C

    The infrared spectra of the samples are displayed in Figure 3.The measuring range ofinfrared wave was below 600 cm-1.KBr crystals were chosen as the window materials for FTIR measurements.In the FTIR spectra of spinelmetallic oxides,there are usually two main IR absorbing bands.One is defined asν1band, in the range 500 cm-1—600 cm-1,corresponding to intrinsic stretching vibrationsofthe metalatthe tetrahedralsite(Td),Mtetra?O.The otherisν2band,usually observed in the range 450 cm-1—385 cm-1,assigned to octahedral-metalstretching(Oh),Mocta?O[12].As shown in Figure 3,theν1band is obvious in the samples.Whereas theν2band is obscure.These results mean thatstretching vibrations ofthe metalatthe tetrahedralsite is more active than atoctahedralsite.Moreover,theν1is different among the samples sintered at different temperature.The sample sintered at 950°C presents highestν1,566 cm-1.Whereas the sample sintered at600°C presents lowestν1,547 cm-1.The shiftreveals the differences ofproperties ofmetal-oxide bond among the samples.In addition,below 230 cm-1, the transmission rates decline steeply,which is related to the IR absorbing properties of the window materials KBr.

    Fig.3 The FTIR spectra ofthe Ni0.5Zn0.5Fe2O4samples

    Figure 4 exhibits the static magnetization hysteresis loops of the samples.Typical soft magnetism is shown in Figure 4.It is well known that the magnetic properties of Ni-Zn ferrites are first determinedby the distribution of Ni,Zn and Fe in the spinel cell, which is correlated with the superexchange(A–O–B) interaction[12-13].The structuralcharacteristics such as the crystallite size also play importantroles in the magnetic behavior of Ni-Zn ferrites.On the one hand,the sample sintered at600°C is relatively difficultly magnetized.The field forsaturating magnetization amounts to above 8 kOe.However,for the samples sintered at 800°C and 900°C,the saturating field is much lower, just below 4 kOe.On the other hand,for the samples sintered at600°C,800°C and 950°C,the corresponding coercivity field is 415 Oe,393 Oe and 346 Oe,respectively.Namely,the coercivity field increases with sintering temperature decreased.Usually,the coercivity field is related to the grain size of materials.Larger grainstend to constructa large numberofdomain walls. The magnetization caused by domain wall movement requires less energy than that by domain rotation.As the number of domain walls increases with increasing grain size,the contribution ofwallmovementto magnetization is greater than thatof domain rotation.Therefore,samples with larger grains are expected to have a low coercivity,H[11]c.As indicated in XRD spectra(Figure 1),the grain size increases with the sintering temperature.Thus the sample sintered at 600°C presents highestcoercivity field and saturating field.

    Fig.4 Static magnetization loops of the samples Ni0.5Zn0.5Fe2O4atroom temperature

    The samples sintered at 950°C were chosen to investigate the microwave absorbing properties.For measuring the microwave absorption,the samples were paved on the surface ofone 10 cm×10 cm square aluminum plate.One Agilentsignalgeneratorwas used to emitout high frequency signal.Via a couple of conic antennas,one beam of microwave signal with given high frequency and initial 1 mW(0 dBm)power was transmitted to the surface of the samples,reflected and absorbed by the samples on the aluminum plate.The reflected signal was received by one Agilent spectrum analyzer.The microwave absorbing ability was evaluated by calculating the power attenuation between the incidence signaland reflection signal.Figure 5 showsthe microwave reflection attenuation spectra ofthe samples.The microwave frequency,ranging from 6.0 GHz to 10 GHz,is related to the bandwidth of the antennas. According to Figure 5,the maximum powerattenuation reaches to 1.8 dBm,occurring near 8.0 GHz.

    Fig.5 The microwave reflection attenuation spectra ofthe samples sintered at950°C

    The microwave absorbing abilities among the Ni-Zn ferrites are quite different,according to the reports in differentliteratures.Usually the microwave properties are dependent on both the structural properties of the materials such ascrystallite size and the measuring condition,including the thickness and distributing area of the samples.Evidently the microwave absorption would be enhanced by raising the thickness of the samples. However,absolutely raising the thickness would result in high application cost.For further investigating the capability ofmicrowave absorbing foroursamples,the average thickness of the paved samples was calculated according to their weight and distributing area on the aluminum plate.We assume the density of the samples was theoreticalvalue of Ni-Zn ferrites,8.35 g/cm3.The average calculated thickness is 0.33 mm,which means the layer of the sample is much thinner.These results imply thatthe samples have reasonable microwave absorbing properties forcertain application.

    3 Conclusions

    The nanosized Ni0.5Zn0.5Fe2O4powder was synthesized by sol-gel technique,which presents typical spinel structural and soft magnetism at room temperature.Obvious infrared absorbing band over 500 cm-1—600 cm-1is observed forallthe samples. Highersintering temperature led to largergrain size and lower saturating field and coercivity field.For the samples with an averaged thickness of 0.33 mm paved on a 10 cm×10 cm square aluminum plate,the maximum microwave reflection attenuation reaches to 1.8 dBm overthe frequency range from 6 GHz to 10 GHz.

    [1]RAHIMI M,KAMELI P,RANJBAR M,et al.The effect ofzinc doping on the structuraland magnetic properties of Ni1-xZnxFe2O4[J].J.Mater.Sci.,2013,48:2969-2976.

    [2]WANG HW,KUNG S C.Crystallization ofnanosized Ni-Zn ferrite powders prepared by hydrothermal method[J]. J.Mag.Mag.Mater.,2004,270:230-236.

    [3]AKHTAR M N,YAHYA N,KOZIOL K,et al.Synthesis and characterizations ofNi0.8Zn0.2Fe2O4-MWCNTscomposites for their application in sea bed logging[J].Ceram. Int.,2011,37:3237–3245.

    [4]ZAHIS,HASHIMA M,DAUD A R.Synthesis,magnetic properties and microstructure of Ni-Zn ferrite by sol-gel technique[J].J.Mag.Mag.Mater.,2007,308:177-182.

    [5]SHINDE T J,GADKARIA B,VASAMBEKAR P N.DC resistivity of Ni-Zn ferrites prepared by oxalate precipitation method[J].Mater.Chem.Phys.,2008,111:87-91.

    [6]KULKARNI D C,PATIL S P,PURI V.Properties of NixZn(1-x)Fe2O4thick films atmicrowave frequencies[J]. Microelectronics Journal,2008,39:248-252.

    [7]ZHAO D L,LV Q,SHEN Z M.Fabrication and microwave absorbing properties of Ni-Zn spinel ferrites[J].J.Alloys Compd.,2009,480:634-638.

    [8]SREEJA V,VIJAVANAND S,DEKA S,et al.Magnetic and M¨ossbauer spectroscopic studies of Ni-Zn ferrite nanoparticles synthesized by a combustion method[J].Hyperfine Interact,2008,183:99-107.

    [9]TANGCHAROEN T,RUANGPHANIT A,KLYSUBUN W,etal.Characterization and enhanced photocatalytic performance ofnanocrystalline Ni-substituted Zn ferrites synthesized by DEA-assisted sol-gelauto-combustion method [J].J.Sol-GelSci.Technol.,2013,66:387-398.

    [10]TING T H,YU R P,JAU Y N.Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2—40 GHz[J].Mater.Chem.Phys.,2011,126: 364-368.

    [11]COASTA A C F M,TORTELLA E,MORELLIMR,etal. Synthesis,microstructure and magnetic properties of Ni-Zn ferrites[J].J.Magn.Magn.Mater.,2003,256:174-182.

    [12]SERTKOL M,K¨OSEOˇGLU Y,BAYKAL A,et al.Microwave synthesis and characterization of Zn-doped nickel ferrite nanoparticles[J].J.Alloys Compd.,2009, 486:325-329.

    [13]CHOI Y,CHO N I,KIM H C,et al.Magnetic properties of Ni-Zn ferrite powders formed by self-propagating high temperature synthesis reaction[J].J.Mater.Sci:Materials in Electronics,2000,11:25-30.

    溶膠-凝膠法制備Ni0.5Zn0.5Fe2O4納米材料特性的研究

    祝向榮,許中平,朱志剛,陳誠
    (上海第二工業(yè)大學(xué)城市建設(shè)與環(huán)境工程學(xué)院,上海201209)

    利用溶膠-凝聚法制備了Ni0.5Zn0.5Fe2O4;粉末材料,燒結(jié)溫度范圍600°C~950°C。對(duì)材料的結(jié)構(gòu)、紅外、磁學(xué)和微波吸收特性進(jìn)行了研究。材料的XRD圖譜和原子力顯微鏡形貌觀察表明,材料在納米尺度范圍之內(nèi)。在500 cm-1~600 cm-1波數(shù)范圍內(nèi),材料具有明顯的紅外吸收特性。材料的晶粒尺寸隨著燒結(jié)溫度的提高而增加,且較高溫度燒結(jié)的材料具有相對(duì)低的矯頑力和飽和磁場(chǎng)。利用反射衰減實(shí)驗(yàn)研究材料在6 GHz~10 GHz波段范圍的吸波特性,結(jié)果表明,0.33 mm厚度的樣品在常溫下的反射衰減達(dá)到1.8 dBm。

    Ni0.5Zn0.5Fe2O4;納米材料;特性;溶膠-凝聚法

    TB39

    A

    1001-4543(2013)04-290-06

    2013-05-07;

    2013-10-30

    祝向榮(1971–),男,江西人,副研究員,博士,主要研究方向?yàn)樾畔⒓碍h(huán)境友好功能材料,電子郵箱xrzhu@sspu.edu.cn。

    上?!皷|方學(xué)者”計(jì)劃項(xiàng)目、上海第二工業(yè)大學(xué)?;痦?xiàng)目(No.A30XK121101,No.A20XK11X020)資助

    猜你喜歡
    溶膠納米材料紅外
    武器中的納米材料
    學(xué)與玩(2022年8期)2022-10-31 02:41:56
    網(wǎng)紅外賣
    閃亮的中國紅外『芯』
    金橋(2021年4期)2021-05-21 08:19:20
    二維納米材料在腐蝕防護(hù)中的應(yīng)用研究進(jìn)展
    溶膠-凝膠法制備高性能ZrO2納濾膜
    TS系列紅外傳感器在嵌入式控制系統(tǒng)中的應(yīng)用
    電子制作(2019年7期)2019-04-25 13:17:14
    基于快速遞推模糊2-劃分熵圖割的紅外圖像分割
    MoS2納米材料的制備及其催化性能
    溶膠-凝膠微波加熱合成PbZr0.52Ti0.48O3前驅(qū)體
    抗輻照納米材料的研究進(jìn)展
    窝窝影院91人妻| 99精国产麻豆久久婷婷| 如日韩欧美国产精品一区二区三区| 成人三级做爰电影| 韩国av一区二区三区四区| 欧美日韩黄片免| 久久国产精品男人的天堂亚洲| 99在线人妻在线中文字幕| 1024视频免费在线观看| 亚洲第一欧美日韩一区二区三区| 岛国在线观看网站| 成人三级黄色视频| 99精国产麻豆久久婷婷| 亚洲免费av在线视频| 一级毛片精品| 亚洲一区二区三区色噜噜 | 精品一品国产午夜福利视频| 一级片免费观看大全| 99久久综合精品五月天人人| 我的亚洲天堂| 成人特级黄色片久久久久久久| 日韩欧美一区视频在线观看| 麻豆av在线久日| 欧美中文综合在线视频| 麻豆成人av在线观看| 亚洲美女黄片视频| а√天堂www在线а√下载| 日韩一卡2卡3卡4卡2021年| 怎么达到女性高潮| 亚洲全国av大片| 天堂√8在线中文| 两性夫妻黄色片| av天堂久久9| 午夜91福利影院| 国产欧美日韩一区二区三区在线| 91成年电影在线观看| 欧美人与性动交α欧美精品济南到| 自拍欧美九色日韩亚洲蝌蚪91| 精品高清国产在线一区| 亚洲av成人不卡在线观看播放网| 亚洲性夜色夜夜综合| 女警被强在线播放| 国产熟女xx| 神马国产精品三级电影在线观看 | 亚洲一区二区三区不卡视频| 亚洲国产精品sss在线观看 | 91九色精品人成在线观看| 国产深夜福利视频在线观看| 日本免费a在线| 午夜老司机福利片| 一级毛片精品| 色在线成人网| 亚洲国产精品一区二区三区在线| 午夜久久久在线观看| 欧美 亚洲 国产 日韩一| 午夜影院日韩av| 欧美日韩亚洲综合一区二区三区_| 99久久精品国产亚洲精品| 一区二区三区国产精品乱码| 精品久久久久久,| 淫秽高清视频在线观看| 国产单亲对白刺激| 亚洲专区国产一区二区| 十八禁网站免费在线| 视频在线观看一区二区三区| 在线播放国产精品三级| 久久久久久免费高清国产稀缺| 欧美黄色片欧美黄色片| 波多野结衣一区麻豆| 夜夜躁狠狠躁天天躁| 黄色 视频免费看| 久久精品影院6| 99精品久久久久人妻精品| av国产精品久久久久影院| 欧美亚洲日本最大视频资源| 91精品三级在线观看| 久久香蕉激情| 美国免费a级毛片| 91成人精品电影| 国产有黄有色有爽视频| 久久草成人影院| 又黄又爽又免费观看的视频| 久热这里只有精品99| 母亲3免费完整高清在线观看| svipshipincom国产片| 麻豆成人av在线观看| 久久中文看片网| 成年人黄色毛片网站| 日韩大尺度精品在线看网址 | 日韩三级视频一区二区三区| 操美女的视频在线观看| 亚洲自偷自拍图片 自拍| 国产一区在线观看成人免费| 青草久久国产| 中文字幕高清在线视频| 久久国产精品男人的天堂亚洲| 亚洲欧美一区二区三区黑人| 一边摸一边抽搐一进一小说| 精品久久久久久久久久免费视频 | 黄色女人牲交| 欧美成狂野欧美在线观看| 可以在线观看毛片的网站| 日韩精品青青久久久久久| 露出奶头的视频| 最新在线观看一区二区三区| 国产乱人伦免费视频| 黄色女人牲交| 成年人黄色毛片网站| 中文字幕av电影在线播放| 神马国产精品三级电影在线观看 | 一级a爱视频在线免费观看| 1024香蕉在线观看| 午夜精品久久久久久毛片777| 中文字幕高清在线视频| 欧美黑人精品巨大| 嫁个100分男人电影在线观看| 人人妻人人添人人爽欧美一区卜| 久久人人97超碰香蕉20202| 久久久精品欧美日韩精品| 日本vs欧美在线观看视频| 一本综合久久免费| 精品国产美女av久久久久小说| 嫁个100分男人电影在线观看| xxxhd国产人妻xxx| 国产在线观看jvid| 亚洲色图 男人天堂 中文字幕| 一级毛片精品| 欧美黑人精品巨大| 国产成人一区二区三区免费视频网站| 久久精品亚洲精品国产色婷小说| 一区福利在线观看| 日本一区二区免费在线视频| 9热在线视频观看99| 久久精品国产亚洲av香蕉五月| 午夜免费激情av| av国产精品久久久久影院| 女人高潮潮喷娇喘18禁视频| www.www免费av| 黄色a级毛片大全视频| 亚洲全国av大片| 国产伦人伦偷精品视频| 人妻丰满熟妇av一区二区三区| 国产深夜福利视频在线观看| 久久精品91无色码中文字幕| 色综合婷婷激情| 99re在线观看精品视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产伦一二天堂av在线观看| 国内毛片毛片毛片毛片毛片| 在线播放国产精品三级| 午夜免费成人在线视频| 日日干狠狠操夜夜爽| 成人18禁在线播放| 午夜免费成人在线视频| 一区二区三区精品91| 久久国产亚洲av麻豆专区| 丁香欧美五月| 99在线视频只有这里精品首页| 亚洲av成人一区二区三| 1024香蕉在线观看| 欧美中文日本在线观看视频| 热re99久久精品国产66热6| 久久精品人人爽人人爽视色| 黑人猛操日本美女一级片| 妹子高潮喷水视频| 亚洲国产精品一区二区三区在线| 人人妻人人添人人爽欧美一区卜| 国产不卡一卡二| 两性夫妻黄色片| 久久精品国产综合久久久| 精品一区二区三卡| 99久久国产精品久久久| 欧美不卡视频在线免费观看 | 黑人操中国人逼视频| avwww免费| 成人手机av| 久久久久久久久中文| 国产xxxxx性猛交| 十八禁人妻一区二区| 黄色毛片三级朝国网站| 国产精品香港三级国产av潘金莲| 国产国语露脸激情在线看| 欧美精品啪啪一区二区三区| 视频区欧美日本亚洲| 女人被狂操c到高潮| 亚洲专区国产一区二区| 91av网站免费观看| 免费观看精品视频网站| 国产主播在线观看一区二区| 日韩一卡2卡3卡4卡2021年| 国产精品一区二区精品视频观看| 亚洲人成77777在线视频| 中文字幕色久视频| 中文亚洲av片在线观看爽| 日韩视频一区二区在线观看| 黄色怎么调成土黄色| 国产三级在线视频| 91国产中文字幕| 咕卡用的链子| 老汉色av国产亚洲站长工具| 97超级碰碰碰精品色视频在线观看| 成年版毛片免费区| 99精国产麻豆久久婷婷| 亚洲在线自拍视频| 一a级毛片在线观看| 真人一进一出gif抽搐免费| 欧美人与性动交α欧美软件| 久久久久久久午夜电影 | 十八禁网站免费在线| 精品久久蜜臀av无| 久久婷婷成人综合色麻豆| а√天堂www在线а√下载| 我的亚洲天堂| 国产高清激情床上av| 99热国产这里只有精品6| 老司机深夜福利视频在线观看| 男女床上黄色一级片免费看| 欧美另类亚洲清纯唯美| av天堂在线播放| 日韩大码丰满熟妇| 99国产精品一区二区三区| 亚洲久久久国产精品| 少妇的丰满在线观看| 动漫黄色视频在线观看| 精品免费久久久久久久清纯| 在线国产一区二区在线| 99精品欧美一区二区三区四区| 国产成人欧美在线观看| 午夜精品国产一区二区电影| 91国产中文字幕| 欧美性长视频在线观看| 国产一区二区三区在线臀色熟女 | 91成年电影在线观看| 久久久久精品国产欧美久久久| 亚洲精品在线观看二区| 91国产中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 两性夫妻黄色片| 热99国产精品久久久久久7| 老汉色av国产亚洲站长工具| 制服人妻中文乱码| 久久狼人影院| 国产区一区二久久| 国产精品综合久久久久久久免费 | 99在线视频只有这里精品首页| 日韩国内少妇激情av| 老汉色av国产亚洲站长工具| 免费av中文字幕在线| av天堂在线播放| 一边摸一边抽搐一进一小说| 熟女少妇亚洲综合色aaa.| 国产精品98久久久久久宅男小说| 十八禁网站免费在线| 中文字幕色久视频| 久久久久亚洲av毛片大全| 中国美女看黄片| 久久国产亚洲av麻豆专区| 久久天堂一区二区三区四区| 国产精品亚洲av一区麻豆| 悠悠久久av| 母亲3免费完整高清在线观看| 9191精品国产免费久久| 国产一区二区激情短视频| 午夜成年电影在线免费观看| 亚洲精品一区av在线观看| 午夜免费激情av| www日本在线高清视频| 国产午夜精品久久久久久| 男女高潮啪啪啪动态图| 新久久久久国产一级毛片| 真人一进一出gif抽搐免费| 国产精品98久久久久久宅男小说| 高清黄色对白视频在线免费看| 成人精品一区二区免费| 美女高潮喷水抽搐中文字幕| 男女高潮啪啪啪动态图| 日本 av在线| 国产区一区二久久| 午夜免费成人在线视频| 热99re8久久精品国产| 激情视频va一区二区三区| 欧美在线一区亚洲| 女性被躁到高潮视频| 久久久久久久午夜电影 | 90打野战视频偷拍视频| 国产1区2区3区精品| 亚洲激情在线av| 欧美一级毛片孕妇| 亚洲国产精品999在线| 无人区码免费观看不卡| 12—13女人毛片做爰片一| 午夜福利在线观看吧| 国产免费男女视频| av在线天堂中文字幕 | 一进一出好大好爽视频| 丰满人妻熟妇乱又伦精品不卡| 成人三级黄色视频| www国产在线视频色| 999久久久国产精品视频| 久久精品亚洲av国产电影网| 亚洲中文字幕日韩| 亚洲人成电影观看| 久久国产精品影院| 18美女黄网站色大片免费观看| 免费日韩欧美在线观看| 午夜亚洲福利在线播放| 国产激情久久老熟女| 神马国产精品三级电影在线观看 | 亚洲精品一区av在线观看| 久久香蕉激情| 一进一出抽搐gif免费好疼 | 无遮挡黄片免费观看| 国产成人av教育| 老汉色∧v一级毛片| 视频在线观看一区二区三区| 麻豆成人av在线观看| 人成视频在线观看免费观看| 亚洲午夜精品一区,二区,三区| 欧美日韩乱码在线| 老司机深夜福利视频在线观看| 久久久久久久午夜电影 | 俄罗斯特黄特色一大片| 欧美乱码精品一区二区三区| 久久久久久大精品| 一级毛片精品| 国产精品九九99| 在线播放国产精品三级| 丰满的人妻完整版| 国产精品一区二区在线不卡| 久久精品国产清高在天天线| 搡老乐熟女国产| 一区二区日韩欧美中文字幕| 国内久久婷婷六月综合欲色啪| 日本欧美视频一区| 人妻久久中文字幕网| 久久国产乱子伦精品免费另类| 日韩一卡2卡3卡4卡2021年| 好男人电影高清在线观看| 波多野结衣一区麻豆| 热re99久久精品国产66热6| 国产成人精品久久二区二区91| 韩国av一区二区三区四区| 90打野战视频偷拍视频| 亚洲午夜理论影院| 国产有黄有色有爽视频| 99国产精品一区二区三区| 香蕉丝袜av| 国产亚洲精品综合一区在线观看 | 热99国产精品久久久久久7| 叶爱在线成人免费视频播放| 丝袜美足系列| 久久久国产精品麻豆| 亚洲 欧美一区二区三区| 91精品三级在线观看| 久久久久久久久免费视频了| 日本精品一区二区三区蜜桃| 亚洲情色 制服丝袜| 在线免费观看的www视频| 黄色丝袜av网址大全| 午夜福利一区二区在线看| 午夜久久久在线观看| 午夜a级毛片| 老司机福利观看| 日韩 欧美 亚洲 中文字幕| 欧美一级毛片孕妇| 久久亚洲精品不卡| 欧美大码av| 亚洲视频免费观看视频| 免费av中文字幕在线| 婷婷六月久久综合丁香| 制服人妻中文乱码| 一二三四社区在线视频社区8| 最新美女视频免费是黄的| 久久中文看片网| 国产日韩一区二区三区精品不卡| 亚洲av成人av| 亚洲中文日韩欧美视频| 亚洲人成77777在线视频| 精品国产国语对白av| 成在线人永久免费视频| 亚洲专区字幕在线| 最近最新中文字幕大全免费视频| 国产精品98久久久久久宅男小说| 超色免费av| 丰满饥渴人妻一区二区三| 国产色视频综合| 女同久久另类99精品国产91| 久久久久九九精品影院| 最近最新免费中文字幕在线| 亚洲片人在线观看| 色尼玛亚洲综合影院| 国产高清激情床上av| 黄色丝袜av网址大全| 宅男免费午夜| 国产成人啪精品午夜网站| 久久精品国产亚洲av香蕉五月| 日本三级黄在线观看| 一进一出好大好爽视频| 亚洲精品久久午夜乱码| 亚洲狠狠婷婷综合久久图片| 欧美国产精品va在线观看不卡| 亚洲欧美一区二区三区黑人| 一二三四在线观看免费中文在| 日本免费一区二区三区高清不卡 | 国产精品自产拍在线观看55亚洲| 两性午夜刺激爽爽歪歪视频在线观看 | 9色porny在线观看| 老汉色av国产亚洲站长工具| 亚洲av片天天在线观看| 亚洲欧美一区二区三区黑人| 一级黄色大片毛片| 久久久国产成人免费| 日本免费一区二区三区高清不卡 | 亚洲欧美一区二区三区久久| 91av网站免费观看| 水蜜桃什么品种好| 18禁裸乳无遮挡免费网站照片 | 看免费av毛片| 午夜福利免费观看在线| 热99国产精品久久久久久7| av网站免费在线观看视频| 久久国产精品影院| 69精品国产乱码久久久| 国产深夜福利视频在线观看| 真人做人爱边吃奶动态| 久久人妻熟女aⅴ| 9热在线视频观看99| www.www免费av| 身体一侧抽搐| 国产成人av教育| 91成人精品电影| 国产亚洲欧美精品永久| 91麻豆精品激情在线观看国产 | 免费高清在线观看日韩| 亚洲自偷自拍图片 自拍| 交换朋友夫妻互换小说| 在线观看www视频免费| 真人一进一出gif抽搐免费| 好男人电影高清在线观看| 亚洲一区高清亚洲精品| av视频免费观看在线观看| 两个人看的免费小视频| 99久久人妻综合| 女警被强在线播放| 日本欧美视频一区| 国产日韩一区二区三区精品不卡| 久久香蕉国产精品| 不卡av一区二区三区| a级毛片在线看网站| 999久久久精品免费观看国产| 女警被强在线播放| 国产xxxxx性猛交| 国产片内射在线| 国产一区二区三区综合在线观看| av电影中文网址| 一个人观看的视频www高清免费观看 | 美国免费a级毛片| 免费人成视频x8x8入口观看| 日本黄色视频三级网站网址| 精品一区二区三区四区五区乱码| 美女午夜性视频免费| 中文字幕最新亚洲高清| 久久香蕉国产精品| 免费日韩欧美在线观看| 久久性视频一级片| 精品人妻1区二区| 校园春色视频在线观看| 天堂动漫精品| 美国免费a级毛片| 日韩人妻精品一区2区三区| 身体一侧抽搐| 欧美黄色淫秽网站| 国产精品国产av在线观看| 免费观看精品视频网站| 午夜亚洲福利在线播放| 亚洲三区欧美一区| 人人妻人人澡人人看| 亚洲国产精品999在线| 伦理电影免费视频| 亚洲av日韩精品久久久久久密| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲精品综合一区在线观看 | 麻豆久久精品国产亚洲av | 另类亚洲欧美激情| 脱女人内裤的视频| а√天堂www在线а√下载| 午夜两性在线视频| 性少妇av在线| 另类亚洲欧美激情| 看黄色毛片网站| 69av精品久久久久久| 动漫黄色视频在线观看| 国产区一区二久久| 91麻豆精品激情在线观看国产 | cao死你这个sao货| 麻豆久久精品国产亚洲av | 黄片小视频在线播放| 麻豆一二三区av精品| 狠狠狠狠99中文字幕| 亚洲熟女毛片儿| 黄色片一级片一级黄色片| 久久国产精品男人的天堂亚洲| 精品第一国产精品| av在线天堂中文字幕 | 满18在线观看网站| 欧美亚洲日本最大视频资源| 狂野欧美激情性xxxx| 欧美午夜高清在线| 国产亚洲精品综合一区在线观看 | 每晚都被弄得嗷嗷叫到高潮| 精品久久蜜臀av无| www.999成人在线观看| 91九色精品人成在线观看| 视频在线观看一区二区三区| 亚洲av成人不卡在线观看播放网| 日本三级黄在线观看| 国产一区二区激情短视频| 岛国在线观看网站| 一级作爱视频免费观看| 国产又色又爽无遮挡免费看| 人人妻人人添人人爽欧美一区卜| 男女之事视频高清在线观看| 国产一区二区三区视频了| 亚洲成国产人片在线观看| 国产精品免费一区二区三区在线| 好看av亚洲va欧美ⅴa在| 久久精品91无色码中文字幕| 国产精品影院久久| 搡老乐熟女国产| av在线天堂中文字幕 | 免费人成视频x8x8入口观看| 三上悠亚av全集在线观看| 在线av久久热| 99精品欧美一区二区三区四区| 国产成+人综合+亚洲专区| 亚洲人成电影观看| 亚洲成人精品中文字幕电影 | 日韩 欧美 亚洲 中文字幕| 亚洲精品久久午夜乱码| 99国产精品一区二区蜜桃av| 丝袜在线中文字幕| 精品久久久久久成人av| 女生性感内裤真人,穿戴方法视频| 美女国产高潮福利片在线看| 18禁黄网站禁片午夜丰满| 男女做爰动态图高潮gif福利片 | a级毛片黄视频| 久99久视频精品免费| 国产高清激情床上av| 亚洲中文日韩欧美视频| 在线观看午夜福利视频| 91成人精品电影| 91老司机精品| 国产亚洲精品久久久久5区| 动漫黄色视频在线观看| 大码成人一级视频| 欧美日本中文国产一区发布| 国产精品国产高清国产av| 女警被强在线播放| 久久精品国产亚洲av高清一级| 激情在线观看视频在线高清| 三级毛片av免费| 欧美午夜高清在线| 一本大道久久a久久精品| 欧美成狂野欧美在线观看| 久久国产精品男人的天堂亚洲| 免费观看精品视频网站| 久久久久久久久久久久大奶| 亚洲专区中文字幕在线| 夫妻午夜视频| 成在线人永久免费视频| 天堂俺去俺来也www色官网| 欧美中文日本在线观看视频| 日本黄色日本黄色录像| 老司机在亚洲福利影院| 日本一区二区免费在线视频| 精品人妻在线不人妻| 色综合婷婷激情| 久久精品成人免费网站| 亚洲欧美日韩无卡精品| 看免费av毛片| 欧美在线一区亚洲| 99国产极品粉嫩在线观看| 高清在线国产一区| 中文字幕人妻丝袜制服| 欧美一区二区精品小视频在线| 丰满人妻熟妇乱又伦精品不卡| 久久中文字幕人妻熟女| 妹子高潮喷水视频| 午夜久久久在线观看| 黑丝袜美女国产一区| 又紧又爽又黄一区二区| www国产在线视频色| 亚洲精品国产精品久久久不卡| 国产精品99久久99久久久不卡| 两人在一起打扑克的视频| 亚洲成av片中文字幕在线观看| 亚洲一区中文字幕在线| 久久这里只有精品19| 国产精品久久久人人做人人爽| 咕卡用的链子| 欧美人与性动交α欧美精品济南到| 80岁老熟妇乱子伦牲交| 久久久久久久久中文| 黄片大片在线免费观看| 一a级毛片在线观看| 精品国产国语对白av| 欧美日韩视频精品一区| 午夜a级毛片| 欧美乱码精品一区二区三区| 久久久国产成人免费| 国产蜜桃级精品一区二区三区| 91在线观看av| 久久久国产成人免费| 亚洲激情在线av|