• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Review on the development of genotyping methods for assessing farm animal diversity

    2013-08-15 00:54:05WanjieYangXiaolongKangQingfengYangYaoLinandMeiyingFang

    Wanjie Yang ,Xiaolong Kang,2 ,Qingfeng Yang ,Yao Lin and Meiying Fang*

    Introduction

    The development of every species under its particular natural ecosystem,environmental,and socio-economic conditions has led to each having its own specific genetic characteristics.Collectively,these characteristics constitute the Earth’s species diversity.Mankind can learn and make use of these special genetic resources to develop animal production for human food needs.However,sufficient genetic markers for evaluating the population structure and other aspects of available animal genetic resources are necessary to assess genetic diversity.

    In earlier studies,morphological markers and ecogeographical factors were used to represent diversity,and after that,chromosomal karyotyping was developed.With the rapid development of modern biotechnology,biochemical markers,such as proteins and isozymes,were utilized.By the 1980s,many different types of DNA molecular markers had been explored,e.g.Restriction Fragment Length Polymorphism (RFLP),Random Amplified Polymorphic DNA (RAPD),Amplified Fragment Length Polymorphism (AFLP),Single-Strand Conformation Polymorphism (SSCP) and Microsatellite DNA.All of these DNA-based markers contain specific advantages and have played significant roles in the evaluation of genetic diversity in farm animals.In addition,with biotechnological and computer innovations,novel strategies such as wholegenome SNP chips and DNA Barcoding have emerged.At present,DNA molecular marker techniques are widely applied in the fields of germplasm identification,phylogenetics,and genetic structural analysis.They overcome the limitations of morphological,cytological,and biochemical markers,namely the small numbers of such markers and the fact they can be environmentally influenced.The expansion in DNA information will facilitate study of genome-wide diversity;such information is much more precise for the assessment of genetic diversity than previous markers.The following is a brief summary on the principles and advancements of primary genetic markers involved in assessments of Animal Genetic Resources(AnGR).

    Conventional methods applied to AnGR assessments Morphological markers

    Morphological markers normally refer to external animal characteristics (i.e.coat color,body shape,skin structure,and anatomical characteristics)[1,2],which can be obtained by direct visual observation and measurement.They are used in the identification,classification,and characterization of genetic evolution of different species or populations.However,an animal’s phenotype is determined by its genetic background and the environment it experiences.The evaluation of farm animal genetic resources through morphological markers is based on subjective judgments and descriptions,and the conclusions reached are often not completely accurate.Furthermore,the measurement and identification of animal morphological traits usually takes a long time,and it is not easy to remove the effects of environmental factors.Consequently,the application of morphological markers is limited in the evaluation of quantitative traits.However,it is still an effective method for the assessment of qualitative traits,for which it is easy to characterize phenotypic differences between individuals through direct observation and measurement.

    Cytological markers

    Cytological markers have been used for the assessment of farm animal genetic resources [3,4]based on the numbers and morphology of animal chromosomes.Cytological markers include chromosome karyotypes,bandings,repeats,deletions,translocations,and inversions.Chromosomes are the carriers of genetic material and chromosome mutations are crucial sources of genetic variation [5],we can use these mutations as markers to determine the specific location of a gene on the chromosome,and its position relative to other genes.For instance,researchers can trace the origins and evolutionary history of livestock[6],and assess the genetic diversity of domesticated animals by comparing chromosome number and structure between domesticated animals and their wild ancestors[7].

    Biochemical markers

    Biochemical markers,e.g.blood type and isozymes,represent biochemical traits and can be analyzed by protein electrophoresis.In 1967,Buvanendran et al.investigated the genetic variation within species and phylogenetic relationships between species by differences in the amino acid composition of isozymes and soluble proteins [8].Nevertheless,neither proteins nor isozymes are genetic material but the products of gene expression,and they are vulnerable to environmental impacts and individual growth discrepancies,limiting the breadth of their application [9].Conversely,protein electrophoresis is a rapid,economic,and straightforward technique and provides a more detailed representation of polymorphisms than morphological or cytological markers;thus,it is still widely used in elucidating the origin and classification of species[10].

    Molecular markers (DNA based markers)

    With the development of molecular biotechnology,molecular markers have made rapid progress.A molecular marker is based on the nucleotide sequence mutations within the individual’s genome;they are the most reliable markers available.Molecular markers can be used for investigating genetic variations at the DNA level between different populations and individuals;its advantage is being able to find genetic variations rapidly and directly.Molecular markers have developed quickly,and they are becoming more and more informative.Up to now,various types of molecular markers have been utilized to evaluate DNA polymorphisms,e.g.RFLPs.Polymerase chain reaction (PCR) [11]can exponentially amplify a fragment of DNA in vitro,and since its invention a series of techniques have emerged in combination with PCR,e.g.PCR—RFLP,AFLP,simple sequences repeats(SSRs),and Single Nucleotide Polymorphisms (SNPs).In this review,we mainly focus on the introduction of several important DNA-based markers,and their various applications in characterizing animal genetic resources.

    RFLP markers

    RFLP is a method established by Grodzicker et al.in 1974,it is used to identify DNA polymorphisms among different individuals [12].Its basic principle is as follows:first,genomic DNA from different individuals is digested into DNA fragments of varying size,using known restriction enzymes.Second,the digested fragments are separated via electrophoretic analysis.Finally,separated fragments are hybridized with radioactive or chemiluminescent homologous probes and exposed to an X-ray film;the different fragments are visible by autoradiography.The molecular basis of RFLP is that nucleotide base substitutions,insertions,deletions,duplications,and inversions within the whole genome can remove or create new restriction sites.

    RFLP was the first DNA-based marker for constructing genetic linkage maps;it is also one of the most widely used markers in AnGR assessments and breeding program development.By combining this method with PCR (PCR-RFLP),Jiang and Gibson [13]detected four new genetic polymorphisms in the leptin gene of different pig breeds.The main advantages of RFLPs include:1) high reliability,because it is generated from specific sites via known restriction enzymes and the results are constant over time and location.2) Co-dominance,which means investigators are able to distinguish heterozygotes from homozygotes.3) Selective neutrality refers to a situation in which different alleles of a certain gene confer equal fitness.The disadvantages of RFLPs are as follows:1) labor-intensive and time-consuming.2)RFLPs can only check out specific mutations at enzyme cut sites,which limits identification of whole genome variation in animals.3) The polymorphism of RFLP markers is relatively low and must be detected by radioisotope,which limits its application.

    RAPD markers

    RAPD was developed by U.S.scientists in 1990 [14,15].It amplifies the target genomic DNA with short,arbitrary primers (commonly 10 bp) in a PCR reaction,and can be used to produce relatively complicated DNA profiles for detecting amplified fragment length polymorphisms between organisms.Since the arbitrary primers complement different parts of the genomic DNA,PCR products will differ in number and size (polymorphism).

    RAPD-PCR fingerprints have been successfully used in defining genetic diversity among different species.For example,the RAPD method was used to generate specific fingerprint patterns of ten different species:including wild boar,pig,horse,buffalo,beef,venison,dog,cat,rabbit,and kangaroo [16].

    RAPD markers have several obvious features as summarized in the literature:1) no prior sequence knowledge is necessary for designing the specific primers,which can then be used in different templates.2) The amount of DNA required is very small because it will be amplified by PCR.3) RAPDs are simple,quick,and cost effective compared to RFLP [17,18].However,RAPDs also have some disadvantages,these include 1)the repeatability and reliability of RAPD polymorphic profiles are poor [19].2) Some non-specific and therefore non-reproducible binding of primers occurs.3)RAPDs are dominant genetic markers which cannot be used to distinguish homozygote from heterozygote genotypes in F2 populations.

    AFLP markers

    AFLP was developed by Zabeau and Vos in 1993;it is a combination of the RFLP and PCR techniques [20].The AFLP procedure is as follows:first,the genomic DNA is digested with a restriction enzyme,and then the digested fragments are ligated to synthetic adaptors and amplified with specified primers that are complementary to a selective sequence on the adaptors.Subsequent separation of the amplified fragments is obtained by selective primers and visualized using autoradiography [21].AFLPs overcome the drawbacks of the labor-intensive,timeconsuming RFLP method and solve the reliability problem caused by non-specific amplifications in RAPDs.Hoda et al.used AFLPs to assess genetic diversity and relationship among different breeds of sheep.They analyzed 93 unrelated individuals from three local Albanian sheep breeds markers.The results obtained indicated high diversity in Albania sheep breeds [22].

    AFLPs are notable for their genetic stability,they provides an effective,rapid,and economical tool for detecting a large number of polymorphic genetic markers,that can be genotyped automatically [23,24].However,AFLPs are dominant bi-allelic markers [23],and are unable to distinguish dominant homozygous from dominant heterozygous individuals [25].The AFLP method is an ideal molecular approach for population genetics and genome typing,it is consequently widely applied to detect genetic polymorphisms,evaluate,and characterize animal genetic resources [26-29].

    Microsatellite DNA markers

    Microsatellite DNA,also known as simple sequences repeats (SSRs) or short tandem repeats (STRs),are common repeated sequences within eukaryotic genomes.Generally they consist of motifs which are made up of 1–6 base pairs (bp) tandemly repeated several times (e.g.CACACACACACACACA) [30,31].The flanking regions of repeated sequences at microsatellite loci are mostly conservative and the repetition motifs are highly variable between different species and even different individuals of the same species.So we can design specific primers based on the conserved sequences and amplify the core repeat sequences by way of PCR,genetic polymorphisms can then be detected via electrophoresis [31].

    SSRs have the same advantages as RFLPs,and avoid the utilization of radioisotopes essential for RFLPs;it has higher repeatability and stability than RAPDs;compared to AFLP markers,SSRs are co-dominant markers and able to distinguish homozygotes from heterozygotes.Until recently,microsatellites were the markers most widely used for genetic diversity,mapping quantitative trait loci for production,and functional traits in farm animals [32-34];they have also been used for marker assisted selection practices [35].

    The advantages and disadvantages of SSR markers have been reported by many authors [36-40].Its advantages are as follows:low quantities of template DNA required (10–100 ng),high polymorphism,co-dominant markers,high accuracy,high reproducibility,different microsatellites can be multiplexed in PCR,and they are amenable to automation.Its disadvantages include:time-consuming and expensive to develop,heterozygotes may be misclassified as homozygotes when null-alleles occur because of mutations in the primer annealing sites,stutter bands may complicate accurate scoring of polymorphisms,underlying mutation model largely unknown,and microsatellite markers do help to identify neutral biodiversity but do not provide information on functional trait biodiversity.Despite these disadvantages,microsatellite markers are still popular nuclear DNA markers for the investigation of genetic variation among and within species.

    New approaches for AnGR assessments

    In addition to the classical markers discussed above,with the development of modern molecular techniques and the completion of the Human Genome Project(HGP),some new markers have emerged and are being used in the evaluation of farm animal genetic resources;these include high-density SNP arrays,whole-genome sequencing,and DNA barcoding.

    SNP markers and whole-genome sequencing

    SNP,a novel molecular marker technology,was first proposed by Lander in 1996,it refers to a sequence polymorphism caused by a single nucleotide mutation at a specific locus in the DNA sequence.This sort of polymorphism includes single base transitions,transversions,insertions and deletions [41],and the minor allele frequency should be 1% or greater [42].Of all the SNP mutation types,transitions are the most common(approx.2/3)[43].Currently,SNP markers are one of the preferred genotyping approaches,because they are abundant in the genome,genetically stable,and amenable to highthroughput automated analysis[42].

    The fundamental principle of SNPs is to hybridize detected DNA fragments with high-density DNA probe arrays (also called SNP chips);the SNP allele is then named according to the hybridization results.SNPs are bi-allelic markers,indicating a specific polymorphism in only two alleles of a population [44].SNPs distribute in both coding and non-coding regions of genomes,they are vital players in the process of population genetic variations and species evolution [45].

    Currently,DNA chip technology is usually carried out during SNP investigations.A group of associated SNP loci located on a certain region of the chromosome can form one SNP haplotype.SNPs are third generation molecular marker technology coming after RFLPs and SSRs[46];it has been successfully used to investigate genetic variation among different species and breeds [47-49].

    Compared with previous markers,SNPs have the following advantages:1) they are numerous and widely distributed throughout the entire genome [50].2) High genetic stability,excellent repeatability,and high accuracy.3)Allow for fast,high-throughput genotyping [51].4) Convenient for effectively distinguishing heterozygote from homozygote alleles because of its co-dominances.

    Because of their extensive distribution and abundant variations,SNPs play an important role in farm animal population structure,genetic differentiation,origin,and evolution research.For example,linkage disequilibrium(LD) among different SNPs can be utilized for association analysis.Furthermore,we can gain information concerning animal population diversity and population evolution(origins,differentiation,and migrations) via SNP haplotypes among different populations.

    One disadvantage of SNP markers is the low level information obtained compared with that of a highly polymorphic microsatellite,but this can be compensated for by employing a higher numbers of markers (SNP chips)and whole-genome sequencing[52,53].

    With the improvement of sequencing technology,whole-genome/gene sequencing has become available for characterizing genetic diversity among farm animals.It is the most straight-forward method and provides more complete information on the genetic variation among different populations because it can detect all the variations within the genome.Currently,the problem with whole-genome sequencing is setting up a high-through data analysis platform to explore useful information for the conservation and utilization of farm animals.

    DNA barcoding markers

    Barcoding is an automatic scanning and identification technology,which has emerged from practical computer technologies.Biological taxonomists apply this principle to species classification,referring to a DNA barcode.A DNA barcode is a Short DNA sequence from a standardized region of the genome used for identifying species.The intent of DNA barcoding is to use large-scale screening of one or more reference genes in order to (i)assign unknown individuals to species,and (ii) enhance discovery of new species[54,55].

    Tautz et al.[56]were the first researchers to use the DNA sequences in systematical biological taxonomy(also called DNA taxonomy).Subsequently,Hebert et al.[54]proposed the concept of DNA Barcoding and suggested its use for a single mtDNA gene,mitochondrial cytochrome c oxidase I (COI),as a common sequence in animal DNA barcoding studies.Researchers can compile a public library of DNA barcodes linked to named specimens,which can provide a new master key for identifying species diversity [57].

    Compared with time-consuming and inefficient traditional morphological classification [58],DNA Barcoding has a high accuracy of 97.9% [59],and provides us a new,quick,and convenient identification strategy for animal genetic diversity [54].However,as with the other markers mentioned the DNA barcoding technique also has some disadvantages:1) the genome fragments are very difficult to obtain and are relatively conservative and have no enough variations.Some organisms cannot be identified with COI because of the low evolution rates of COI sequences in some species.2) COI is an mtDNA sequence of maternal origin,which could bias species diversity [60,61].The above disadvantages can be compensated for by using one or more nuclear gene barcodes together to make a standardized analysis of AnGR.

    Summary

    Farm animals are extremely important to humans,supplying some 30% of our total food requirements [62].The accurate evaluation of animal genetic resources is the basis for their conservation and utilization.From the first demonstration of RFLPs to the current wholegenome sequencing,many methods have been developed and tested at the DNA sequence level,providing a large number of markers and opening up new opportunities for evaluating diversity in farm animal genetic resources.Currently,SSR and SNP markers are valuable tools for evaluating germplasm diversity because of their high EMI (effective marker index) and high QND (qualitative nature of data),respectively [63].With the development of new markers,more accurate genetic evaluation is possible.The development of molecular markers will continue in the near future and provide better understanding of animal genetic resources.

    Competing interests

    The authors declare that they have no competing interests.

    Authors’ contributions

    WY,XK,QY and MF contributed to the writing of this review paper.All authors read and approved the final manuscript.

    Acknowledgements

    This work was supported by National High Technology and Science Development Plan of China (No.2011AA100302),Program for New Century Excellent Talents in University (No.NCET-11-0480),Program for Changjiang Scholar and Innovation Research Team in University (IRT1191) and project(CARS-41-K01).

    Author details

    1Department of Animal Genetics and Breeding,National Engineering Laboratory for Animal Breeding,MOA Laboratory of Animal Genetics and Breeding,College of Animal Science and Technology,China Agricultural University,Beijing 100193,P.R.China.2College of Agriculture,Ningxia University,Yinchuan 750021,P.R.China.3National Animal Husbandry and Veterinary Service,Beijing 100094,P.R.China.

    Published:23 January 2013

    1.Van Wezel IL,Rodgers RJ:Morphological characterization of bovine primordial follicles and their environment in vivo.Biol Reprod 1996,55:1003–1011.

    2.Gizaw S,Van Arendonk JAM,Komen H,Windig JJ,Hanotte O:Population structure,genetic variation and morphological diversity in indigenous sheep of Ethiopia.Anim Genet 2007,38:621–628.

    3.Nadler CF,Hoffmann RS,Woolf A:G-band patterns as chromosomal markers,and the interpretation of chromosomal evolution in wild sheep(Ovis).Cell Mol Life Sci 1973,29:117–119.

    4.Popescu NC,Evans CH,DiPaolo JA:Chromosome patterns(G and C Bands)of in vitro chemical carcinogen-transformed guinea pig cells.Cancer Res 1976,36:1404.

    5.Bitgood JJ,Shoffner RN:Cytology and cytogenetics.Poultry breeding Genet 1990,22:401–427.

    6.Silversides FG,Crawford RD,Wang HC:The cytogenetics of domestic geese.Heredity 1988,79:6–8.

    7.Becak ML,Becak W,Roberts FL:Fish,amphibians,reptiles and birds.Berlin,Heidelberg,New York:Springer-Verlag;1973.

    8.Buvanendran V,Finney DJ:Linkage relationships of egg albumen loci in the domestic fowl.Br Poult Sci 1967,8:9–13.

    9.Drinkwater RD,Hetzel DJS:Application of molecular biology to understanding genotype-environment interactions in livestock production.In Proc.of an International Symposium on Nuclear Techniques in Animal Production and Health.Vienna:IAEA,FAO;1991:437–452.15–19 April.

    10.Jonker J,Meurs G,Balner H:Typing for RhLA-D in rhesus monkeys:II.genetics of the D antigens and their association with DR antigens in a population of unrelated animals.Tissue Antigens 1982,19:69–78.

    11.Mullis K,Faloona F,Scharf S,Saiki R,Horn G,Erlich H:Specific enzymatic amplification of DNA In vitro:the polymerase chain reaction.Cold Spring Harb Symp Quant Biol 1986,51:263–273.

    12.Grodzicker T,Williams J,Sharp P:Physical mapping of temperaturesensitive mutations of adenovirus.Cold Spring Harbor Symp Quant Biol 1974,34:439–446.

    13.Jiang ZH,Gibson JP:Genetic polymorphisms in the leptin gene and their association with fatness in four pig breeds.Mammal Genome 1999,10:191–193.

    14.Williams JGK,Kubeilik AR,Livak KJ,Rafalski JA,Tingey SV:DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nucleic Acids Res 1990,18:6531–6535.

    15.Welsh J,McClelland M:Fingerprinting genomes Using PCR with arbitrary primers.Nucleic Acids Res 1990,18:7213–7218.

    16.Koh MC,Lim CH,Chua SB,Chew ST,Phang STW:Random amplified polymorphic DNA(RAPD)fingerprints for identification of red meat animal species.Meat Sci 1998,48:275–285.

    17.Demeke T,Adams RP,Chibbar R:Potential taxonomic use of random amplified polymorphic DNA(RAPD):a case study in Brassica.Theor Appl Genet 1992,84:990–994.

    18.Koller B,Lehmann A,McDermott JM:Identification of apple cultivars using RAPD markers.Theor Appl Genet 1993,85:901–904.

    19.Meunier JR,Grimont PAD:Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting.Res Microbiol 1993,144:373–379.

    20.Zabeau M,Vos P:Selective restriction fragment amplification:a general method for DNA fingerprinting.EP Patent.publication.No.1993,0534858:B2.

    21.Blears MJ,De Grandis SA,Lee H,Trevors JT:Amplified fragment length polymorphism(AFLP):a review of the procedure and its applications.J Indus Micro Biotech 1998,21:99–114.

    22.Hoda A,Ajmone-Marsan P,Dobi P,Bozgo V,Consortium E:Genetic diversity in Albanian sheep breeds estimated by AFLP markers.Alban J Agricul Sci 2010,9:23–29.

    23.Vos P,Hogers R,Bleeker M,Reijans M,Lee TVD,Hornes M,Friters A,Pot J,Paleman J,Kuiper M,Zabeau M:AFLP:a new technique for DNA fingerprinting.Nucleic Acids Res 1995,23:4407–4414.

    24.Vos P,Kuiper M:AFLP analysis,in DNA markers:protocols,applications,and overviews.In Edited by Caetano-Anollés G,Gresshoff PM.;1997:115–131.

    25.Paglia G,Morgante M:PCR-based multiplex DNA fingerprinting technique for the analysis of conifer genome.Mol Breed 1998,4:173–177.

    26.Ajmone-Marsan P,Negrini R,Milanesi E,Bozzi R,Nijman IJ,Buntjer JB,Valentini A,Lenstra JA:Genetic distances within and across cattle breeds as indicated by biallelic AFLP markers.Anim Genetics 2002,33:280–286.

    27.Ajmone-Marsan P,Negrini R,Milanesi E,Colli L,Pellecchia M,Nicoloso L,Crepaldi P,Lenstra JA:Breed assignment of Italian cattle using biallelic AFLP-markers.Anim Genet 2007,38:147–153.

    28.Negrini R,Milanesi E,Bozzi R,Pellecchia M,Ajmone-Marsan P:Tuscany autochthonous cattle breeds:an original genetic resource investigated by AFLP markers.J Anim Breed Genet 2006,123:10–16.

    29.Negrini R,Nijmanl IJ,Milanesi E,Moazami-Goudarzi K,Williams JL,Erhardt G,Dunner S,Rodellar C,Valentini A,Bradley DG,Olsaker I,Kantanen J,Ajmone-Marsan P,Lenstra JA,the European Cattle Genetic Diversity Consortium:Differentiation of European cattle by AFLP fingerprinting.Anim Genet 2007,38:60–66.

    30.Litt M,Luty JA:A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene.Am J Hum Genet 1989,44:397–401.

    31.Tautz D:Hypervariability of simple sequences as a generalsource for polymorphic DNA markers.Nucleic Acids Res 1989,17:6463–6471.

    32.Fang M,Braunschweig M,Hu X,Hu L,Feng J,Li N,Wu C:Genetic variation of exon 2 of SLA-DQBgene in Chinese pigs.Biochem Genet 2005,43:119–125.

    33.Fang M,Larson G,Soares Ribeiro H,Li N,Andersson L:Contrasting mode of evolution at a coat color locus in wild and domestic pigs.PLoS Genet 2009,5:e1000341.

    34.Hiendleder S,Hiendleder S,Thomsen H,Reinsch N,Bennewitz J,Leyhe-Horn B,Looft C,Xu N,Medjugorac I,Russ I,Kühn C,Brockmann GA,Blümel J,Brenig B,Reinhardt F,Reents R,Averdunk G,Schwerin M,F?rster M,Kalm E,Erhardt G:Mapping of QTL for body conformation and behavior in cattle.J Heredity 2003,94:496–506.

    35.Montaldo HH,Meza-Herrera CA:Use of molecular markers and major genes in the genetic improvement of livestock.Elec J Biotech 1998,1:1–7.

    36.Bishop MD,Kappes SM,Keele JW,Stone RT,Sunden SL,Hawkins GA,Toldo SS,Fries R,Grosz MD,Yoo J:A genetic linkage map for cattle.Genetics 1994,136:619–639.

    37.Bishop MD,Hawkins GA,Keeler CL:Use of DNA markers in animal selection.Ther 1995,43:61–70.

    38.Baron EE,Mário LM,Verneque RS,Coutinho LL:Parentage testing and effect of misidentification on the estimation of breeding value in Gir cattle.Genetics and Mol Biol 2002,25:389–394.

    39.Mburu D,Hanotte O:A practical approach to microsatellite genotyping with special reference to livestock population genetics,ILRI Biodiversity project:A manual prepared for the IAEA/ILRI training course on molecular characterisation of small ruminant genetic resources of Asia,October-December.Nairobi,Kenya:ILRI;2005.

    40.Erhardt E,Weimann C:Use of molecular markers for evaluation of genetic diversity and in animal production.Arch Latinoam Prod Anim 2007,15:63–66.

    41.Lander ES:The new genomics:global views of biology.Science 1996,274:536–539.

    42.Vignal A,Milan D,SanCristobal M:A review on SNP and other types of molecular markers and their use in animalgenetics.Genet Selec Evol 2002,34:275–305.

    43.Zhao ZM,Boerwinkle E:Neighboring-nucleotide effects on single nucleotide polymorphisms:a study of 2.6 million polymorphisms across the human genome.Genome Res 2002,12:1679–1686.

    44.Kruglyak L:The use of a genetic map of biallelic markers in linkage studies.Nature Genet 1997,17:21–24.

    45.Syv?nen AC:Accessing geneic variation:genotyping single nucleotide polymorphisms.Nature Rev Genet 2001,2:930–942.

    46.Peter G:An assessment of the utility of single nucleotide polymorphisms(SNPs)for forensic purposes.Int J Legal Med 2001,114:204–210.

    47.The Bovine HapMap Consortium:Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds.Science 2009,324:528–532.

    48.Brooks SA,Gabreski N,Miller D,Brisbin A,Brown HE,Streeter C,Mezey J,Cook D,Antczak DF:Whole-genome SNP association in the horse:identification of a deletion in myosin Va responsible for lavender foal syndrome.PLoS Genet 2010,6:e1000909.

    49.Amaral AJ,Megens HJ,Crooijmans RPMA,Heuven HCM,Groenen MAM:Linkage disequilibrium decay and haplotype block structure in the pig.Genetics 2008,179:569–579.

    50.Primmer CR,Borge T,Lindell J:Single-nucleotidepolymorphism characterization in species withlimited available sequence information:high nucleotidediversity revealed in the avian genome.Mol Ecol 2002,11:603–612.

    51.Tsuchihashi Z,Dracopoli NC:Progress in high-throughput SNP genotyping methods.J Pharmacogenomics 2002,2:103–110.

    52.Werner M,Sych M,Herbon N,Illig T,Konig IR,Wjst M:Large-scale determination of SNP allele frequencies in DNA pools using MALDI-TOF mass spectrometry.Hum Mutat 2002,20:57–64.

    53.Werner M,Herbon N,Gohlke H,Altmuller J,Knappw M,Heinrich J,Wjst M:Asthma is associated with single-nucleotide polymorphisms in ADAM33.Clin Exp Allergy 2004,34:26–31.

    54.Hebert PDN,Cywinska A,Ball SL,de Waard JR:Biological identifications through DNA barcodes.Proc R Soc Biol Sci 2003,270:313–321.

    55.Stoecklem:Taxonomy,DNA,and the Bar Code of Life.BioScience 2003,53:796–797.

    56.Tautz D,Arctander P,Minelli A,Thomas RH:DNA points the way ahead in taxonomy.Nature 2002,418:479.

    57.Hebert PDN,Penton EH,Burns JM:Ten species in one:DNA barcoding reveals cryptic species in theneotropical skipper butterfly Astraptesfulgerator.Proc Nat Acad Sci USA 2004,101:14812–14817.

    58.Huang J,Xu Q,Sun ZJ:Identifying earthworms through DNA barcodes.Pedobiologia 2007,51:301–309.

    59.Hajibabaei M,Janzen DH,Burns JM:DNA barcodes distinguish species of tropical Lepidoptera.Proc Nat Acad Sci USA 2006,103:968–971.

    60.Meyer CP,Paulay G:DNA barcoding:error rates based on comprehensive sampling.PLoS Biol 2005,3:2229–2238.

    61.Meier R,Shiyang K,Vaidya G:DNA barcoding andtaxonomy in Diptera:a tale of high intraspecific variability and lowidentification sucess.Syst Biol 2006,55:715–728.

    62.LID(Livestock in Development):Livestock in poverty-focused development.Crewkerne,UK:Livestock in Development;1999.

    63.Varshney RK,Chabane K,Hendre PS,Aggarwal RK,Graner A:Comparative assessment of EST-SSR,EST-SNP and AFLP markers for evaluation of genetic diversity and conservation of genetic resources using wild,cultivated and elite barleys.Plant Sci 2007,173:638–649.

    欧美国产日韩亚洲一区| 午夜免费成人在线视频| 97超视频在线观看视频| 俺也久久电影网| 亚洲国产中文字幕在线视频| 又黄又粗又硬又大视频| 美女大奶头视频| 有码 亚洲区| 欧美成狂野欧美在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产精品国产高清国产av| 精品人妻1区二区| 九九热线精品视视频播放| 久9热在线精品视频| 亚洲不卡免费看| 亚洲国产精品久久男人天堂| 国产99白浆流出| 午夜日韩欧美国产| 在线观看舔阴道视频| 午夜福利在线观看吧| 免费观看的影片在线观看| 色视频www国产| 中文字幕久久专区| 老熟妇乱子伦视频在线观看| 日韩中文字幕欧美一区二区| 欧美在线黄色| 免费av毛片视频| 国产精品自产拍在线观看55亚洲| 欧美成人性av电影在线观看| 一本一本综合久久| 久久久国产成人免费| 亚洲不卡免费看| 国产伦一二天堂av在线观看| 亚洲人成网站在线播放欧美日韩| www日本黄色视频网| 有码 亚洲区| 69av精品久久久久久| 国产真实乱freesex| 校园春色视频在线观看| av黄色大香蕉| 欧美国产日韩亚洲一区| xxxwww97欧美| 免费在线观看亚洲国产| 少妇的丰满在线观看| 99久久成人亚洲精品观看| 国内精品久久久久精免费| 中文资源天堂在线| 国产乱人伦免费视频| 国产午夜福利久久久久久| 亚洲精品在线观看二区| 久久这里只有精品中国| 天堂√8在线中文| 欧美一区二区亚洲| 国产精品久久视频播放| 日本三级黄在线观看| 一个人看的www免费观看视频| 精品国产三级普通话版| 国产成人影院久久av| 中文字幕人妻熟人妻熟丝袜美 | 国产蜜桃级精品一区二区三区| 欧美在线一区亚洲| 亚洲第一电影网av| 一区二区三区高清视频在线| 国产一区二区激情短视频| 99精品久久久久人妻精品| 国产激情欧美一区二区| 婷婷精品国产亚洲av在线| 一个人免费在线观看的高清视频| 99热6这里只有精品| 国产亚洲精品综合一区在线观看| 免费看a级黄色片| 极品教师在线免费播放| 校园春色视频在线观看| 又紧又爽又黄一区二区| 国产黄a三级三级三级人| 亚洲欧美日韩高清专用| 99久久精品一区二区三区| 国产高清视频在线播放一区| 欧美一区二区国产精品久久精品| 非洲黑人性xxxx精品又粗又长| 一级毛片高清免费大全| 搡老岳熟女国产| 亚洲七黄色美女视频| 99久国产av精品| 在线十欧美十亚洲十日本专区| 一级a爱片免费观看的视频| 18禁美女被吸乳视频| 久久草成人影院| 欧美日韩瑟瑟在线播放| 宅男免费午夜| 午夜精品久久久久久毛片777| 免费在线观看日本一区| 国产精品综合久久久久久久免费| 欧美日韩中文字幕国产精品一区二区三区| 非洲黑人性xxxx精品又粗又长| 亚洲成av人片在线播放无| 97碰自拍视频| 欧美在线一区亚洲| 午夜精品一区二区三区免费看| 日韩中文字幕欧美一区二区| 亚洲精品粉嫩美女一区| 免费在线观看成人毛片| 国产精品98久久久久久宅男小说| 岛国视频午夜一区免费看| 午夜精品久久久久久毛片777| 真人做人爱边吃奶动态| 精品久久久久久,| 亚洲av熟女| svipshipincom国产片| 国产亚洲精品久久久久久毛片| 99精品欧美一区二区三区四区| 久久久国产成人免费| 午夜日韩欧美国产| 国产成人系列免费观看| 黄片大片在线免费观看| 久久精品国产综合久久久| 村上凉子中文字幕在线| 天天躁日日操中文字幕| 看免费av毛片| 搡老岳熟女国产| 亚洲精品影视一区二区三区av| 国产aⅴ精品一区二区三区波| 国内精品美女久久久久久| 成年女人永久免费观看视频| 国产97色在线日韩免费| 又黄又爽又免费观看的视频| 亚洲,欧美精品.| 国产淫片久久久久久久久 | 少妇熟女aⅴ在线视频| 草草在线视频免费看| 亚洲五月婷婷丁香| 搡老熟女国产l中国老女人| 啦啦啦免费观看视频1| 精品久久久久久久末码| 波多野结衣巨乳人妻| 在线视频色国产色| 免费观看的影片在线观看| 亚洲av中文字字幕乱码综合| 亚洲精品日韩av片在线观看 | 又黄又粗又硬又大视频| 美女高潮喷水抽搐中文字幕| 中文字幕精品亚洲无线码一区| 国产精品99久久久久久久久| 成年免费大片在线观看| 久久久精品大字幕| 又黄又爽又免费观看的视频| 神马国产精品三级电影在线观看| 热99在线观看视频| 母亲3免费完整高清在线观看| 日本一本二区三区精品| 精品人妻1区二区| 99久久无色码亚洲精品果冻| 欧美一级a爱片免费观看看| 午夜福利在线在线| 欧美成人a在线观看| 夜夜躁狠狠躁天天躁| 伊人久久大香线蕉亚洲五| 国产黄色小视频在线观看| 日本在线视频免费播放| 欧美又色又爽又黄视频| 最后的刺客免费高清国语| 日日夜夜操网爽| 波多野结衣高清无吗| 99国产精品一区二区蜜桃av| 欧美一级a爱片免费观看看| 精品人妻1区二区| 欧美黑人巨大hd| 日韩大尺度精品在线看网址| 在线视频色国产色| 别揉我奶头~嗯~啊~动态视频| 91九色精品人成在线观看| 日本 av在线| 亚洲欧美日韩高清专用| 成年版毛片免费区| 国产黄a三级三级三级人| 女人被狂操c到高潮| 国产乱人伦免费视频| 一二三四社区在线视频社区8| 在线看三级毛片| 国语自产精品视频在线第100页| 波多野结衣高清作品| 夜夜夜夜夜久久久久| 精品不卡国产一区二区三区| 中文字幕熟女人妻在线| 国产aⅴ精品一区二区三区波| 97碰自拍视频| 国产精华一区二区三区| 亚洲国产精品合色在线| 波多野结衣高清作品| 女人被狂操c到高潮| 国产亚洲精品久久久久久毛片| 一个人免费在线观看的高清视频| 国产高清videossex| 91字幕亚洲| 欧美在线一区亚洲| 色综合婷婷激情| 久久久成人免费电影| 日韩亚洲欧美综合| 亚洲av二区三区四区| 亚洲国产欧美人成| 最近最新中文字幕大全电影3| 久久欧美精品欧美久久欧美| 色精品久久人妻99蜜桃| 欧美日韩国产亚洲二区| 有码 亚洲区| 亚洲avbb在线观看| 人人妻人人澡欧美一区二区| 久久久久九九精品影院| 看黄色毛片网站| 国产伦精品一区二区三区视频9 | 欧美三级亚洲精品| 偷拍熟女少妇极品色| 最近最新中文字幕大全电影3| 久久欧美精品欧美久久欧美| 国产精华一区二区三区| 国语自产精品视频在线第100页| 久久久久久国产a免费观看| 内地一区二区视频在线| 婷婷精品国产亚洲av在线| 国产精品 国内视频| 午夜视频国产福利| 亚洲av免费在线观看| 首页视频小说图片口味搜索| 国产免费一级a男人的天堂| 一夜夜www| 99热精品在线国产| 国产私拍福利视频在线观看| 久久草成人影院| 身体一侧抽搐| а√天堂www在线а√下载| 一级毛片女人18水好多| 国产高清激情床上av| 国产精品美女特级片免费视频播放器| 国语自产精品视频在线第100页| 亚洲无线在线观看| 高潮久久久久久久久久久不卡| 亚洲国产精品999在线| 国产亚洲精品久久久com| 国产精品99久久久久久久久| 亚洲精品粉嫩美女一区| 亚洲人成网站高清观看| 在线观看一区二区三区| 国产视频内射| 12—13女人毛片做爰片一| 91久久精品国产一区二区成人 | 国产主播在线观看一区二区| 日本撒尿小便嘘嘘汇集6| 日本成人三级电影网站| 久久6这里有精品| 国产探花在线观看一区二区| 久久精品国产亚洲av香蕉五月| 午夜激情欧美在线| 国产精品久久久久久久电影 | 国产精品1区2区在线观看.| 欧美一区二区国产精品久久精品| 国产在线精品亚洲第一网站| 久久精品夜夜夜夜夜久久蜜豆| 日韩有码中文字幕| 日本黄大片高清| 欧美zozozo另类| 一级毛片高清免费大全| 床上黄色一级片| 精品久久久久久久久久久久久| 日韩欧美精品v在线| 一级作爱视频免费观看| 久久精品91蜜桃| 91久久精品国产一区二区成人 | 国产成人福利小说| 亚洲在线自拍视频| 久久久久久久久大av| 亚洲第一欧美日韩一区二区三区| 日韩精品青青久久久久久| 高清毛片免费观看视频网站| 欧美日韩瑟瑟在线播放| 天美传媒精品一区二区| 中文字幕av在线有码专区| 91av网一区二区| 国产精品久久视频播放| 免费观看精品视频网站| 国产高潮美女av| 成人精品一区二区免费| 欧美乱码精品一区二区三区| 国产野战对白在线观看| 成人午夜高清在线视频| 成人18禁在线播放| 精品不卡国产一区二区三区| 90打野战视频偷拍视频| 午夜福利成人在线免费观看| 麻豆久久精品国产亚洲av| 亚洲欧美一区二区三区黑人| 天堂影院成人在线观看| 国产午夜福利久久久久久| 国产一区二区亚洲精品在线观看| 亚洲一区高清亚洲精品| 国产毛片a区久久久久| 91麻豆精品激情在线观看国产| 国产欧美日韩一区二区精品| 国产69精品久久久久777片| 一个人看的www免费观看视频| 免费av毛片视频| 操出白浆在线播放| 手机成人av网站| 哪里可以看免费的av片| 老司机午夜福利在线观看视频| 99久久九九国产精品国产免费| 国产精品香港三级国产av潘金莲| 一边摸一边抽搐一进一小说| 99精品在免费线老司机午夜| 一进一出抽搐gif免费好疼| 俄罗斯特黄特色一大片| 精品久久久久久成人av| 午夜影院日韩av| 国产成人aa在线观看| 国产极品精品免费视频能看的| 嫩草影院入口| 国产乱人伦免费视频| 51午夜福利影视在线观看| 韩国av一区二区三区四区| 亚洲,欧美精品.| www.熟女人妻精品国产| 色综合亚洲欧美另类图片| 亚洲av不卡在线观看| 日本与韩国留学比较| 最近在线观看免费完整版| 日韩中文字幕欧美一区二区| 男插女下体视频免费在线播放| 网址你懂的国产日韩在线| 日日干狠狠操夜夜爽| 特级一级黄色大片| 欧美性感艳星| 又黄又粗又硬又大视频| 91在线精品国自产拍蜜月 | 综合色av麻豆| 少妇的逼水好多| 久久香蕉国产精品| 成人精品一区二区免费| 亚洲av电影在线进入| 国产av麻豆久久久久久久| 天堂动漫精品| 99热精品在线国产| 久久久久久国产a免费观看| 99精品在免费线老司机午夜| 有码 亚洲区| 99热精品在线国产| 国产精品日韩av在线免费观看| 精品国内亚洲2022精品成人| 哪里可以看免费的av片| 日日摸夜夜添夜夜添小说| 十八禁网站免费在线| 精品久久久久久久久久久久久| 久久这里只有精品中国| 国产高清videossex| 99久久精品热视频| 中文在线观看免费www的网站| 男女做爰动态图高潮gif福利片| 午夜福利在线在线| 18禁黄网站禁片午夜丰满| 精品电影一区二区在线| 免费在线观看亚洲国产| 亚洲欧美日韩无卡精品| 精品午夜福利视频在线观看一区| 男人舔女人下体高潮全视频| 国产久久久一区二区三区| 久久精品国产自在天天线| 老司机福利观看| 国产不卡一卡二| 亚洲av电影不卡..在线观看| 国产高清激情床上av| 亚洲国产精品久久男人天堂| 国产精品一及| 日韩大尺度精品在线看网址| 国产精品日韩av在线免费观看| 日日摸夜夜添夜夜添小说| 成年女人永久免费观看视频| 亚洲成av人片在线播放无| 最近视频中文字幕2019在线8| 免费一级毛片在线播放高清视频| 久久香蕉国产精品| 欧美日本视频| 观看美女的网站| 国产精品乱码一区二三区的特点| 亚洲黑人精品在线| 久久香蕉精品热| 国产精华一区二区三区| 12—13女人毛片做爰片一| 麻豆国产av国片精品| 国产免费一级a男人的天堂| 99精品久久久久人妻精品| 日本免费一区二区三区高清不卡| 97超级碰碰碰精品色视频在线观看| 波多野结衣高清无吗| 少妇人妻精品综合一区二区 | 午夜福利高清视频| 一级黄片播放器| 日韩人妻高清精品专区| 两人在一起打扑克的视频| 久久久久亚洲av毛片大全| 桃色一区二区三区在线观看| av国产免费在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产精品香港三级国产av潘金莲| 成人18禁在线播放| 久久亚洲精品不卡| 观看免费一级毛片| 日本精品一区二区三区蜜桃| 看片在线看免费视频| 午夜福利免费观看在线| 99国产精品一区二区三区| 女人十人毛片免费观看3o分钟| 成人高潮视频无遮挡免费网站| 精品免费久久久久久久清纯| 变态另类成人亚洲欧美熟女| 亚洲av免费高清在线观看| 一区二区三区高清视频在线| 国产视频内射| 午夜a级毛片| 天堂影院成人在线观看| 亚洲熟妇熟女久久| 中文资源天堂在线| 亚洲aⅴ乱码一区二区在线播放| 国产精品98久久久久久宅男小说| 欧美乱妇无乱码| 国产爱豆传媒在线观看| 美女高潮的动态| 亚洲国产精品999在线| 精品99又大又爽又粗少妇毛片 | 国产成人系列免费观看| 最新在线观看一区二区三区| 大型黄色视频在线免费观看| 无人区码免费观看不卡| 日韩成人在线观看一区二区三区| 很黄的视频免费| 老汉色∧v一级毛片| 日韩亚洲欧美综合| 女人高潮潮喷娇喘18禁视频| 亚洲久久久久久中文字幕| 免费电影在线观看免费观看| 国产激情偷乱视频一区二区| 制服丝袜大香蕉在线| 两性午夜刺激爽爽歪歪视频在线观看| 欧美成人a在线观看| 成年女人看的毛片在线观看| 非洲黑人性xxxx精品又粗又长| 日韩欧美精品v在线| 亚洲avbb在线观看| 国产精品1区2区在线观看.| 性色avwww在线观看| av在线蜜桃| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品999在线| 欧美国产日韩亚洲一区| 99在线人妻在线中文字幕| 在线观看舔阴道视频| 欧美在线一区亚洲| 国产一区二区三区视频了| 非洲黑人性xxxx精品又粗又长| 美女大奶头视频| www.熟女人妻精品国产| 国产精品三级大全| 亚洲欧美日韩东京热| av视频在线观看入口| 中文亚洲av片在线观看爽| 久9热在线精品视频| 人人妻人人澡欧美一区二区| 欧美国产日韩亚洲一区| 亚洲精品粉嫩美女一区| 国产精品乱码一区二三区的特点| 一本久久中文字幕| 久久久久亚洲av毛片大全| 老司机福利观看| 美女黄网站色视频| 国产亚洲精品综合一区在线观看| 一个人观看的视频www高清免费观看| 小说图片视频综合网站| 在线观看免费午夜福利视频| 搡老岳熟女国产| 亚洲天堂国产精品一区在线| 午夜福利免费观看在线| 欧美日韩精品网址| 99精品久久久久人妻精品| 亚洲成人精品中文字幕电影| 午夜久久久久精精品| 麻豆国产97在线/欧美| 国产成+人综合+亚洲专区| 久久精品91无色码中文字幕| 午夜视频国产福利| 麻豆国产97在线/欧美| 国产在线精品亚洲第一网站| 美女黄网站色视频| 国产久久久一区二区三区| 啦啦啦免费观看视频1| 国产单亲对白刺激| 国产男靠女视频免费网站| 很黄的视频免费| 好男人电影高清在线观看| av女优亚洲男人天堂| 日韩免费av在线播放| 麻豆国产av国片精品| 精品国产亚洲在线| 久久久久九九精品影院| 免费av不卡在线播放| 欧美成人a在线观看| 白带黄色成豆腐渣| 最近最新中文字幕大全免费视频| 亚洲va日本ⅴa欧美va伊人久久| 欧美一区二区亚洲| 午夜视频国产福利| 欧美一区二区国产精品久久精品| 国产欧美日韩精品一区二区| 国产精品三级大全| 亚洲中文日韩欧美视频| av在线天堂中文字幕| 一个人看视频在线观看www免费 | 国产精品一区二区三区四区免费观看 | 免费人成视频x8x8入口观看| 国产黄片美女视频| 日韩欧美精品免费久久 | 久久中文看片网| 欧美高清成人免费视频www| 日本 欧美在线| 好男人电影高清在线观看| 亚洲男人的天堂狠狠| 19禁男女啪啪无遮挡网站| 欧美精品啪啪一区二区三区| 好男人在线观看高清免费视频| 亚洲国产精品999在线| 亚洲av成人精品一区久久| 国产精品女同一区二区软件 | 中出人妻视频一区二区| 国产真人三级小视频在线观看| 中出人妻视频一区二区| 在线视频色国产色| 中出人妻视频一区二区| 国产一区二区在线观看日韩 | 少妇高潮的动态图| 色播亚洲综合网| 亚洲专区国产一区二区| 久久天躁狠狠躁夜夜2o2o| 在线a可以看的网站| 99riav亚洲国产免费| 亚洲电影在线观看av| 一级作爱视频免费观看| 中文字幕av成人在线电影| 热99re8久久精品国产| 日本五十路高清| 狂野欧美激情性xxxx| 国产真人三级小视频在线观看| 亚洲国产中文字幕在线视频| 亚洲激情在线av| 国产色婷婷99| 久久久久久久午夜电影| 国产亚洲精品av在线| 性色av乱码一区二区三区2| 国产毛片a区久久久久| 亚洲精品久久国产高清桃花| 1000部很黄的大片| 精品99又大又爽又粗少妇毛片 | 国产高清视频在线观看网站| 成人高潮视频无遮挡免费网站| 别揉我奶头~嗯~啊~动态视频| 午夜a级毛片| 在线国产一区二区在线| 最后的刺客免费高清国语| 国产三级在线视频| 国产在线精品亚洲第一网站| 两个人视频免费观看高清| 久久久久久人人人人人| 欧美国产日韩亚洲一区| 欧美性感艳星| 麻豆久久精品国产亚洲av| 熟女少妇亚洲综合色aaa.| 午夜福利免费观看在线| 午夜两性在线视频| 性欧美人与动物交配| 哪里可以看免费的av片| 国产精品99久久99久久久不卡| 亚洲欧美激情综合另类| 深夜精品福利| 手机成人av网站| 老司机午夜十八禁免费视频| 88av欧美| 少妇高潮的动态图| 免费在线观看亚洲国产| 国产成年人精品一区二区| 欧美激情久久久久久爽电影| 热99re8久久精品国产| 美女黄网站色视频| 国产精品乱码一区二三区的特点| 亚洲成人久久爱视频| 久久久久久久久大av| 内射极品少妇av片p| 可以在线观看的亚洲视频| 欧美午夜高清在线| 国产精品99久久久久久久久| 在线观看免费午夜福利视频| 亚洲激情在线av| 日本熟妇午夜| 热99re8久久精品国产| 亚洲av美国av| 国产精品一区二区三区四区免费观看 | 又紧又爽又黄一区二区| 国产单亲对白刺激| 女生性感内裤真人,穿戴方法视频| 欧美日韩综合久久久久久 | 夜夜爽天天搞| 免费看a级黄色片| 精品国内亚洲2022精品成人| 欧美xxxx黑人xx丫x性爽| 日韩成人在线观看一区二区三区| 日日摸夜夜添夜夜添小说| 十八禁人妻一区二区| 国产一区二区在线观看日韩 | 国产黄a三级三级三级人| 国产精品亚洲一级av第二区| 亚洲精品456在线播放app |