孫兆樓 竇立璇
(安陽(yáng)工學(xué)院 數(shù)理學(xué)院,河南 安陽(yáng) 455000)
原子物理學(xué)是物理學(xué)專(zhuān)業(yè)的一門(mén)重要的專(zhuān)業(yè)基礎(chǔ)必修課,是繼力學(xué)、熱學(xué)、光學(xué)和電磁學(xué)之后的最后一門(mén)普通物理課程。原子物理學(xué)是普通物理的重要組成部分,它屬于近代物理[1]。原子物理學(xué)包括原子物理、原子核物理和粒子物理[2]。原子物理學(xué)是20世紀(jì)隨著量子力學(xué)的發(fā)展而發(fā)展起來(lái)的,至今,原子物理學(xué)的許多問(wèn)題仍然是科學(xué)研究的前沿問(wèn)題。原子物理學(xué)是現(xiàn)代科學(xué)技術(shù)的基礎(chǔ),是連接經(jīng)典物理與現(xiàn)代物理的橋梁。學(xué)好原子物理學(xué)能為后繼的量子力學(xué)、固體物理等課程打下堅(jiān)實(shí)的理論基礎(chǔ)。因此,學(xué)好原子物理學(xué)具有十分重要的意義。本文根據(jù)近幾年原子物理學(xué)教學(xué)實(shí)踐,分析了教學(xué)現(xiàn)狀,在教學(xué)內(nèi)容、教學(xué)方法上對(duì)原子物理學(xué)教學(xué)進(jìn)行了研究和實(shí)踐。
首先,原子物理學(xué)知識(shí)抽象、難懂,沒(méi)有清晰的物理圖像。原子物理學(xué)是研究原子的結(jié)構(gòu)、運(yùn)動(dòng)規(guī)律及相互作用的一門(mén)科學(xué)。其研究的物質(zhì)結(jié)構(gòu)介于分子和原子核之間,線度約為10-10米,用肉眼是根本無(wú)法直接觀察的,只能在頭腦中想象。學(xué)生在學(xué)習(xí)的過(guò)程中普遍反映知識(shí)很抽象,摸不著頭腦,不像學(xué)習(xí)力學(xué)知識(shí)那樣,對(duì)物體運(yùn)動(dòng)有清晰的物理圖像。其次,教材內(nèi)容過(guò)于老化。20世紀(jì)30年代M.Born寫(xiě)了一本《原子物理學(xué)》,H.E.White寫(xiě)了一本《原子光譜導(dǎo)論》,這兩本書(shū)是原子物理學(xué)方面的經(jīng)典之作?,F(xiàn)在的原子物理學(xué)教材體系一般遵循Born和White模式,大部分的教材內(nèi)容都是反映20世紀(jì)30年代前后的知識(shí),現(xiàn)代科技知識(shí)涉及太少。講授理論知識(shí)若缺乏實(shí)際應(yīng)用的介紹,將會(huì)使知識(shí)僵化,知識(shí)面狹窄,難以激起學(xué)生的學(xué)習(xí)興趣。
大部分的教材內(nèi)容一般都是按照原子物理學(xué)的發(fā)展歷史進(jìn)行編寫(xiě)的。從原子的光譜實(shí)驗(yàn)到玻爾提出的量子化假設(shè)理論(基于經(jīng)典物理基礎(chǔ)上的量子化,半經(jīng)典半量子,稱(chēng)為舊量子理論),再由玻爾理論講授原子的能級(jí)、精細(xì)結(jié)構(gòu)、超精細(xì)結(jié)構(gòu)等。對(duì)于微觀領(lǐng)域,正確描述電子運(yùn)動(dòng)的是量子力學(xué)理論,玻爾理論是有其局限性的。最突出的問(wèn)題是電子的軌道運(yùn)動(dòng),根據(jù)玻爾理論,電子在庫(kù)侖力的作用下沿著一些特定的軌道繞原子核運(yùn)動(dòng)。在量子力學(xué)中,電子運(yùn)動(dòng)是由波函數(shù)來(lái)描述的,滿足薛定諤方程,電子的運(yùn)動(dòng)具有不確定性,只能用概率來(lái)表示,沒(méi)有軌道運(yùn)動(dòng)的概念,量子力學(xué)中是用“電子云”來(lái)形象說(shuō)明電子的運(yùn)動(dòng)。教學(xué)中若處理不好玻爾理論與量子力學(xué)的關(guān)系,會(huì)讓學(xué)生覺(jué)得知識(shí)有點(diǎn)混亂,莫衷一是。筆者認(rèn)為在原子物理學(xué)教學(xué)過(guò)程中,能用玻爾理論解決的問(wèn)題就盡量不要用量子力學(xué),如玻爾理論不能解決,則可定性地用量子力學(xué)知識(shí)來(lái)解釋?zhuān)苊鈴?fù)雜的量子力學(xué)推導(dǎo)過(guò)程。原子物理學(xué)雖屬近代物理,但仍是普通物理學(xué)的重要組成部分,應(yīng)該具有普通物理學(xué)的特點(diǎn),要注重基本的物理實(shí)驗(yàn)、物理圖像、物理思想和物理模型[3]。若用量子力學(xué)進(jìn)行詳細(xì)的解釋?zhuān)瑒t要涉及波函數(shù)、算符、力學(xué)量、薛定諤方程、微擾理論等復(fù)雜的量子力學(xué)知識(shí),會(huì)淡化和掩蓋了原子物理學(xué)的基本的物理實(shí)驗(yàn)、物理圖像、物理思想和物理模型。恰當(dāng)處理好玻爾理論與量子力學(xué)的關(guān)系,既能使學(xué)生易于接受原子物理學(xué)知識(shí),又能為后繼的量子力學(xué)等課程打下基礎(chǔ),使原子物理學(xué)成為連接經(jīng)典物理和現(xiàn)代物理的橋梁。
原子物理學(xué)是現(xiàn)代科學(xué)技術(shù)的基礎(chǔ),隨著原子物理學(xué)的發(fā)展,新思想,新知識(shí)不斷被發(fā)現(xiàn),在此基礎(chǔ)上產(chǎn)生了大量的現(xiàn)代科學(xué)技術(shù)。如與原子受激輻射有關(guān)的激光技術(shù);與原子的內(nèi)層電子激發(fā)有關(guān)系的X射線的熒光分析技術(shù)、計(jì)算層析技術(shù);與物質(zhì)波有關(guān)的電子顯微鏡;與原子能級(jí)分裂有關(guān)的電子順磁共振和核磁共振等等,其中X射線影像、核磁共振成像已應(yīng)用到醫(yī)學(xué)領(lǐng)域[4]。將這些科學(xué)技術(shù)知識(shí)引入到原子物理學(xué)教學(xué)中,不僅可以加深學(xué)生對(duì)所學(xué)知識(shí)的印象,還可以開(kāi)闊他們的視野,激發(fā)學(xué)習(xí)興趣,培養(yǎng)創(chuàng)新意識(shí),取得良好的學(xué)習(xí)效果。
原子物理學(xué)的發(fā)展產(chǎn)生了許多重要的創(chuàng)造成果,包括1999年在內(nèi)共有96項(xiàng)諾貝爾物理學(xué)獎(jiǎng),其中就有66項(xiàng)是與原子物理學(xué)有關(guān)的,占到總獲獎(jiǎng)數(shù)的2/3。這些諾貝爾物理學(xué)獎(jiǎng)的成果不僅是原子物理學(xué)發(fā)展的重要里程碑,而且是前輩物理學(xué)家創(chuàng)造性研究的典范[5]。在教學(xué)過(guò)程中,適當(dāng)?shù)刂v解一些有代表性物理學(xué)家的工作背景、研究思路、研究方法以及他們?cè)诿鎸?duì)困難時(shí)的科學(xué)創(chuàng)新精神、非凡的膽識(shí),都會(huì)對(duì)學(xué)生留下深刻的印象,引起長(zhǎng)久的思考。例如,電子自旋假說(shuō)是20世紀(jì)初最重要的假設(shè)之一,電子自旋的提出在原子物理學(xué)發(fā)展歷史中具有里程碑的意義。1925年,荷蘭的兩位在讀大學(xué)生烏倫貝克和古德斯密特,在地球運(yùn)動(dòng)規(guī)律的啟發(fā)下,經(jīng)過(guò)深入研究,大膽提出了電子自旋假設(shè)。但誰(shuí)能想到這樣重要的理論是由兩個(gè)還沒(méi)畢業(yè)的大學(xué)生提出的。對(duì)于兩個(gè)年輕人來(lái)說(shuō),提出這樣的理論不僅需要?jiǎng)?chuàng)造精神,更需要非凡的勇氣和膽識(shí)。我們?cè)谡n堂教學(xué)中引入這樣的事例,在學(xué)生中激起了強(qiáng)烈的反響,引發(fā)了熱烈的討論,極大地提高了他們的學(xué)習(xí)熱情和學(xué)習(xí)興趣,同時(shí)也培養(yǎng)了學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力。
原子物理學(xué)的知識(shí)面較廣,知識(shí)點(diǎn)松散,各知識(shí)點(diǎn)間的邏輯性、系統(tǒng)性不強(qiáng),再加上學(xué)時(shí)少,一般只有54學(xué)時(shí)左右,教學(xué)任務(wù)重。因此,教學(xué)方法就顯得尤為重要。按照原子物理學(xué)教學(xué)大綱,明確教學(xué)中的重難點(diǎn)。每堂課都要向?qū)W生明確哪些知識(shí)需要重點(diǎn)掌握,哪些需要理解,哪些需要了解。重難點(diǎn)知識(shí)要精講、細(xì)講,從物理實(shí)驗(yàn)、物理圖像、物理思想、物理模型到具體的推導(dǎo)過(guò)程都要講清楚,不惜面面俱到。理解性的內(nèi)容可講清楚物理思想和物理圖像,不必過(guò)多涉及細(xì)節(jié)性?xún)?nèi)容。了解性的內(nèi)容可讓學(xué)生課下自行學(xué)習(xí),給出一些參考資料,讓學(xué)生以讀書(shū)報(bào)告的形式提交作業(yè)。明確教學(xué)中的重難點(diǎn),學(xué)生明確了學(xué)習(xí)目標(biāo),提高了學(xué)習(xí)的積極性,促進(jìn)了學(xué)生的自主學(xué)習(xí)。
傳統(tǒng)板書(shū)具有講課思路清晰,留給學(xué)生較多的思考時(shí)間,易于跟上講課思路等優(yōu)點(diǎn)。對(duì)重要公式理論的推導(dǎo),系統(tǒng)知識(shí)的梳理具有良好的教學(xué)效果。多媒體教學(xué)可演示圖片、動(dòng)畫(huà)、影像資料,具有形象直觀的特點(diǎn),而且幻燈片記載的信息量大,放映時(shí)間少。在原子物理學(xué)教學(xué)中,將傳統(tǒng)板書(shū)與多媒體教學(xué)的有機(jī)結(jié)合起來(lái),能收到良好的教學(xué)效果。例如講電子的自旋—軌道相互作用時(shí),先用多媒體演示電子自旋運(yùn)動(dòng)和軌道運(yùn)動(dòng)的動(dòng)畫(huà),學(xué)生頭腦中有了清晰的物理圖像,然后再采用板書(shū)的形式詳細(xì)推導(dǎo)其作用規(guī)律,就比較容易理解。一些著名的物理實(shí)驗(yàn)現(xiàn)象,現(xiàn)代科學(xué)技術(shù)應(yīng)用,著名物理學(xué)家生平簡(jiǎn)介等都可以通過(guò)多媒體展示給學(xué)生。既能拓寬學(xué)生的知識(shí)面,還能活躍課程氣氛,激發(fā)學(xué)習(xí)興趣,提高學(xué)習(xí)積極性。
原子物理學(xué)雖已有一百多年的歷史,但仍是具有生命力的,不斷向前發(fā)展的科學(xué),原子物理學(xué)教學(xué)也應(yīng)不斷地向前發(fā)展進(jìn)步。本文根據(jù)近幾年原子物理學(xué)教學(xué)實(shí)踐,在教學(xué)內(nèi)容、教學(xué)方法上對(duì)原子物理學(xué)教學(xué)進(jìn)行了研究和實(shí)踐。以期能與同行進(jìn)行討論,共同提高原子物理學(xué)教學(xué)水平。
[1]喀興林.關(guān)于原子物理學(xué)課程現(xiàn)代化問(wèn)題[J].大學(xué)物理,1992,11(11):6-8.
[2]褚圣麟.原子物理學(xué)[M].北京:高等教育出版社,2012.
[3]高政祥.原子物理學(xué)教學(xué)改革的幾點(diǎn)探索[J].大學(xué)物理,2001(4):34.
[4]張澤寶.醫(yī)學(xué)影像物理學(xué)[M].北京:人民衛(wèi)生出版社,2004.
[5]崔金玉.關(guān)于物理學(xué)史恰當(dāng)?shù)匾氲皆游锢韺W(xué)教學(xué)中的思考[J].長(zhǎng)春師范學(xué)院學(xué)報(bào):自然科學(xué)版,2009,28(1):99.