• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameters Estimation of Chaotic Telemetry System between Two Different Time-delayed Chaotic Systems

    2013-08-08 09:58:10WEIHengdong
    電訊技術(shù) 2013年5期
    關(guān)鍵詞:國(guó)防工業(yè)電子科技遙測(cè)

    WEI Heng-dong

    (Southwest China Institute of Electronic Technology,Chengdu 610036,China)

    1 Introduction

    Chaotic telemetry is a new technology in aircraft telemetry system.It completes telemetry system parameters transmission andmeasurement through utilizing chaotic sequence substitute traditionalpseudo code sequence[1-2].The basic principle of chaotic telemetry is that the transmitter uses high-speed chaotic sequence to modulate the transmitted message to spread its spectrum,then,the receiver uses synchronization circuit to generate same chaotic sequence to correlate with the received signal to recover telemetry data and estimate the telemetry parameters.The usually used chaotic telemetry modes are chaotic spread spectrum[3]and chaotic modulation[4].As a non-cooperator,how to get useful information from intercepted chaotic telemetry signal is an important task.However,the report about non-cooperate chaotic telemetry signal analysis is too few.

    One interesting application of chaos synchronization is estimation of the system parameters with the available time series from the driving system.During the past decade,an approach of using synchronization as a param-eter estimation method called auto-synchronization[5-6]has attracted much attentions[7-13].This process is governed by additional update rules for the parameters that are controlled by the synchronization error.

    The parameter estimation of chaotic telemetry system and getting useful information hidden in intercepted signal by chaotic synchronization is an important issue in chaotic telemetry signal analysis.However,the precondition of most of the parameters estimation methods is that the two systemswhich synchronize with each other should have the same structure,which,however,is not the case in practice.For instance,in chaotic telemetry signal reconnaissance,the non-cooperative detector doesn′t know the system structure.That is to say,the detector has to use a different system to estimate the parameters modulated by information.However,the synchronization and parameter estimation of different chaotic systems is far less understood because of their different structures and parameters.So,it is not only of theoretical interest but also of practical value to investigate the parameter estimation between two different chaotic systems.The immediate configuration for synchronization between two different systems is generalized synchronization.The basic idea of generalized synchronization is that there exists a transformation which is able to map asymptotically the trajectories of the driving attractor into the response attractor.So,if the generalized synchronization is used to parameter estimation,the first problem we must face is the estimation of the “transformation”.However,this transformation is so complex that we can not get any analytical results[14-15].Therefore,designing a simple scheme to estimate parameters between two different chaotic systems is a significant issue.

    In thispaper,synchronization based parametersestimation between two different chaotic systems is proposed and applied to chaotic telemetry signal analysis.A control signal is designed based on Krasovskii-Lyapunov theory to make these two systems synchronize with each other.An analytical approach to the sufficient condition for synchronization and parameter estimation is also established.Chaotic telemetry is an active branch of TT&C communication,because of the noise-like characteristic of chaotic signal.Here,as an eavesdropper,a different system is used to decode the message transferred between the cooperators.Firstly,a control signal is designed for parameter estimation between two different chaotic systems based on Krasovskii-Lyapunov theory.The sufficient condition for synchronization and parameter estimation is established analytically.Secondly,the method is verified by numerical examples.Then chaotic telemetry signal reconnaissance scheme is given,too.Finally,results are summarized.

    2 Parameters Estimation Scheme

    Consider the following time-delay system,

    where p=(p1,p2,…,pm)∈Rmare unknown parameters to be estimated;xτ=x(t-τ).This system is used to drive a response system,

    where a,b are positive parameters;τ is the delay time.The response system,called prototype model,is proposed as a chaos generator and is studied in Reference[16].Figure 1(a)shows the chaotic attractor of this system,where a=1.7,b=1 and τ=1.Our aim is to design a control signal u and parameter update rules gi(i=1,2,…,m)such that the system(2)synchronize with system(1)and the unknown parameters are estimated correctly.

    Fig.1 Phase portrait of the prototype model and Ikeda system圖1 Prototype模型和Ikeda系統(tǒng)的相圖

    Introduce a control signal u to system(2),which can be written as

    To determine the control signal and parameter update rules,we investigate the dynamics of the differences Δ=x-y.Then the dynamics of the error are

    Let ei=pi-qiandcy+kΔ,then

    where giare the update rules to be determined to ensure the parameter estimation;qiare the estimation of pi;k is the coupled strength.

    According to Krasovskii-Lyapunov theory,we define a continuous positive-definite Lyapunov function[14,17]

    where ξ>0, μ>0 and δi>0 for all i is the update rate.Then

    In view of Krasovskii-Lyapunov theory,﹒V will be negative if and only ifand

    On the other hand,

    Then,we get the sufficient condition for synchronization and parameter estimation as

    where sup(f(x))is the supremum of f(x).

    3 Numerical Simulation

    To illustrate the suggested parameter estimation method,we first consider the Ikeda system with one unknown parameter,

    where f(x)=sin(x).We choose the parameter values as c=1,p=4 and τ1=2.Figure 1(b)shows the chaotic attractor of this system.Here p=4 is the only estimated parameter.

    Another chaotic system,referred in last section,whose structure is different from Ikeda system,

    where a=1.7,b=1,τ=1,is used to estimate the unknown parameter.We design the control signal u=qf(yτ1)+.The parameter update rule is

    If we choose δ=10,from the condition(12),one can obtain the sufficient condition for synchronization and parameter estimation as k>1.2.Figure 2 shows the synchronization error and parameter estimation of these two different systemswhen k=2.5.Although,these two systems have different structure,it is easy to see from the figure that the synchronization error diminishes gradually.At last,the parameter is estimated correctly as shown in Fig.2(a).Noting that,the update rate δcontrols the convergence speed of the parameter estimation.Improper chosen of update rate will lead to the too slow converge,serious fluctuate,or divergence.

    Fig.2 Parameter estimation and synchronization error between Ikeda system(with one unknown parameter)and prototype model圖2 Ikeda系統(tǒng)(具有一個(gè)未知參數(shù))和Prototype模型之間的參數(shù)估計(jì)和同步誤差

    4 Applications

    Owing to the random noise-like properties and the discovery of the synchronization of chaotic system,chaotic signals are applicable to secure communication systems[18],including chaotic encryption and chaotic spread spectrum systems.Chaotic telemetry is a new technology in aircraft telemetry system which is an active branch in chaotic communication.In chaotic telemetry scheme with coherent receiver,the transmitter and the receiver use the same chaotic system to encoding and decoding the message,respectively.Here,as an eavesdropper,we use a different chaotic system to decode the useful information transmitted by the transmitter.The Ikeda system,as described in(13),is used to transmit information between the cooperators.The receiver uses the same system to recover the message as

    The modulation parameter p is switched between 4 and 5 in the transmitter according to the digital message.That is to say,when the transmitted message bit is 0,the parameter p is set to be 4;when the transmitted message bit is 1,the parameter p is set to be 5.Figure 3 shows decoding by the cooperator and the eavesdropper.The eavesdropper use a different system as

    to obtain the useful message,where the control signal u=qf(yτ1)+-axτ-cy+kΔ and the parameter update rule is the same as(17).We choose the parameter values as a=1.7,b=1,τ=1,τ1=2,δ=30 and k=8.Figure 3(a)shows the data m(t)needs to be transmitted.The recovered data m′(t)by the cooperator and the eavesdropper are shown in Fig.3(b),respectively.For better visualization,the parameter q has been divided by 5,and then the estimation by eavesdropper has been added by 2.The solid line denotes the data recovered by the cooperator,and the dashed line denotes by the eavesdropper.Synchronization error versus time is shown in Fig.3(c).For better visualization,we add the synchronization error of the eavesdropper system by 0.5 which are denoted by dashed line.The synchronization error of the cooperator system is denoted by solid line.It is easy to see,the same as the identical system,the different system can be used to estimate the unknown parameter correctly.The synchronization error changesobviously when the parameter switches.Thismainly results from the trajectories switches between the different synchronization manifolds.Noting that,the synchronization error can be used to pre-estimate the code rate to some extent.

    Fig.3 Parameter estimation of chaotic telemetry system using same and different system圖3 相同和不同混沌系統(tǒng)對(duì)混沌遙測(cè)系統(tǒng)參數(shù)估計(jì)結(jié)果

    It should be noted that our scheme can be extended to parameter estimation of multi-parameter chaotic telemetry system.Every transmitted telemetry parameter exploits a chaotic system parameter to modulate it.

    5 Conclusions

    Parameter estimation between two different time-delayed chaotic systems and its application has been investigated.A control signal is designed to ensure synchronization and parameter estimation of different systems based on Krasovskii-Lyapunov theory.This scheme can be used to estimate multi-parameters of a chaotic telemetry system from a scalar observable signal.We exploited a different system to recover the message transmitted between the cooperators.The update rate which determines the convergence speed will decrease the fluctuant time till the correct parameter value is estimated,with the increase of it.So,in chaotic telemetry signal reconnaissance,we can increase the update rate to decrease the convergence time to satisfy the fast parameter switch.An immediate result of the increase of update rate is the serious fluctuation of the initial stepsof parameter estimation.However,a filter can be used to smooth the estimated curve,and a decision device is used to decide the message transmitted from the transmitter.Therefore,our results can be used to practical engineering application.

    It is worth noting that the construction of the parameter estimation scheme does not consider the effect of the noise,however,this is an important problem should be faced and solved in synchronization based parameter estimation between chaotic systems.Next,we will study the impact of the noise on our scheme.

    [1] WEI Heng-dong.A study on the detection of chaotic direct sequence spread spectrum signal an chaos synchronization[D].Chengdu:University of Electronic Science and Technology of China,2010.(in Chinese)魏恒東.混沌直擴(kuò)信號(hào)檢測(cè)與混沌同步研究[D].成都:電子科技大學(xué),2010.

    [2] LIU Jia-xin.Spacecraft TT&C and Information Transmission Technology[M].Beijing:National Defense Industry Press,2011.(in Chinese)劉嘉興.飛行器測(cè)控與信息傳輸技術(shù)[M].北京:國(guó)防工業(yè)出版社,2011.

    [3] Parlitz U,Ergezinger S.Robust communication based on chaotic spreading sequences[J].Physics Letters A,1994,188(2):146-150.

    [4] Stavroulakis P.Chaos applications in telecommunications[M].New York:CRC Press,2006.

    [5] Parlitz U.Estimating model parameters from time series by autosynchronization[J].Physical Review Letters,1996,76:1232-1235.

    [6] Parlitz U,Junge L,Kocarev L.Synchronization-based parameter estimation from time series[J].Physical Review E,1996,54(6):6253-6259.

    [7] Wei H,Li L.Estimating parameters by anticipating chaotic synchronization[J].Chaos,2010,20(2):023112.

    [8] Li Z,Zhao X.Generalized function projective synchronization of two different hyperchaotic systemswith unknown parameters[J].Nonlinear Analysis:Real World Applications,2011,12(5):2607-2615.

    [9] Zhou P,Ding R.Modified Function Projective Synchronization between Different Dimension Fractional-Order Chaotic Systems[J].Abstract and Applied Analysis,2012(2012):1-12.

    [10] Wu X,Li S.Dynamics analysis and hybrid function projective synchronization of a new chaotic system[J].Nonlinear Dynamics,2012,69(4):1979-1994.

    [11] Parlitz U,YU D.Synchronization and control based parameter identification in Intelligent Computing based on Chaos[M].Berlin:Springer,2009:227-249.

    [12] Wang S,Yu Y.Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J].Chinese Physics Letters,2012,29(2):020505.

    [13] Wei W,Li D H,Wang J.Synchronization of hyperchaotic Chen systems:a class of the adaptive control[J].Chinese Physics B,2010,19(4):1-11.

    [14] Ghosh D,Banerjee S.Adaptive scheme for synchronizationbased multiparameter estimation from a single chaotic time series and its applications[J].Physical Review E,2008,78(5):056211.

    [15] Pecora L,Carroll T,Johnson G,et al.Fundamentals of synchronization in chaotic systems,concepts,and applications[J].Chaos,1997,7(4):520.

    [16] Ucar A.A prototype model for chaos studies[J].International Journal of Engineering Science,2002,40(3):251-258.

    [17] Senthilkumar D V,Kurths J,Lakshmanan M.Stability of synchronization in coupled time-delay systems using Krasovskii-Lyapunov theory[J].Physical Review E,2009,79(6):1-4.

    [18] Ren Hai-peng,Baptista M,Grebogi C.Wireless communication with chaos[J].Physical Review Letter,2013,110(18):1-5.

    猜你喜歡
    國(guó)防工業(yè)電子科技遙測(cè)
    西安展天電子科技有限公司
    寶雞市普瑞思電子科技有限公司
    美國(guó)國(guó)防工業(yè)供應(yīng)鏈對(duì)外依賴情況
    美國(guó)鞏固提升國(guó)防工業(yè)供應(yīng)鏈能力的舉措及啟示
    2S1廣州弘傲電子科技有限公司
    213B廣州市碼尼電子科技有限公司
    自適應(yīng)模糊PID控制的遙測(cè)方艙溫度調(diào)節(jié)方法
    電子制作(2019年11期)2019-07-04 00:34:40
    某小型無人機(jī)遙測(cè)軟件設(shè)計(jì)
    試 著
    北方音樂(2017年17期)2017-11-02 02:19:38
    淺談如何提高遙測(cè)狀態(tài)估計(jì)合格率
    精品亚洲乱码少妇综合久久| 国产精品一区二区免费欧美 | 国产又爽黄色视频| 久久久久久亚洲精品国产蜜桃av| 国产精品久久久av美女十八| 一本—道久久a久久精品蜜桃钙片| 亚洲精品国产av成人精品| 男女床上黄色一级片免费看| 一区二区三区四区激情视频| 国产欧美日韩精品亚洲av| 国产视频首页在线观看| 久久毛片免费看一区二区三区| 男女高潮啪啪啪动态图| 亚洲成人国产一区在线观看 | 99精国产麻豆久久婷婷| 欧美人与性动交α欧美软件| 在线看a的网站| 天天躁日日躁夜夜躁夜夜| 两个人免费观看高清视频| 十八禁人妻一区二区| 丁香六月欧美| 美女午夜性视频免费| bbb黄色大片| 韩国高清视频一区二区三区| 女人高潮潮喷娇喘18禁视频| 国产一区二区三区av在线| 欧美精品啪啪一区二区三区 | 亚洲国产最新在线播放| 国产欧美亚洲国产| 高潮久久久久久久久久久不卡| 国产91精品成人一区二区三区 | 国产女主播在线喷水免费视频网站| 免费av中文字幕在线| 国产免费又黄又爽又色| 美女大奶头黄色视频| 亚洲欧美一区二区三区久久| 久久精品aⅴ一区二区三区四区| 成年人黄色毛片网站| 五月天丁香电影| 免费观看人在逋| 亚洲av男天堂| 成人亚洲欧美一区二区av| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品一二三| 在线观看免费日韩欧美大片| 黄色视频在线播放观看不卡| 成年美女黄网站色视频大全免费| 一级毛片我不卡| 国产欧美亚洲国产| 久久99热这里只频精品6学生| 男人添女人高潮全过程视频| 女人精品久久久久毛片| 伊人久久大香线蕉亚洲五| 日韩av在线免费看完整版不卡| 久久精品亚洲熟妇少妇任你| 色网站视频免费| 久久 成人 亚洲| 男女床上黄色一级片免费看| 欧美少妇被猛烈插入视频| 久久精品熟女亚洲av麻豆精品| 十分钟在线观看高清视频www| 亚洲精品国产av蜜桃| 男人操女人黄网站| 欧美日韩黄片免| 亚洲国产欧美一区二区综合| 97人妻天天添夜夜摸| 欧美xxⅹ黑人| 王馨瑶露胸无遮挡在线观看| 在线天堂中文资源库| 久久人人爽av亚洲精品天堂| 日韩欧美一区视频在线观看| 中文精品一卡2卡3卡4更新| 国产亚洲av片在线观看秒播厂| 久久精品久久久久久噜噜老黄| 悠悠久久av| 青草久久国产| 精品国产超薄肉色丝袜足j| 久久久亚洲精品成人影院| 国产老妇伦熟女老妇高清| 国产有黄有色有爽视频| 一区二区三区乱码不卡18| 黄色一级大片看看| 久久久久久久精品精品| 午夜福利,免费看| 成人影院久久| 欧美变态另类bdsm刘玥| 亚洲精品国产一区二区精华液| 美女午夜性视频免费| 中文字幕色久视频| 日本五十路高清| 国产成人一区二区三区免费视频网站 | 欧美少妇被猛烈插入视频| 午夜免费观看性视频| 午夜激情久久久久久久| 91成人精品电影| 黄色片一级片一级黄色片| 欧美日韩黄片免| 国产熟女午夜一区二区三区| 久久久久久免费高清国产稀缺| 国产精品成人在线| 麻豆乱淫一区二区| 久久精品成人免费网站| 亚洲欧美精品综合一区二区三区| 日本a在线网址| 国语对白做爰xxxⅹ性视频网站| 大陆偷拍与自拍| 丝袜美足系列| 五月开心婷婷网| 亚洲色图综合在线观看| 五月开心婷婷网| 91精品国产国语对白视频| videosex国产| 99久久99久久久精品蜜桃| 美女高潮到喷水免费观看| 亚洲精品久久午夜乱码| 熟女av电影| 国产成人av激情在线播放| 欧美激情 高清一区二区三区| 黄片播放在线免费| 久久久国产欧美日韩av| 亚洲国产av影院在线观看| 韩国精品一区二区三区| 亚洲av成人精品一二三区| 91字幕亚洲| 性少妇av在线| 午夜免费成人在线视频| 亚洲免费av在线视频| 亚洲 国产 在线| 亚洲欧美成人综合另类久久久| 午夜精品国产一区二区电影| 美女主播在线视频| 国产成人欧美| 观看av在线不卡| 18禁观看日本| 视频区图区小说| 精品亚洲成a人片在线观看| 日本vs欧美在线观看视频| 国产野战对白在线观看| 国产成人av教育| 亚洲少妇的诱惑av| 久9热在线精品视频| 婷婷成人精品国产| 国产精品一国产av| 黄色 视频免费看| 后天国语完整版免费观看| 国产高清视频在线播放一区 | 精品久久久久久电影网| 少妇粗大呻吟视频| 国产熟女午夜一区二区三区| 亚洲专区中文字幕在线| 亚洲国产av新网站| 97在线人人人人妻| 一本—道久久a久久精品蜜桃钙片| 国产又爽黄色视频| 国产片内射在线| 国产欧美日韩一区二区三 | 18禁黄网站禁片午夜丰满| www.自偷自拍.com| 国产国语露脸激情在线看| 无遮挡黄片免费观看| xxx大片免费视频| 日韩 欧美 亚洲 中文字幕| 伦理电影免费视频| 捣出白浆h1v1| 热re99久久国产66热| 美女脱内裤让男人舔精品视频| 国语对白做爰xxxⅹ性视频网站| 亚洲国产精品一区二区三区在线| 国产老妇伦熟女老妇高清| 久久精品成人免费网站| 美女视频免费永久观看网站| 欧美日韩一级在线毛片| 午夜免费成人在线视频| 啦啦啦在线观看免费高清www| 亚洲国产看品久久| 国产精品三级大全| 欧美人与善性xxx| 美女福利国产在线| 成人亚洲欧美一区二区av| 久久久久网色| 欧美精品人与动牲交sv欧美| 在线观看www视频免费| 美女主播在线视频| 嫩草影视91久久| 一级毛片 在线播放| av天堂在线播放| 电影成人av| 韩国高清视频一区二区三区| 国产色视频综合| 亚洲少妇的诱惑av| 多毛熟女@视频| 欧美激情极品国产一区二区三区| 精品一区在线观看国产| 啦啦啦 在线观看视频| 人妻人人澡人人爽人人| 满18在线观看网站| 水蜜桃什么品种好| 成年人黄色毛片网站| av天堂在线播放| 国产精品 欧美亚洲| 亚洲久久久国产精品| 人妻人人澡人人爽人人| 色精品久久人妻99蜜桃| 超碰97精品在线观看| 精品国产乱码久久久久久小说|