• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Preliminary Phylogenetic Analysis of Luidia (Paxillosida:Luidiidae) from Chinese Waters with Cytochrome Oxidase Subunit I (COI) Sequences

    2013-07-29 03:00:50XIAONing1LIURuiyu1YUANShuai3andSHAZhongli1
    Journal of Ocean University of China 2013年3期

    XIAO Ning1), 2), LIU Ruiyu1), YUAN Shuai3), and SHA Zhongli1), *

    ?

    A Preliminary Phylogenetic Analysis of(Paxillosida:Luidiidae) from Chinese Waters with Cytochrome Oxidase Subunit I (COI) Sequences

    XIAO Ning, LIU Ruiyu, YUAN Shuai, and SHA Zhongli

    1),,266071,2),100049,3),041000,

    Forbes(Paxillosida: Luidiidae) are common soft bottom sea stars with 49 described species. Because of substantial morphological diversity, the taxonomy of the genus is complex and hasn’t been resolved definitely. In order to resolve general taxonomic issues, and determine species boundaries and phylogenetic relationships within the genus, the sequences of cytochrome oxidase subunit Ι (COΙ) gene from 24 specimens ofbelonging to eight taxa in Chinese waters, were studied. Threesequences of two species in genusfrom GenBank were used to analyze the phylogenetic relationships. The molecular phylogeny exhibited three main clades, each with strong bootstrap support: Clade A includingfrom the Sea of Japan; Clade B including seven nominal species (von Martens,Goto,Liu, Liao and Li,Fisher,Fisher,Sladen andGray) from Chinese waters; and Clade C includingMüller & Troschel from Chinese waters. Our molecular phylogeny results support the morphological Quinaria-Group and Alternata-Group assigned by D?derlein. Seven nominal species we sampled do not exhibit genetic distances that are large enough to recognize them as separate species. Cryptic species may exist in ‘’ from the Yellow Sea and the Sea of Japan. Meaningful morphological characters need further investigation in.

    Echinodermata;; China; DNA taxonomy; cryptic species

    1 Introduction

    The starfish genusForbes, 1839, is the only valid genus of Luidiidae (Asteroidea: Paxillosida) with 49 species described worldwide to date (Mah and Hansson, 2012). It has a wide distribution, mainly in shallow waters of tropical and subtropical seas (Clark and McKnight, 2000), and is partly confined to temperate waters (Djakonov, 1950). These animals mainly feed on molluscs and other echinoderms, live in sandy or muddy substrate (Sloan, 1980). Only a few species are recorded in considerable depths, such asDüben & Koren, 1845 in up to 1300m (Clark and Downey, 1992).is a common inshore species and has been the subject of many biological studies (Schram., 2011; Gui., 2011).

    There are many taxonomic studies of. D?derlein (1920) divided more than 40 species ofincluding ten subgenera into four groups. He emphasized the form and appearance of primary ossicle systems and the deve- lopment of spines, spinelets, and pedicellariae as useful morphological features. Blake (1973) studied the internal consistency of D?derlein’s groups with respect to ossicle morphology. The ossicle morphology of most species ofsupports the systematic arrangement by D?derlein (1920). Fell (1963) elevated most of D?derlein’s subgenera to generic rank. Clark & Downey (1992) stated that the limits of the four main groups and some of the subgenera within them were blurred and did not accept Fell’s taxonomic treatment.

    In China,von Martens, 1865 andGoto, 1914 were first reported from Qingdao by Chang (1948). From then on six speciesoffrom southern China have been recorded (Liao and Clark, 1995), includingFisher, 1913,Gray, 1840,Sladen, 1889,Müller & Troschel, 1842,Fisher, 1913 andvon Martens. Liu. (2006) described two new species,Liu, Liao & Li, 2006 from the Yellow Sea, andLiu, Liao & Li, 2006 from the South China Sea. To date, nine species ofhave been recorded from Chinese waters (Liu., 2007). However, morphological variation is very high inand taxonomic boundaries are difficult to be determined. Usually the taxonomic characters are not discrete, and many characters are only expressed in adult but not in juvenile specimens. Therefore many questions are still unsettled in the identification ofthrough morphology. For example, the identification between the sister speciesandremains questionable (Chang, 1948; Hayashi, 1973; Imaoka., 1990; Liao and Clark, 1995; Liu., 2006).

    Considering the morphological complexity, molecular phylogenetic analyses were carried out onliving in Chinese waters based on mitochondrial cytochrome oxidase subunit Ι (COΙ) sequence. Sequence data from GenBank for severalin the Sea of Japan were referred to for the analysis. The aim of this study is to resolve the general taxonomic issues, determine species boundaries and phylogenetic relationships within the genus.

    2 Materials and Methods

    2.1 Sample Collection

    All Chinesetaxa were selected as samples except., due to the loss of type material of this species. A minimum of three specimens per taxon were sequenced. Specimens were collected from coastal waters of mainland China by the National Comprehensive Oceanography Survey in 1958–1960, Beibu Gulf (Gulf of Tonkin) Comprehensive Oceanographic Survey in 1959– 1962, China’s offshore scientific expedition (open and shared voyage) in 2009 and a scientific expedition to the East China Sea in 2010. All samples (vouchers) examined in this study are not type materials and listed in Table 1. Based on the collection data, the locations of sampling stations are illustrated in Fig.1. In addition, the specimens were photographed to provide a visual voucher for confirming the identification of the specimens used in this study (Fig.2). Finally, we also borrowed some specimens offrom the Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History (in Washington, D.C.) in order to check morphological characters (Table 2).

    Table 1 Sampling information

    Notes: SN, sampling number;CN, collection number.

    Fig.1 Locations of sampling stations.

    Table 2 Detailed information of the specimens in the NMNH Department of Invertebrate Zoology collections for the loan

    Note: – not available.

    Fig.2 Body photos of Luidia species and Craspidaster hesperus from Chinese waters. A,Luidia quinaria, Q2, abactinal view; B, Luidia quinaria, Q2, actinal view; C, Luidia quinaria, Q5, abactinal view, Note dark radiating bands on disk and arms; D, Luidia quinaria, Q5, actinal view; E, Luidia yesoensis, Y1, abactinal view; F, Luidia yesoensis, Y1,actinalview; G, Luidia changi, C1, abactinal view; H, Luidia changi, C1,actinal view; I, Luidia orientalis, O2,abactinal view; J, Luidia orientalis, O2,actinal view; K, Luidia avicularia, A3, abactinal view; L, Luidia avicularia, A3,actinal view; M, Luidia longispina, L2, abactinal view; N, Luidia longispina, L2,actinal view; O, Luidia hardwicki, H2,abactinal view; P, Luidia hardwicki, H2, actinalview; Q, Luidia maculata, M2, abactinal view; R, Luidia maculata, M2, actinalview; S, Craspidaster hesperus, W3,abactinal view; T, Craspidaster hesperus, W3,actinal view. Scale bar=10mm.

    2.2 DNA Extraction, PCR Amplification and Sequencing

    Genomic DNA was extracted from tube foot tissue using TIANamp Marine Animals DNA Kit (TIANGEN). A fragment of COI was amplified with standard polymerase chain reaction (PCR) and directly sequenced after purification. One pair of primers was used for PCR and sequencing: ECOΙA (5’ACCATGCAACTAAGACGAT- GA 3’) (Knott and Wray, 2000) and HCO (5’ TAAACTT- CAGGGTGACCAAAAATCA 3’) (Folmer., 1994). The amplification was conducted in a reaction mixture containing 0.125μL of exTaq polymerase (250U, TaKaRa), 2.5μL of exTaq buffer, 2.0μL of MgCl(25mmolL), 1.0μL of dNTPs (25nmol), 0.5μL of primers (10pmol), 5.0μL of template DNA and ddHO to a total volume of 25μL. Conditions for amplification included an initial denaturation at 95℃ for 5min followed by 30 cycles of 94℃ for 30s, annealing for 45s at 50℃, extension at 72℃ for 1min, which was followed by a final extension at 72℃ for 10min. PCR products were purified with a SanPrep Colum DNA Gel Extraction Kit (Sangon) and sequencing was conducted with ABI Big Dye protocols.

    2.3 Sequence Alignment and Phylogenetic Analysis

    The COΙ sequences alignments were performed using Clustal X with default parameters. Kimura 2-parameter genetic distances for COΙ were calculated using MEGA, Ver. 4 (Tamura., 2007). Maximum parsimony (MP), maximum likelihood (ML), neighbour joining (NJ) and Bayesian inference (BI) approaches were employed to construct phylogenetic trees. MP was implemented with the heuristic search option in PAUP 4.0b10 (Swofford, 2002). All informative bases in MP analyses were weighted equally and unordered. Bootstrapping proportions (BSP) (Felsenstein, 1985) with 1000 replicates were used for nodal evaluations. For ML, the evolutionary model that best fit the data set was selected using the likelihood ratio test (Goldman, 1993), and implemented in ModelTest version 3.06 (Posada and Crandall, 1998). Analyses were based on the selected model (TrN+G) using the heuristic search algorithm. An NJ phenogram was constructed and used as the initial topology for branch swapping. Bayesian inference analyses were performed with MrBayes 3.0 (Huelsenbeck and Ronquist, 2001). All Bayesian analyses were initiated with random starting trees. The site-specific rates were estimated during the run. Four Markov chains were used and the data set was run for 1×10generations to allow for adequate time of convergence. Trees were sampled every 100 generations. After approximately 20000 generations, the log-likely- hood values of each sampled tree stabilized. The last 18, 001 sampled trees were used to estimate the 50% majority rule consensus tree and the Bayesian posterior probabilities.

    Twenty four samples were sequenced successfully and the sequences were used in the final analyses.(GenBank Accession Nos. AB183558 and NC006664) and(Grube, 1866) (GenBank Accession No. DQ380243) were included in these analyses and(Müller & Troschel, 1840) (Paxillosida: Astropectinidae) was selected as the outgroup.

    3 Results

    3.1 General Sequence Characteristics

    The COI sequences consisted of 685 base pairs. In total, 202 nucleotide sites were potentially phylogenetic informative (29.5%). The average content of G/C was 43%.

    3.2 Sequence Divergence

    Kimura 2-Parameter distance is showed in Table 3. Genetic distances between individuals of the same taxa of Chinesetaxa ranged from 0.1% to1.3%, and those across the taxa ranged from 0% to 26.6%. Surprisingly, small genetic distances existed in the seven nominal species(,,,,,and), ranging from 0 to 1.6%. In contrast,individuals from the Sea of Japan and the Yellow Sea showed exceptional levels of genetic divergence (12.9%–13.1%).was highly distinct from othertaxa, with genetic distances ranging from 24.2% to 26.6%.

    3.3 Tree Topology

    Six unrooted cladograms were produced in the MP analyses, and the strict consensus tree included four main branches (Fig.3). Three clades were well supported by high bootstrap support (100%): Clade A (AB 183558+NC 006664), Clade B (a large clade with(Q1 to Q6),(Y1 to Y3),(C1 to C3),(O1 to O3),(A1 and A3),(L1 to L3) and(H1 and H2), and Clade C (M1+M2), which are also shown in the ML and BI trees with strong bootstrap support (see Figs.4 and 5). Furthermore, all three clades were well separated (13%–26%, see Table 4). By contrast, taxa within each clade exhibited small divergences (typically less than 1.0%, see Table 5). One basal node and some subordinate branches in the MP, ML and BI trees were not all well supported. Therefore, it was unable to resolve the relationship betweenDQ 380243 and othertaxa.

    Fig.4 Maximum likelihood tree based on COΙ sequences. Bootstrap support values are indicated above nodes. See Table 1 for collection locality of specimens. (JPS, Sea of Japan; BOS, Bohai Sea; YS, Yellow Sea; ECS, East China Sea; SCS, South China Sea; TKG, Tonkin Gulf).

    Fig.5 Bayesian inference tree based on COΙ sequences. Posterior probabilities are indicated above nodes. See Table 1 for collection locality of specimens. (JPS, Sea of Japan; BOS, Bohai Sea; YS, Yellow Sea; ECS, East China Sea; SCS, South China Sea; TKG, Tonkin Gulf).

    Table 4 Distances between clades

    Notes: The upper-right half gives the values of standard error. The lower-left half gives evolutionary distance values.

    Table 5 Distances within clades

    Notes: d, estimate; S. E., standard error.

    4 Discussion

    4.1 Molecular Phylogeny and the Classification of D?derlein (1920) in Chinese

    D?derlein (1920) stated that there are four major groups inbased on morphological characters: Quinaria-Group, Ciliaris-Group, Clathrata-Group, and Alternata-Group. Systematic arrangement of some Chineseby D?derlein (1920) is shown in Table 6. In this study,,andare all clustered within the Clade B. Moreover,specimens are clustered into a separate clade as D?derlein suggested, not in the same group as the above three species. However,also appears in Clade B. Molecular data supportedas a member of the Quinaria-Group, which D?derlein considered belonging to the Ciliaris-Group.D?derlein (1920) did not assignto any group and neglected; our molecular data place these two species in the Quinaria- Group together with, which has been found and described after his classification. Though the number of taxa sampled is small and the sample is limited to Chinese species in the present study, the molecular phylogeny supports the distinction between the Quinaria-Group and Alternata-Group. With regard to the division of the Chinese Alternata/Quinaria Groups, the important characters are the presence or absence of pedicellariae close to the mouth and marked dark patches on the dorsal surface. From a broad perspective, further sampling oftaxa from other regions of the world would be highly desirable. It could have helped with the discussion or understanding of the D?derlein’s overall taxonomic groups.

    Table 6 Systematic arrangement of some Chinese Luidia by D?derlein (1920)

    Note:indefinite.

    4.2 Conflict Between Molecular Systematic and Traditional Taxonomy at the Species Level

    Molecular systematic studiesoften conflict with traditional, morphology-based taxonomy, which is due tophenotypic difference arising from both environmental variation and genetic divergences. For example, taxonomically different species are sometimes genetically indistinguishable from each other (Williams, 2000). In contrast, a widespread ‘species’ is actually a species- complex, and cryptic speciation may have occurred (Zulliger and Lessios, 2010).

    Our phylogenetic analyses revealed that the Chineseare divided into two genetically distinct monophyletic clades B and C. The first one includes seven nominal taxa,,,,,,and, which exhibited substantial morphological diversity (Fig.2A–P) and only show subtle differences for COI (ranging from 0 to 1.6%). In COI, the intraspecies divergence of Asteroidea ranges from 0 to 1.85% (Mean= 0.53%±0.13%) and the interspecies divergence of Asteroidea ranges from 2.17% to 22.85% (Mean=14.75%±0.62%) (Ward., 2008). The smallest interspecific distance was employed to define species boundaries in. Therefore, this low genetic divergence (less than 2% for COI) indicates that samples identified as,,,,,andvery likely belong to the same species. Considering that the incomplete speciation events can lead to conflicting genetic and morphological variation, it is possible that there is not enough time for COI to evolve diagnostic differences. As a result, many species share the identical DNA barcodes. However, the study of Ward. (2008)showed that DNA barcoding is likely to be an effective, accurate and useful method of species diagnosis for all five classes of Echinodermata. The present study also shows that genetic divergences ofallow species identification and reveal cryptic species within known taxa. For example, divergence between species ofand theother taxa,and theother taxa,and theother taxa exhibits favorable levels (>20%). Therefore, the possibility of many different species sharing identical DNA barcodes has been considered little. The second clade consists ofwhich is very common in southern China. It is the best-known Indo-Pacific species of, and can be easily recognizable by its large body, eight arms and dorsal surface patterned with dark and light colours, which do not disappear after preservation (Liao and Clark, 1995; Clark and Rowe, 1971). Based on our examination, the distinct diagnostic character exists in both preserved and fresh specimens. The validity ofis also supported by molecular results.

    In the MP tree, theindividuals from the Sea of Japan form a separate clade with high support to otherindividuals from the Yellow Sea. Furthermore, the individuals from the Sea of Japan and the Yellow Sea show 12.9%–13.1% divergence for COI, which is substantially greater than typical intra-specific distance proposed by Ward(2008). Therefore, it is supposed there is a misidentification of the samples whose sequences are in GenBank, or a cryptic species exists. Recent molecular studies indicate that cryptic species are common in sea stars. For example, genetic data from COI and 16 allozyme loci suggest that there are two cryptic within the currently acceptedGray, 1840 (see Williams, 2000). Two mitochondrial gene regions and a nuclear gene region provide evidence of at least two biological species within the nominal species(Stimpson, 1862) (see Foltz., 2008). The result of molecule phylogeny ofbased on mtDNA sequences of 12S rRNA, 16S rRNA and COI revealed thatMüller & Tr?schel, 1842 andD?derlein, 1888 are species-com- plexes; cryptic speciation might have occurred within each of these morphospecies (Zulliger and Lessios, 2010). The cryptic species derived from different areas suggests that ecological and physical conditions (., different vertical ranges or different water masses or geographical isolation) may prevent the flow of genes between the Yellow Sea and the Sea of Japan. The application of echinoderm COI divergence rates (3.5% per million years, Lessios., 2008) suggests that the individuals ofin the Yellow Sea and the Sea of Japan diverged before 1.85Ma. Although we were not able to obtain some samples (GenBank Accession Nos. AB183- 558 and NC 006664) for morphological re-examination, we obtained and examined another specimen (USNM 1085982) from the Japan Sea (Toyama Bay). Only minor morphological differences (mainly in the paxillar structure) can be found between specimens from the Sea of Japan and the Yellow Sea. The morphology is very similar, and current descriptions ofdo not permit delineation of species.

    4.3 Reassessment of Current Diagnostic Morphological Characters

    Given the subtle genetic divergences within seven Chinese taxa (,,,,,and), it would be more appropriate to consider them as one species. Therefore, our results suggest that several morphological characters need to be reassessed.

    ,,anddisplay considerable variations with regard to the pedicellariae on the adambulacral and inferomarginal plates in specimens from Chinese waters and those borrowed from the NMNH. Therefore, we doubt if their occurrence is sufficiently constant to serve as a character of specific weight. Moreover, the shape of abactinal paxillar spinelets (., central and peripheral spinelets being uniform or the central spinelets markedly longer than the rest on lateral paxillae) is only a minor morphological difference. The study of the sea starshows that the variation in spinelet morphology may be due to the action of waves (Xiao., 2011). We suggest that the shape of abactinal paxillar spinelets should not be considered as a character of specific weight. It is noteworthy that the number and form of large, erect inferomarginal spines are the major differences between,and, which may need to be re-evaluated.

    In the northern waters of China, the identification of,andmight be confusing. Adults of(Fig.2C) are easily distinguished from the other species ofby their unique morphological characters, such as arms with a distinct dark area in disk center and along midradial line. However, young individuals (Fig.2A) are somewhat difficult to be distinguished from(Fig.2E) (abactinal surface uniformly dark grey or black, without radiating bands) since their arms are shorter and the dark radial midline is less distinct. Meanwhile,collected from the Yellow Sea differs fromandin details of abactinal plates, abactinal spinelets and body proportions (Liu., 2006). However, our molecular evidence reveals thatsamples from the Bohai Sea,samples andspecimens from the Yellow Sea might be conspecific. In other words, there may only be one species ofin the Yellow Sea and the Bohai Sea. Japanese samples from NMNH also reveal that the dark radial midline is variable in. Therefore we doubt whether the arm width and dark radial midline of upper side can be applied as characters with specific weight.

    5 Conclusions

    Phylogenetic analyses of Chinesebased on mitochondrial COI sequences support the distinction between Quinaria-Group and Alternata-Group as D?derlein (1920) assigned, but conflict with the current morphological taxonomy ofat the species level, except for. It is possible that the studied seven species,,,,,andare synonymized andGray, 1840 is the senior synonym. The results also show that cryptic speciation might have taken place inindividuals from Sea of Japan and the Yellow Sea. The present study shows that the combined analyses based on molecular gene sequence and morphological evidence represents a powerful technique for asteroid taxonomy.

    Acknowledgements

    This work was supported by the Knowledge Innovation Program of CAS (KSCX2-YW-N-0807), the Ministry of Science and Technology of the People’s Republic of China (2006FY110500), and IOCAS funding (2012IO 060104). The authors are grateful to Dr. Zhang Junlong at our laboratory (IOCAS) for his kind assistance with the figures. We thank David L. Pawson of Smithsonian Institution for facilitating the loan of some specimens of the genusfrom National Museum of Natural History. We also thank Dr. Song Linsheng (IOCAS) for his helpful comments.

    Blake, D. B., 1973. Ossicle morphology of some recent asteroids and description of some west American fossil asteroids., 104: 1-59.

    Chang, F. Y., 1948. Echinoderms of Tsingtao., 4 (2): 33-104.

    Clark, A. M., and Downey, M. E., 1992.., 3. Natural History Museum Publications, London, 794pp.

    Clark, A. M., and Rowe, F. W. E., 1971.. British Museum (Natural History), London, 238pp.

    Clark, H. E. S., and McKnight, D. G., 2000. The marine fauna of New Zealand: Echinodermata: Asteroidea (sea-stars). Order Paxillosida & Notomyotida., 116: 1-196.

    Djakonov, A. M., 1950. Starfish of the Soviet Union., 34: 1-203.

    D?derlein, L., 1888. Echinodermen von Ceylon.,3: 822-846.

    D?derlein, L., 1920. Die Asteriden der ‘Siboga’ Expedition. 2. Die Gattungand ihre Stammesgeschichte., 46b: 193-291, Figs.1–37.

    Düben, M. W., and Koren, J., 1845. Untitled (in German; under name of Lóven)., 1: 436-440.

    Fell, H. B., 1963. The phylogeny of sea-stars.., 246: 381-435.

    Fisher, W. K., 1913. New starfishes from the Philippine Islands, Celebes and Moluccas., 46: 201-224.

    Fleckenstein, J., 1985. Confidence limits on phylogenies: An approach using the bootstrap., 39 (4): 783-791.

    Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R., 1994. DNA primers for amplification of mitochondrial cytochromeoxidase subunit Ι from diverse metazoan invertebrates., 3: 294- 299.

    Foltz, D. W., Nguyen, A. T., Kiger J. R., and Mah, C. L., 2008. Pleistocene speciation of sister taxa in a North Pacific clade of brooding sea stars (Leptasterias)., 154: 593-602.

    Forbes, E., 1839. On the Asteriadae of the Irish Sea.,, 8: 114- 129.

    Goldman, N., 1993. Statistical tests of models of DNA substitution., 36: 182-198.

    Goto, S., 1914. A descriptive monograph of Japanese Asteroidea. 1. Archasteridae, Benthopectinidae, Porcellanasteridae, Astropectinidae, Luidiidae, Pentagonasteridae, Oreasteridae, Gymnasteriidae, Asterinidae.,, 29 (1): 1-808.

    Gray, J. E., 1840. A Synopsis of the Genera and Species of the Class Hypostoma (,Linnaeus)., 6: 175-184, 275-290.

    Grube, A. E., 1866. Einige neue Seesterne des heisigen zoologischen Museums., 43: 59-61.

    Gui, L. P., Liu, C. Z., Sun, J. F., and Guo, Y. Q., 2011.Chemical Constituents fromGoto., 44 (6): 99-101.

    Hayashi, R., 1973.,. Biology Laboratory, Imperial Household, Tokyo, 41-53.

    Huelsenbeck, J. P., and Ronquist, F., 2001. MrBayes: Bayesian inference of phylogeny., 17: 754-755.

    Imaoka, T., Irimura, S., Okutani, T., Oguro, C., Oji, T., Shigei, M., and Horikawa, H., 1990.. Vol. Ι. Japan Fisheries Resource Conservation Association Press, Tokyo, 159pp.

    Knott, K. E., and Wray, G. A., 2000. Controversy and consensus in asteroid systematics: new insights to ordinal familial relationships., 40 (3): 382-392.

    Lessios, H. A., 2008. The Great American Schism: divergence of marine organisms after the rise of the Central American Isthmus.,,,39:63-91.

    Liao, Y. L., 2008. Echinodermata. In:. Liu, J. Y., ed., Science Press, Beijing, 845- 876.

    Liao, Y. L., and Clark, A. M., 1995.. Science Press, Beijing, 614pp.

    Liu, W., Liao Y. L., and Li, X. Z., 2006. A new sea-star species (Asteroidea: Luidiidae) from the South China Sea., 54 (2): 441-445.

    Liu, W., Liao, Y. L., and Li, X. Z., 2006., a new sea star species (Echinodermata: Asteroidea: Luidiidae) from the Yellow Sea, with a review of two related species., 1315: 57-68.

    Liu, W., Liao, Y. L., and Li, X. Z., 2007. Report on the sea-star species of Luidiidae (Echinodermata, Asteroidea) from the Chinese waters., 32 (1): 234-240.

    Mah, C., and Hansson, H., 2012.Forbes, 1839. World Asteroidea database. Accessed through: World Asteroidea database at http://www.marinespecies.org/asteroidea/phia.hp? =taxdetails&id=123260 on 2012-02-16.

    Martens, E. von., 1865. Ueber ?stasiatiche Echinodermen. 1. Japanische Seesterne. 2. Chinesische Seesterne., 31: 345-360.

    Müller, J., and Troschel, F. H., 1840. Ueber die Gattungen der Asterien., 6: 318-326.

    Müller, J., and Troschel, F. H., 1842.. Braunschweig, 134pp.

    Posada, D., and Crandall, K. A., 1998. Modeltest: testing the model of DNA substitution., 14 (9): 817-818.

    Schram, J. B., McClintock, J. B., Angus, R. A., and Lawrence, J. M., 2011. Regenerative capacity and biochemical composition of the sea star(Say) (Echinodermata: Asteroidea) under conditions of near-future ocean acidification., 407 (2): 266-274.

    Sladen, W. P., 1889. Report on the Asteroidea collected by H. M. S. Challenger., 30: 1-935.

    Sloan, N. A., 1980. Aspects of the feeding biology of asteroids., 18: 57- 124.

    Stimpson, W., 1862. On new genera and species of starfishes of the family Pycnopodidae (Müll, and Trosch.), 8: 261- 273.

    Swofford, D. L., 2002. PAUP*. Phylogenetic Analysis Using Parsimony and Other Methods. Version 4. Sinauer Associates, Sunderland, MA.

    Tamura, K., Dudley, J., Nei, M., and Kumar, S., 2007. MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0.,24: 1596- 1599.

    Ward, R. D., Holmes, B. H., and O’Hara, T. D., 2008. DNA Barcoding discriminates echinoderm species., 8: 1202-1211.

    Williams, S. T., 2000. Species boundaries in the starfish genus., 136: 137-148.

    Xiao, N., Liao, Y. L., and Liu, R. Y., 2011. Records of the genusGray, 1840 (Echinodermata: Asteroidea: Echinasteridae) from Chinese waters., 3115: 1-20.

    Zulliger, D. E., and Lessios, H. A., 2010. Phylogenetic relationships in the genusGray (Paxillosida: Asteropectinidae) on a global scale: molecular evidence for morphological convergence, species-complexes and possible cryptic speciation., 2504: 1-19.

    (Edited by Qiu Yantao)

    10.1007/s11802-013-2158-0

    ISSN 1672-5182, 2013 12 (3): 459-468

    . Tel: 0086-532- E-mail: shazl@qdio.ac.cn

    (September 14, 2012; revised October 9, 2012; accepted January 4, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2013

    两性午夜刺激爽爽歪歪视频在线观看| 国产一区亚洲一区在线观看| av福利片在线观看| 乱码一卡2卡4卡精品| 非洲黑人性xxxx精品又粗又长| 一级毛片久久久久久久久女| 丰满的人妻完整版| 美女脱内裤让男人舔精品视频 | 日韩国内少妇激情av| 亚洲精华国产精华液的使用体验 | av天堂在线播放| 老熟妇乱子伦视频在线观看| 午夜视频国产福利| 国产精品麻豆人妻色哟哟久久 | 天天躁夜夜躁狠狠久久av| 搞女人的毛片| 啦啦啦观看免费观看视频高清| 国产美女午夜福利| av视频在线观看入口| 麻豆国产97在线/欧美| 国产极品天堂在线| 黄色日韩在线| 欧美一级a爱片免费观看看| 国产精品久久久久久精品电影小说 | 中国美女看黄片| 欧美日韩乱码在线| 亚洲一级一片aⅴ在线观看| 亚洲精品乱码久久久久久按摩| 婷婷亚洲欧美| 欧美最黄视频在线播放免费| 精品99又大又爽又粗少妇毛片| 能在线免费看毛片的网站| 欧美在线一区亚洲| 国产精品三级大全| 亚洲美女视频黄频| 悠悠久久av| 在线观看66精品国产| 日产精品乱码卡一卡2卡三| 午夜a级毛片| 欧美精品国产亚洲| 日韩强制内射视频| 岛国在线免费视频观看| videossex国产| 好男人在线观看高清免费视频| 久久精品国产亚洲网站| 中文字幕免费在线视频6| 国产色婷婷99| 欧美日本视频| 欧美区成人在线视频| 亚洲精品亚洲一区二区| 国内揄拍国产精品人妻在线| 少妇的逼好多水| 欧美激情在线99| 久久久国产成人免费| 欧洲精品卡2卡3卡4卡5卡区| 免费观看精品视频网站| 国产精品.久久久| 大型黄色视频在线免费观看| 亚洲综合色惰| 18禁裸乳无遮挡免费网站照片| 精品久久久久久久久久久久久| 看十八女毛片水多多多| 日韩欧美三级三区| 99久久精品国产国产毛片| 国产色爽女视频免费观看| 国产亚洲精品久久久久久毛片| 久久99热这里只有精品18| 在线观看午夜福利视频| 午夜久久久久精精品| 精品不卡国产一区二区三区| 长腿黑丝高跟| 国产黄色视频一区二区在线观看 | 一级黄色大片毛片| 五月伊人婷婷丁香| 最后的刺客免费高清国语| 天堂影院成人在线观看| 欧美精品一区二区大全| 美女xxoo啪啪120秒动态图| 国产视频内射| 老熟妇乱子伦视频在线观看| 国产成年人精品一区二区| 日本欧美国产在线视频| 午夜免费男女啪啪视频观看| 男人舔奶头视频| or卡值多少钱| 亚洲精品乱码久久久v下载方式| 亚洲av二区三区四区| 成人三级黄色视频| 日日摸夜夜添夜夜爱| 成年av动漫网址| 一个人看的www免费观看视频| 草草在线视频免费看| 亚洲五月天丁香| 免费黄网站久久成人精品| 国产白丝娇喘喷水9色精品| 久久婷婷人人爽人人干人人爱| 一区二区三区免费毛片| 国产 一区 欧美 日韩| 亚洲中文字幕日韩| 中文精品一卡2卡3卡4更新| 欧美色视频一区免费| 欧美潮喷喷水| 哪个播放器可以免费观看大片| 又粗又爽又猛毛片免费看| 久久人人爽人人爽人人片va| 日本黄色片子视频| 欧美日韩综合久久久久久| 久久中文看片网| 99久国产av精品国产电影| 日韩视频在线欧美| av天堂在线播放| 搡老妇女老女人老熟妇| 一本精品99久久精品77| 色哟哟哟哟哟哟| 国产一区二区在线av高清观看| 少妇人妻精品综合一区二区 | 精品午夜福利在线看| 在线免费十八禁| 久久久欧美国产精品| 少妇人妻一区二区三区视频| 亚洲五月天丁香| 男女那种视频在线观看| 免费看a级黄色片| 亚洲七黄色美女视频| 别揉我奶头 嗯啊视频| 亚洲国产高清在线一区二区三| 欧美精品国产亚洲| 如何舔出高潮| 麻豆久久精品国产亚洲av| 丰满乱子伦码专区| 久久草成人影院| av天堂中文字幕网| 九九热线精品视视频播放| 国产亚洲欧美98| 岛国毛片在线播放| 免费电影在线观看免费观看| 桃色一区二区三区在线观看| 亚洲色图av天堂| 国产午夜精品久久久久久一区二区三区| 色哟哟·www| 99久久精品国产国产毛片| 久久久久久久久久久丰满| 国产精品乱码一区二三区的特点| 亚洲国产高清在线一区二区三| 男人舔女人下体高潮全视频| 在线观看美女被高潮喷水网站| 久99久视频精品免费| 国产色爽女视频免费观看| 三级经典国产精品| 欧美日韩在线观看h| 国产一区二区激情短视频| 一本久久精品| 亚洲久久久久久中文字幕| 国产伦在线观看视频一区| 22中文网久久字幕| 国产高清视频在线观看网站| 国模一区二区三区四区视频| 亚洲不卡免费看| 伦理电影大哥的女人| 久久精品国产自在天天线| 国产黄色小视频在线观看| 99热全是精品| 国产高清不卡午夜福利| 欧美性感艳星| 级片在线观看| 美女大奶头视频| videossex国产| 国产精品电影一区二区三区| 国产一区二区在线观看日韩| 日本一二三区视频观看| 熟妇人妻久久中文字幕3abv| 国产成年人精品一区二区| 久久久久性生活片| 九九在线视频观看精品| 免费大片18禁| 精品人妻一区二区三区麻豆| 欧美一区二区精品小视频在线| 我要搜黄色片| 精品久久久噜噜| 蜜臀久久99精品久久宅男| 嫩草影院入口| 中国美白少妇内射xxxbb| 色综合亚洲欧美另类图片| 国产美女午夜福利| 小说图片视频综合网站| 成人漫画全彩无遮挡| 在线播放国产精品三级| 只有这里有精品99| 国产亚洲精品久久久com| 久久久欧美国产精品| 国产高清激情床上av| 99在线视频只有这里精品首页| 欧美日韩国产亚洲二区| av免费在线看不卡| 国产单亲对白刺激| 色哟哟哟哟哟哟| 日本av手机在线免费观看| 日韩欧美国产在线观看| 国产 一区精品| 给我免费播放毛片高清在线观看| 少妇熟女aⅴ在线视频| 日韩欧美三级三区| 精品99又大又爽又粗少妇毛片| 身体一侧抽搐| 卡戴珊不雅视频在线播放| 中文字幕久久专区| 丰满的人妻完整版| 国产精品久久久久久久久免| 精品人妻偷拍中文字幕| 亚洲精品国产av成人精品| 亚洲欧美成人精品一区二区| 中文精品一卡2卡3卡4更新| 蜜桃亚洲精品一区二区三区| 国产爱豆传媒在线观看| 97热精品久久久久久| 免费av观看视频| 日韩制服骚丝袜av| 又爽又黄无遮挡网站| 免费观看在线日韩| 一个人观看的视频www高清免费观看| 可以在线观看毛片的网站| 少妇丰满av| 国产美女午夜福利| 人人妻人人澡人人爽人人夜夜 | 久久精品夜色国产| 在线a可以看的网站| 91久久精品国产一区二区三区| 欧美高清性xxxxhd video| 男的添女的下面高潮视频| av视频在线观看入口| 欧美最黄视频在线播放免费| 国产精品一及| 午夜精品国产一区二区电影 | 男人和女人高潮做爰伦理| 欧美+日韩+精品| 亚洲自偷自拍三级| 精品久久久久久久久久久久久| av在线观看视频网站免费| 亚洲精品国产av成人精品| 欧美激情国产日韩精品一区| 欧美一区二区国产精品久久精品| 真实男女啪啪啪动态图| 国产蜜桃级精品一区二区三区| 欧美色欧美亚洲另类二区| 日本黄色视频三级网站网址| 好男人视频免费观看在线| 18+在线观看网站| 亚洲av男天堂| 午夜激情欧美在线| 亚洲高清免费不卡视频| 99久久人妻综合| 国产高潮美女av| 一级二级三级毛片免费看| 99久久人妻综合| 不卡一级毛片| 97在线视频观看| 人妻久久中文字幕网| 欧美三级亚洲精品| 综合色av麻豆| 久久久国产成人精品二区| 看免费成人av毛片| 日日撸夜夜添| 1024手机看黄色片| 欧美变态另类bdsm刘玥| 国产三级在线视频| 狠狠狠狠99中文字幕| 蜜桃久久精品国产亚洲av| 国产精品久久久久久久电影| АⅤ资源中文在线天堂| 熟女人妻精品中文字幕| 亚洲成av人片在线播放无| 国产真实伦视频高清在线观看| 国产成人a∨麻豆精品| 国产 一区 欧美 日韩| 久久久久久九九精品二区国产| 哪里可以看免费的av片| 少妇人妻精品综合一区二区 | 久久国产乱子免费精品| 少妇猛男粗大的猛烈进出视频 | 91久久精品电影网| 综合色丁香网| 老女人水多毛片| 国内少妇人妻偷人精品xxx网站| 最后的刺客免费高清国语| 久久鲁丝午夜福利片| 九九热线精品视视频播放| 亚洲在线自拍视频| 国产精品一及| 欧美极品一区二区三区四区| 亚洲国产精品sss在线观看| 狂野欧美白嫩少妇大欣赏| 日本黄色视频三级网站网址| 亚洲国产精品成人综合色| 国产精品不卡视频一区二区| 噜噜噜噜噜久久久久久91| 亚洲在线观看片| 久久久成人免费电影| 免费看日本二区| 日韩av不卡免费在线播放| 亚洲欧美清纯卡通| 人体艺术视频欧美日本| 亚洲精品久久国产高清桃花| 国语自产精品视频在线第100页| 少妇裸体淫交视频免费看高清| 国产欧美日韩精品一区二区| 99在线人妻在线中文字幕| 国产av一区在线观看免费| 黄片wwwwww| 99热这里只有是精品在线观看| av.在线天堂| 国产精品久久视频播放| 在线a可以看的网站| 岛国在线免费视频观看| 黄色配什么色好看| 日本av手机在线免费观看| 国产精品不卡视频一区二区| 中国国产av一级| 99热精品在线国产| 精品久久久久久久久av| 国产欧美日韩精品一区二区| 成年女人永久免费观看视频| 国产激情偷乱视频一区二区| 亚洲精品粉嫩美女一区| 成人一区二区视频在线观看| 天堂√8在线中文| 天堂影院成人在线观看| av免费在线看不卡| av在线老鸭窝| 在线免费观看的www视频| 别揉我奶头 嗯啊视频| 婷婷色综合大香蕉| 人妻久久中文字幕网| 精品人妻视频免费看| 秋霞在线观看毛片| 一进一出抽搐gif免费好疼| 男人的好看免费观看在线视频| 欧美最新免费一区二区三区| 18禁在线无遮挡免费观看视频| 国产成人freesex在线| 嫩草影院精品99| 看片在线看免费视频| 国产男人的电影天堂91| 国产日韩欧美在线精品| 日韩三级伦理在线观看| 老女人水多毛片| 99热网站在线观看| 天堂影院成人在线观看| 99久久精品热视频| 精品人妻一区二区三区麻豆| 97超视频在线观看视频| 亚洲在线观看片| 日韩三级伦理在线观看| 啦啦啦观看免费观看视频高清| 国产一区亚洲一区在线观看| 国产探花在线观看一区二区| 久久久久久国产a免费观看| 亚洲丝袜综合中文字幕| 一边亲一边摸免费视频| 国产av麻豆久久久久久久| 久久人人爽人人爽人人片va| 99久久精品一区二区三区| 国产av不卡久久| 成人综合一区亚洲| 九色成人免费人妻av| 联通29元200g的流量卡| 男女边吃奶边做爰视频| 在线播放无遮挡| 最近视频中文字幕2019在线8| 少妇的逼水好多| 成人特级av手机在线观看| 波多野结衣巨乳人妻| 一级毛片电影观看 | 亚洲欧美日韩东京热| 亚洲av第一区精品v没综合| 两性午夜刺激爽爽歪歪视频在线观看| 欧美激情在线99| 国产精品国产高清国产av| 99国产精品一区二区蜜桃av| 一个人看的www免费观看视频| 嫩草影院入口| av.在线天堂| 国内精品宾馆在线| 12—13女人毛片做爰片一| 好男人在线观看高清免费视频| 我的老师免费观看完整版| 久久久久网色| 久久久久久九九精品二区国产| 可以在线观看的亚洲视频| 91午夜精品亚洲一区二区三区| 午夜激情福利司机影院| 在线天堂最新版资源| 亚洲国产精品成人综合色| 精品少妇黑人巨大在线播放 | 亚洲婷婷狠狠爱综合网| 国产伦一二天堂av在线观看| 村上凉子中文字幕在线| 美女cb高潮喷水在线观看| 少妇高潮的动态图| 国产视频首页在线观看| 国产精品麻豆人妻色哟哟久久 | 亚洲无线观看免费| 亚洲精品色激情综合| 午夜福利成人在线免费观看| 日韩人妻高清精品专区| 99久久精品国产国产毛片| 成年版毛片免费区| 乱人视频在线观看| 国内久久婷婷六月综合欲色啪| 国产精品1区2区在线观看.| 狂野欧美激情性xxxx在线观看| 午夜精品国产一区二区电影 | 插逼视频在线观看| 亚洲av第一区精品v没综合| 国产精品蜜桃在线观看 | 熟女人妻精品中文字幕| 最好的美女福利视频网| 校园春色视频在线观看| 美女黄网站色视频| 大又大粗又爽又黄少妇毛片口| 亚洲国产欧美人成| 熟妇人妻久久中文字幕3abv| 一个人观看的视频www高清免费观看| 波野结衣二区三区在线| 日韩亚洲欧美综合| 2022亚洲国产成人精品| 亚洲av电影不卡..在线观看| 国产精品,欧美在线| 成人综合一区亚洲| 青春草亚洲视频在线观看| 国产探花极品一区二区| 国产精品久久久久久av不卡| 亚洲中文字幕一区二区三区有码在线看| 国产精品久久久久久精品电影小说 | 久久精品人妻少妇| 国产69精品久久久久777片| 少妇被粗大猛烈的视频| 日韩欧美国产在线观看| 麻豆国产97在线/欧美| 国产亚洲精品av在线| 69人妻影院| 变态另类成人亚洲欧美熟女| 好男人在线观看高清免费视频| 欧美+亚洲+日韩+国产| 国产亚洲欧美98| 久久精品国产自在天天线| 又爽又黄a免费视频| 国产一区亚洲一区在线观看| 亚洲精华国产精华液的使用体验 | 亚洲国产高清在线一区二区三| 简卡轻食公司| 日本与韩国留学比较| 成人亚洲精品av一区二区| 给我免费播放毛片高清在线观看| 亚洲国产精品合色在线| 久久国内精品自在自线图片| 久久欧美精品欧美久久欧美| 亚洲av电影不卡..在线观看| 亚洲自偷自拍三级| 91精品一卡2卡3卡4卡| 狠狠狠狠99中文字幕| 欧美区成人在线视频| 给我免费播放毛片高清在线观看| 美女脱内裤让男人舔精品视频 | 国产久久久一区二区三区| 国产精品久久久久久精品电影| 久久久久久久亚洲中文字幕| 嫩草影院精品99| 大香蕉久久网| 国产亚洲av嫩草精品影院| 国内少妇人妻偷人精品xxx网站| 亚洲一区高清亚洲精品| 男女做爰动态图高潮gif福利片| 国产日韩欧美在线精品| 美女xxoo啪啪120秒动态图| 国语自产精品视频在线第100页| 久久国内精品自在自线图片| 蜜臀久久99精品久久宅男| 亚洲人成网站在线播| 国产精品人妻久久久影院| 午夜免费男女啪啪视频观看| 少妇猛男粗大的猛烈进出视频 | 性欧美人与动物交配| 精品一区二区免费观看| a级一级毛片免费在线观看| 在线观看美女被高潮喷水网站| av天堂中文字幕网| 亚洲人与动物交配视频| 少妇丰满av| 亚洲欧美日韩高清在线视频| 最近视频中文字幕2019在线8| 老熟妇乱子伦视频在线观看| 国产淫片久久久久久久久| 免费看a级黄色片| 日本在线视频免费播放| 少妇的逼好多水| 一个人看视频在线观看www免费| 性色avwww在线观看| 亚洲精品亚洲一区二区| 欧洲精品卡2卡3卡4卡5卡区| 男女边吃奶边做爰视频| 色综合色国产| 亚洲欧美中文字幕日韩二区| 欧美日韩精品成人综合77777| 亚洲av成人精品一区久久| or卡值多少钱| 在线a可以看的网站| 国产麻豆成人av免费视频| 26uuu在线亚洲综合色| 亚洲在线自拍视频| 午夜亚洲福利在线播放| 天堂中文最新版在线下载 | 日本免费一区二区三区高清不卡| 中出人妻视频一区二区| 国产精品人妻久久久影院| 亚洲无线观看免费| 午夜免费激情av| 午夜福利在线在线| 亚洲第一电影网av| 亚洲最大成人av| 免费av不卡在线播放| 欧美xxxx性猛交bbbb| 亚洲欧洲国产日韩| 国产精品野战在线观看| 毛片一级片免费看久久久久| 日韩av不卡免费在线播放| 免费黄网站久久成人精品| 麻豆国产97在线/欧美| 欧美激情久久久久久爽电影| 成人性生交大片免费视频hd| avwww免费| 青春草视频在线免费观看| 校园人妻丝袜中文字幕| 三级国产精品欧美在线观看| 欧美成人免费av一区二区三区| 国产成人精品婷婷| 亚洲在久久综合| 男人和女人高潮做爰伦理| 美女大奶头视频| 精品久久久噜噜| 国产黄片视频在线免费观看| 三级国产精品欧美在线观看| 欧美成人免费av一区二区三区| 久久人人爽人人爽人人片va| 黄色一级大片看看| 最近2019中文字幕mv第一页| 国产精品av视频在线免费观看| 中文字幕av在线有码专区| 卡戴珊不雅视频在线播放| 日本免费一区二区三区高清不卡| 日本三级黄在线观看| a级毛片a级免费在线| 日本成人三级电影网站| 桃色一区二区三区在线观看| 国产成年人精品一区二区| 日韩国内少妇激情av| 国产片特级美女逼逼视频| 久久精品久久久久久噜噜老黄 | 亚洲激情五月婷婷啪啪| 国产乱人偷精品视频| 狂野欧美激情性xxxx在线观看| 女同久久另类99精品国产91| 亚洲一区高清亚洲精品| 长腿黑丝高跟| 白带黄色成豆腐渣| 国产麻豆成人av免费视频| 免费av毛片视频| 国产成人一区二区在线| 毛片女人毛片| 看非洲黑人一级黄片| 成人午夜精彩视频在线观看| 亚洲婷婷狠狠爱综合网| 国产三级在线视频| 国产色婷婷99| 男女视频在线观看网站免费| 国产三级中文精品| 乱码一卡2卡4卡精品| 日本av手机在线免费观看| 欧美精品一区二区大全| 久久久久久久久久久丰满| 听说在线观看完整版免费高清| 亚洲第一区二区三区不卡| 女的被弄到高潮叫床怎么办| 丰满乱子伦码专区| 在线天堂最新版资源| 99久国产av精品| 色综合站精品国产| 欧美日韩综合久久久久久| 色视频www国产| 中文精品一卡2卡3卡4更新| 三级经典国产精品| 国产精品一二三区在线看| 国产亚洲91精品色在线| 黄色日韩在线| 成人鲁丝片一二三区免费| 九色成人免费人妻av| 一级黄色大片毛片| 日本黄色片子视频| 一边亲一边摸免费视频| 成人亚洲欧美一区二区av| 亚洲精品456在线播放app| 97在线视频观看| 夜夜看夜夜爽夜夜摸| 男人狂女人下面高潮的视频| 男女边吃奶边做爰视频| 高清午夜精品一区二区三区 | 人人妻人人澡欧美一区二区| 欧美高清性xxxxhd video| 淫秽高清视频在线观看| 国产午夜福利久久久久久| 色视频www国产| 免费av毛片视频| 少妇的逼水好多| 国模一区二区三区四区视频| 哪个播放器可以免费观看大片| 久久久久久久久中文|