• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Model of DFIG Wind Farm and Study on Its LVRT Capability

    2013-07-29 09:42:26HeGuoDingZhongHuangLiGangGuandFangYuanWu

    He Guo,Ding-Zhong Huang,Li-Gang Gu,and Fang-Yuan Wu

    1.Introduction

    Under the background of energy crisis and environmental pollution,clean distributed energy(DG)has been widely used in recent years.With abundant reserves and relatively mature technology,wind power stands out.Developing at a fast speed of over 30% per year,wind power has obvious advantages in prospect of commercial and scale application[1].Among them,the doubly-fed induction wind generator is superior in variable speed operation and low capacity of converter,which makes it popular in wind generator operators.

    The double-fed induction wind generator cluster,ordered in certain rules,is adopted by most grid-connected wind farms to achieve more electricity.However,considering wind power’s fluctuation and intermittent,the current power grid has been faced with serious problems.Not only the generator terminal voltage decreases under system faults and difficulties are gained in power transmission,but also the fluctuate power brings steep rise fault currents,charging capacity,and rapid direct voltage rise,as well as the speeding-up rotator and mutation of electromagnetic torque.Besides,current fault-handling methods could not cope with the increasing wind power capacity and wind farm scale,so low voltage ride through(LVRT)capability should be possessed by wind farms,which can provide voltage support by splitting wind generators from the grid.

    Relevant investigation has been made by both domestic and abroad scholars,mainly focusing on modeling wind farms and the study of LVRT capability,thus properties of the double-fed wind generator under fault conditions have been analyzed[1]-[3].Based on the indices of cluster classification and K-means clustering algorithm,this paper builds a dynamic model of doubly-fed induction generators(DFIG)under network fault conditions.Then simulation is carried out to study the corresponding LVRT ability.

    2.Dynamic Model of DFIG Wind Turbine under Network Fault Condition

    Among the aggregation mode of wind turbines,common equivalent methods include the single machine representation method and multiple machine representation method.In the former method,an equivalent wind turbine is obtained,which is suitable in the wind farm with constant speed.In the latter one,on the basis of the coherency method of a power system,similar operation points are adopted as the cluster classification principle,achieving better accuracy in modeling.Thus,the multiple machine representation concept is considered in dynamic modeling of DFIG,and the pitch operation condition is considered as a classification method.To define relative variables,parameter identification is involved.

    2.1 Cluster Classification Based on K-means Clustering Algorithm

    As one of the most widely used clustering algorithms,the K-means algorithm regards the minimization of the standard measurement function as the principle,dividing N sample points into K clusters.As a result,samples in the same cluster share much more similarity,while less among various clusters.The standard measurement function is described as

    where miis the sample expectation of the ith cluster; Ciis sample points set of the ith cluster ; Niis the number of sample points for the ith cluster; E is the standard measurement function; τ is the sample point.

    The flow chart of the K-means clustering algorithm is shown as Fig.1.

    According to the pitch operation condition in DFIG,clusters are sorted into three types:1)the pitch operation occurs before system faults,2)the pitch operation occurs during system faults,and 3)no pitch operation occurs neither before nor in faults.Affected by the active power,generator terminal voltage,and wind speed in pre-fault circumstances,the pitch operation could be reflected by supporting vector machine(SVM)classification devices.Then based on sorting indices in SVM,K could be set as 3,which represents the number of sort types.Afterwards,clustering classification results can be achieved.

    2.2 Calculation of Parameters in Equivalent Model

    In terms of parameter calculation,both the function-based method and parameter identification method are well-known.The former is applicable for the same type generators and can only calculate basic parameters,and the calculation could be finished for variable speed constant frequency generators with easy operation and accurate results.But in this paper,the parameter identification method is chosen.

    A.Principle of Parameter Identification

    The core of parameter identification is to achieve optimal parameters through various identification algorithms.In identification of DIFG,both nonlinear factors in the pitch control model and interactions between wind turbine elements should be included.Due to relatively long transaction time,identification results should be much more accurate.

    The elaborate theory means presented as Fig.2,where WT is a wind turbine.

    Define the cost function(or equivalent criterion)as E(θ).Then under the same wind speed Vw(t),the output signal can be generated by the detailed wind turbine model and equivalent wind turbine model P(tk)and Peq(t),respectively.

    where tkis sample time,while N is the number of samples.

    Modification is made on identification calculation until the error e(t)satisfies the minimized cost function.Then corresponding θeis the very parameter of equivalent model.B.Solutions to Parameter Identification

    As a nonlinear system,the power system can not be well-solved through the fast Fourier transform(FFT),least square method in frequency domain,and piecewise linear polynomial function(PLPF)approach in time domain.Based on this,the artificial algorithm particle swarm optimization(PSO)is employed in this paper,because of its simple operation and strong robust.

    PSO was proposed by Kennedy and Eberhart first in 1995.It is generated from the simulation of birds predator-prey behaviour,which seeks food by searching surroundings of birds that are the nearest to the current food location.A solution to a certain optimization problem is the optimal solution of a bird at certain speed.For every iteration,the speed and location are updated according to(3)and(4):

    Considering that local optimization tends to reach in traditional PSO,this paper adopts an adaptive adjustment strategy with inertia coefficients to enhance its properties,solving model calculation in the multiple nodes system.Based on(5),adjustment in an adaptive degree can be finished for each iteration:

    where i is iteration times,n is the maximum iteration times,and inertia weight decreases from ωmaxto ωminlinearly.

    The procedure of system parameter identification based on advanced PSO is as follows.

    1)Build the original model and the model to be identified,then define parameters to be identified.

    2)Initialize the location and speed of the particle cluster at random.

    3)Calculate the fitness value of each particle.

    4)Compare the fitness value of xiand that of the best location it has ever experienced.If xiis better,xiwill be regarded as a history optimal value,and the corresponding location is the optimal one.

    5)Compare the fitness value of a particle and that of the best location that the cluster has ever experienced.If better,the location of the particle will be regarded as a history optimal value,and the corresponding location is the optimal one.

    Update speed and location of particles(adaptive adjustment is done at the same time),and consider the maximum iteration times achieved or a good enough adaptive value gained as the termination condition.Once it is satisfied,print out the results.If not,return to 3).

    2.3 Steps of Multiple Representation Method in DFIG

    The steps to the multiple representation method in DFIG are detailed as follows.

    a)Record the active power,terminal voltage,and wind speed in pre-fault conditions,and then generate indices of clustering classification through an SVM selector.

    b)Achieve cluster classification results based on the classification indices and K-means clustering algorithm.

    c)Based on the principles of parameter identification descried in Section 1.2,equivalent wind turbines in the same cluster are achieved.

    d)Calculate the equivalent capacity,transformer parameters,and cable specifications between the equivalent wind turbine and the point of common connection(PCC)of the wind farm,thus the corresponding wind farm model can be achieved.

    3.Study on LVRT Capability of DFIG Wind Turbine

    Ruled by power system operators,the LVRT capability has to be affiliated by a wind farm when grid connected.When voltage sags in a certain range,the wind turbine with LVRT is able to operate without affecting the stability of the power system,and provide support of active power(related to frequency)and reactive power(related to voltage)[5].

    Since the stator is directly connected to the grid,DFIG’s stator voltage can reflect the grid voltage.Large DC and negative sequence components of the stator is generated by the flux,because the flux is unable to mutate when the voltage sag happens[6].Eliminating the unharmonious sequence lies in enhancing the LVRT ability.When it comes to hardware solutions,the most widely used methods include the crowbar circuit,energy storage system(ESS),and stator switcher.

    3.1 Crowbar Circuit

    The principle of crowbar circuit is that the path is provided for rotator current by short-circuiting the rotator winding with resistance,to bypass the rotator converter,when the grid voltage decreases.There are mainly two types:active crowbar and passive crowbar.

    The function realization of passive crowbar mainly is rooted in self-protection of a wind turbine.Once a fault appears,DFIG is converted into a squirrel cage asynchronous motor(SCAM)through short-circuiting the silicon controlled rectifier(SCR).After the stator of DFIG slips from the grid,SCR is turned off,and the stator accesses to the grid again.However,the reactive power demand is increasing during this process.Passive crowbar is mainly adaptive in a small-scale wind turbine under grid connected condition.The structure chart of the passive crowbar circuit is shown in Fig.3.

    The SCR,gate turn-off thyristor(GTO),and insulated gate bipolar transistor(IGBT)with a forced converter function are allocated in the active crowbar circuit,which makes it possible to turn off the crowbar protection circuit at any time.Then the rotator converter can go back to work without the wind turbine off the grid,satisfying demands of power system operators.This paper employs the typical active crowbar,and its typical structure is presented in Fig.4.It is in the reverse-parallel type,and can connect the bypass resistance with the rotator circuit by three pairs of reverse-parallel linking switch devices.Continuous connections between the transformer,rotator,and grid guarantee DFIG’s synchronism with the grid in the whole process of faults and failure recovery.When fault is cleared out,the bypass resistance is cut off,making DFIG access to the grid.

    3.2 Alternative Hardware Realization Methods[3]

    Alternative realization methods mainly include the ESS and stator switcher.

    When ESS is active,energy is stored during a fault and rejected to the grid after the fault.Although the frequent modes-switching problem raised by the crowbar has been avoided,large rotator current is increased by the out of control of the rotator,bringing damages to devices.

    Fig.3.Typical structure of the passive crowbar.

    Fig.4.Typical structure of the active crowbar.

    The stator switcher refers to the reverse parallel SCR between the rotator and grid per phase.Short-circuiting current is limited and torque oscillation is avoided,for rotator-grid’s fast separation is achieved.

    In a word,the crowbar circuit stands out for its control ability and incomparable advantages,being the most commonly used devices for LVRT.Simulation in this paper investigates the effects of crowbar on enhancing the LVRT capability of wind farms.

    4.Study Case Simulation and Analysis

    Based on the theory of multiple representation and crowbar circuit mentioned above,this paper builds a multiple machine model of wind farm made up by four identical DFIG wind turbines in DigSILENT.The system structure is presented in Appendix.

    As a classic DFIG wind farm,4 kinds of voltage class are set in the system.The DC bus is charged by the grid inverter,maintaining the voltage level of DFIG,while the output voltage and current frequency are controlled at the same time.The grid inverter is connected to the low voltage winding of three-winding step-up transformer through 690 V branches,the middle winding is connected with the generator stator by the 3.3 kV bus,while the 20 kV high voltage winding transferring active and reactive power to the infinite-bus system.

    According to the properties of wind turbines with constant speed,a test on transient performance is carried out in the wind farm.The constant wind speed is regarded as the test signal,and the conditions of active power,reactive power,wind coefficient,and pitch angle are observed.

    Simulation conditions are set as follows:the initial active power of each DFIG is 4.5 MW,the reactive power is 0.2 MVar,and the constant wind speed is 14 m/s.Then each DFIG’s conditions of active power,reactive power,wind coefficient,rotate speed,pitch,and bus voltage are observed.Among them,the operation curves of a certain DFIG is shown in Fig.5 and Fig.6(the lateral axis represents time,which is the same in Fig.8 to Fig.11).

    4.1 Simulation and Analysis on Equivalent DFIG Wind Farm Model

    Based on the cluster classification indices and K-means clustering algorithm,wind turbines in the same cluster is equivalent to one wind turbine.Then the multiple generator system(as presented in Appendix),the four DFIGs could be equivalent to a single wind turbine,by adding their mechanical power together.Then the system can be described as Fig.7.

    Fig.7 shows the wiring structure of DFIG equivalent wind farm,which has only one equivalent DFIG model,covering four voltage classes.Since the structure is similar to that of one DFIG system,details are not described here.By using identical test ways,conditions of active power,reactive power,wind coefficients,rotate speed,pitch,and bus voltage are observed as presented in Fig.8 and Fig.9.

    Fig.5.Operation curves of DFIG wind turbine under constant wind speed.

    Fig.6.Grid voltage curves of DFIG wind farm under constant wind speed.

    Fig.7.Equivalent system structure of DFIG wind farm.

    Fig.8.Operation curves of equivalent DFIG wind turbine under constant wind speed.

    Fig.9.Grid voltage curves of equivalent DFIG wind farm under constant wind speed.

    Comparing Fig.5 and Fig.6 with Fig.8 and Fig.9,it is obvious that the conditions of active power,reactive power,wind coefficient,rotate speed,pitch,and bus voltage between the four identical DFIGs and the equivalent DFIG could be considered sharing the same values and curve trend,within acceptable errors.As a result,the accuracy of the equivalent method is verified.

    4.2 Analysis on LVRT Capability of Crowbar Circuit

    Considering the single and equivalent DFIG shares the same LVRT ability,the single DFIG presented in Section 3.1 is selected to have a better observation on crowbar properties under the system fault.The steady active power is set as 4 MW,reactive power 0 MW.Two cases are studied as follows.

    Case 1.Without the crowbar,a symmetric fault of three phase voltage drop happens at 0 s,and the fault is cleared up at 0.15 s.

    Case 2.With crowbar,a symmetric fault of three phase voltage drop happens at 0 s,the crowbar operates at 0.005 s,and the fault is cleared up at 0.15 s,then the crowbar is cut off at 0.5 s.

    Simulation of the above cases is carried out respectively with DigSILENT.Simulation time is 2 s,while active power and reactive power curves of DFIG are described in Fig.10 and Fig.11.

    Fig.10 and Fig.11 show that the steady state of 4 MW/0 MVar is reached by both cases,following the transaction period.For Case 1,since no crowbar is allocated,the peak value of active power fluctuation is above 12 MW,while that of the reactive power is -14 MW.Namely,large amount of reactive power is consumed.Besides,the transaction time is relatively longer and obvious fluctuations are presented.For Case 2,with a mild fluctuation,the peak value of active is about 6 MW and that of the reactive power is -10 MW.So conclusions can be achieved that the crowbar circuit plays a crucial part in periods of both faults and faults recovery,making the output power much smoother.

    Fig.10.Curves of active power and reactive power under Case 1.

    Fig.11.Curves of active power and reactive power under Case 2.

    Because the low rated power is possessed with the tested DFIG,advantages of the crowbar circuit have not been so apparent.Nevertheless,qualitative verification has been demostrated in valuating crowbar’s effect on the capability improvement of LVRT.

    5.Conclusions

    On the basis of study on modeling the double-fed wind farm and LVRT ability,research findings are presented as follows:

    1)The dynamic modeling theory of DFIG wind farm under the fault conditions is proposed,which realizes the clustering classification by using the K-means algorithm and considering the pitch control operation first,then the optimal parameter identification is done by adopting the advanced PSO algorithm.Finally,the multiple generator representation model is built.

    2)Feasibility of the multiple representation method is verified in the study cases,which can describe the properties of multiple generators in an effective way.

    3)The crucial role of crowbar circuit in improving the LVRT ability is analyzed in the study cases,which shows that it smoothes the output power both in the period of faults and faults recovery.

    Future work will focus on the further study in more optimized modeling methods of DFIG wind farm,as well as the optimal resistance of crowbar circuit and other factors that affect its performance.

    Appendix

    Fig.12 shows the typical system structure of DFIG wind farm(presented in DigSILENT).

    Fig.12.Typical system structure of DFIG wind farm.

    [1]X.-W.Su,“Research on dynamic equivalent modeling of wind farms,” Ph.D.dissertation,North China Electric Power University,Beijing,2010(in Chinese).

    [2]X.-Y.Li,X.-H.Chen,and G.-Q.Tang,“Review on equivalent modeling for large-scale wind power field,”Journal of North China Electric Power University,vol.33,no.1,pp.42-46,2006(in Chinese).

    [3]W.Wang,M.-D.Sun,and X.-D.Zhu,“Rearch on low voltage ride through ability of doule-fed induction generator wind turbine,” Automation of Electric Power System,vol.33,no.1,pp.42-46,2007(in Chinese).

    [4]A.K.Jain and R.C.Dubes,Algorithms for Clustering Data,Upper Saddle River:Prentice Hall,1988.

    [5]S.M.Bolik,“Grid requirements challenges for wind turbines,” in Proc.of the 4th Int.Workshop on Large Scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms,Billund,2003.

    [6]W.-Y.Sun,“Research on control methods of enhancing LVRT ability of double-fed induction generator wind turbine,” Ph.D.dissertation,Lanzhou University of Technology,Lanzhou,2010(in Chinese).

    [7]J.Zhao,“Study on Crowbar protection technology to LVRT in double-fed induction generator wind turbine,” Ph.D.dissertation,Zhejiang University,Hangzhou,2010(in Chinese).

    中文字幕亚洲精品专区| 狠狠婷婷综合久久久久久88av| 亚洲精品自拍成人| √禁漫天堂资源中文www| 亚洲欧美清纯卡通| 久久精品国产a三级三级三级| 日韩在线高清观看一区二区三区| 婷婷色麻豆天堂久久| xxx大片免费视频| 校园人妻丝袜中文字幕| 久热久热在线精品观看| www.av在线官网国产| 只有这里有精品99| 美女xxoo啪啪120秒动态图| 五月天丁香电影| 亚洲av综合色区一区| h视频一区二区三区| 午夜福利在线观看免费完整高清在| 搡女人真爽免费视频火全软件| 啦啦啦中文免费视频观看日本| 欧美 亚洲 国产 日韩一| 国产爽快片一区二区三区| 亚洲在久久综合| 这个男人来自地球电影免费观看 | 女人精品久久久久毛片| 熟女少妇亚洲综合色aaa.| 在线观看美女被高潮喷水网站| 一区二区三区四区激情视频| 精品少妇内射三级| 亚洲国产精品成人久久小说| 黄网站色视频无遮挡免费观看| 久久久久久人人人人人| 欧美av亚洲av综合av国产av | 91精品三级在线观看| 精品国产一区二区三区久久久樱花| 亚洲av欧美aⅴ国产| 日韩中字成人| 国产精品亚洲av一区麻豆 | 亚洲色图综合在线观看| 我要看黄色一级片免费的| 日韩 亚洲 欧美在线| 国产欧美日韩一区二区三区在线| 午夜福利视频在线观看免费| av视频免费观看在线观看| 中文字幕人妻丝袜一区二区 | 一级,二级,三级黄色视频| 日本色播在线视频| 爱豆传媒免费全集在线观看| 春色校园在线视频观看| 涩涩av久久男人的天堂| 精品国产一区二区三区久久久樱花| 亚洲国产av新网站| 超碰成人久久| 秋霞伦理黄片| 两性夫妻黄色片| 人人妻人人添人人爽欧美一区卜| 久久人人97超碰香蕉20202| 伦理电影大哥的女人| 成人黄色视频免费在线看| 久久综合国产亚洲精品| av不卡在线播放| 免费少妇av软件| 国产在线免费精品| a级毛片在线看网站| 91aial.com中文字幕在线观看| 一边亲一边摸免费视频| 久久精品夜色国产| 成人午夜精彩视频在线观看| 男人操女人黄网站| 最近中文字幕高清免费大全6| 超碰成人久久| 考比视频在线观看| 成人毛片a级毛片在线播放| 一边亲一边摸免费视频| 亚洲精品日本国产第一区| 亚洲图色成人| 午夜福利在线免费观看网站| 国产精品秋霞免费鲁丝片| 国产成人a∨麻豆精品| 成人免费观看视频高清| 亚洲av成人精品一二三区| 精品少妇内射三级| videos熟女内射| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕色久视频| 欧美日韩精品网址| 成人午夜精彩视频在线观看| 99香蕉大伊视频| 国产人伦9x9x在线观看 | 1024香蕉在线观看| 黑丝袜美女国产一区| 人人妻人人澡人人爽人人夜夜| 免费观看av网站的网址| 久久久亚洲精品成人影院| 日韩精品有码人妻一区| 少妇的丰满在线观看| 可以免费在线观看a视频的电影网站 | 国产成人av激情在线播放| 久久韩国三级中文字幕| 国产精品嫩草影院av在线观看| 欧美av亚洲av综合av国产av | 街头女战士在线观看网站| 伦理电影免费视频| 99久久精品国产国产毛片| 精品亚洲乱码少妇综合久久| 国产有黄有色有爽视频| 99热网站在线观看| 午夜日韩欧美国产| 一区二区日韩欧美中文字幕| 纵有疾风起免费观看全集完整版| 两个人看的免费小视频| 免费看av在线观看网站| 在线精品无人区一区二区三| 日韩精品有码人妻一区| 国产成人a∨麻豆精品| videos熟女内射| 久久女婷五月综合色啪小说| 亚洲av.av天堂| 男男h啪啪无遮挡| 国产成人欧美| 在线天堂中文资源库| 如日韩欧美国产精品一区二区三区| 91在线精品国自产拍蜜月| 99热全是精品| 十八禁网站网址无遮挡| 欧美日韩成人在线一区二区| 美女主播在线视频| 不卡av一区二区三区| 最近2019中文字幕mv第一页| 青春草视频在线免费观看| freevideosex欧美| 9色porny在线观看| 下体分泌物呈黄色| 亚洲在久久综合| 极品人妻少妇av视频| 久久 成人 亚洲| 丁香六月天网| 男女边摸边吃奶| 成人漫画全彩无遮挡| 麻豆乱淫一区二区| 欧美日韩一区二区视频在线观看视频在线| 精品第一国产精品| 国产精品蜜桃在线观看| 大话2 男鬼变身卡| 国精品久久久久久国模美| 晚上一个人看的免费电影| 乱人伦中国视频| 国产精品.久久久| 国产成人91sexporn| 大片免费播放器 马上看| 精品99又大又爽又粗少妇毛片| 99国产综合亚洲精品| 日日撸夜夜添| 在线 av 中文字幕| 精品酒店卫生间| 最新中文字幕久久久久| 黄色视频在线播放观看不卡| 欧美黄色片欧美黄色片| 一本—道久久a久久精品蜜桃钙片| 咕卡用的链子| 国产色婷婷99| 国产熟女午夜一区二区三区| 日本av手机在线免费观看| 18禁观看日本| 午夜福利视频在线观看免费| 国产午夜精品一二区理论片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久精品国产亚洲av高清一级| 视频在线观看一区二区三区| 国产一区二区 视频在线| 韩国精品一区二区三区| 夫妻性生交免费视频一级片| 国产一区亚洲一区在线观看| 国产亚洲一区二区精品| 女人久久www免费人成看片| 一本色道久久久久久精品综合| 高清欧美精品videossex| 久久久国产欧美日韩av| 亚洲人成电影观看| 久久99热这里只频精品6学生| 精品人妻一区二区三区麻豆| 纵有疾风起免费观看全集完整版| 中国国产av一级| 日韩制服丝袜自拍偷拍| 亚洲欧美一区二区三区黑人 | 免费黄频网站在线观看国产| 亚洲精品久久久久久婷婷小说| 国产视频首页在线观看| tube8黄色片| 国产成人精品无人区| 久久久久国产一级毛片高清牌| 麻豆乱淫一区二区| 波野结衣二区三区在线| 国产一区二区 视频在线| 亚洲精品中文字幕在线视频| 日韩熟女老妇一区二区性免费视频| 可以免费在线观看a视频的电影网站 | 日韩免费高清中文字幕av| 80岁老熟妇乱子伦牲交| av福利片在线| 精品久久久精品久久久| 免费大片黄手机在线观看| 日韩制服骚丝袜av| 亚洲精品成人av观看孕妇| 国产午夜精品一二区理论片| 大话2 男鬼变身卡| 大香蕉久久成人网| 丁香六月天网| 国产精品麻豆人妻色哟哟久久| 久久这里有精品视频免费| 在线精品无人区一区二区三| 国产精品一国产av| 亚洲欧洲精品一区二区精品久久久 | 久久久久人妻精品一区果冻| 女人被躁到高潮嗷嗷叫费观| 男女免费视频国产| 观看美女的网站| 久久久a久久爽久久v久久| 午夜福利网站1000一区二区三区| 成人漫画全彩无遮挡| 免费黄频网站在线观看国产| 超色免费av| 春色校园在线视频观看| 少妇被粗大的猛进出69影院| 亚洲精品,欧美精品| 一区二区三区乱码不卡18| 国产又爽黄色视频| 五月伊人婷婷丁香| 五月天丁香电影| 黄色配什么色好看| 一边亲一边摸免费视频| 丝袜在线中文字幕| 最新的欧美精品一区二区| 看免费av毛片| 一区福利在线观看| 汤姆久久久久久久影院中文字幕| 天天躁日日躁夜夜躁夜夜| 秋霞伦理黄片| xxx大片免费视频| 少妇人妻精品综合一区二区| 丝袜美腿诱惑在线| 91久久精品国产一区二区三区| 乱人伦中国视频| 大话2 男鬼变身卡| 久久久久人妻精品一区果冻| 精品视频人人做人人爽| 两性夫妻黄色片| 成年人午夜在线观看视频| 18禁国产床啪视频网站| 久久久精品国产亚洲av高清涩受| 啦啦啦啦在线视频资源| 国产成人精品在线电影| 久久ye,这里只有精品| 久久久久久人人人人人| 国产精品av久久久久免费| 久久ye,这里只有精品| 999久久久国产精品视频| 18在线观看网站| 一二三四中文在线观看免费高清| 亚洲国产毛片av蜜桃av| 日本色播在线视频| 91精品伊人久久大香线蕉| 免费黄网站久久成人精品| 女性生殖器流出的白浆| 国产精品.久久久| 亚洲一区二区三区欧美精品| 啦啦啦中文免费视频观看日本| 久久这里有精品视频免费| 国产熟女午夜一区二区三区| 人妻人人澡人人爽人人| 亚洲男人天堂网一区| 一本—道久久a久久精品蜜桃钙片| 少妇熟女欧美另类| 欧美日韩一区二区视频在线观看视频在线| 国产免费一区二区三区四区乱码| 欧美老熟妇乱子伦牲交| 国产亚洲午夜精品一区二区久久| 日韩制服丝袜自拍偷拍| 亚洲美女黄色视频免费看| 久久午夜福利片| 精品亚洲成国产av| 亚洲av成人精品一二三区| av女优亚洲男人天堂| 最近中文字幕2019免费版| 欧美少妇被猛烈插入视频| 在线观看www视频免费| 国产男女超爽视频在线观看| 久久ye,这里只有精品| 美女午夜性视频免费| 亚洲熟女精品中文字幕| 下体分泌物呈黄色| 亚洲成色77777| 极品人妻少妇av视频| 欧美成人精品欧美一级黄| 永久网站在线| av国产久精品久网站免费入址| 日韩欧美一区视频在线观看| av片东京热男人的天堂| 亚洲欧美日韩另类电影网站| 波野结衣二区三区在线| 亚洲成人手机| 尾随美女入室| av天堂久久9| 极品少妇高潮喷水抽搐| av福利片在线| 少妇 在线观看| 国产女主播在线喷水免费视频网站| 日韩成人av中文字幕在线观看| 久久久久久久大尺度免费视频| 日本-黄色视频高清免费观看| 我的亚洲天堂| 宅男免费午夜| 大码成人一级视频| 欧美精品高潮呻吟av久久| 超色免费av| 午夜老司机福利剧场| 成人亚洲精品一区在线观看| 在线观看国产h片| 久久久精品免费免费高清| 99热国产这里只有精品6| 一区二区三区激情视频| 美女大奶头黄色视频| av在线播放精品| 熟女av电影| 国产精品亚洲av一区麻豆 | 在线观看一区二区三区激情| 国产熟女午夜一区二区三区| 韩国高清视频一区二区三区| 亚洲av欧美aⅴ国产| av不卡在线播放| www.av在线官网国产| 日韩av免费高清视频| 国产成人精品一,二区| 国产 一区精品| 麻豆乱淫一区二区| 大话2 男鬼变身卡| 老司机影院成人| 岛国毛片在线播放| 亚洲国产欧美在线一区| 久久狼人影院| 亚洲国产av新网站| 九九爱精品视频在线观看| 18在线观看网站| 最近的中文字幕免费完整| 亚洲人成77777在线视频| 少妇猛男粗大的猛烈进出视频| 少妇被粗大的猛进出69影院| 91久久精品国产一区二区三区| tube8黄色片| 视频在线观看一区二区三区| 国产乱来视频区| 欧美激情高清一区二区三区 | 久久久久久免费高清国产稀缺| 一级毛片黄色毛片免费观看视频| 人妻人人澡人人爽人人| 女人久久www免费人成看片| 免费观看无遮挡的男女| 免费在线观看完整版高清| 久久ye,这里只有精品| 精品亚洲成国产av| 大码成人一级视频| 久久久a久久爽久久v久久| 女人精品久久久久毛片| 免费黄网站久久成人精品| 在线观看免费视频网站a站| freevideosex欧美| 嫩草影院入口| 在线亚洲精品国产二区图片欧美| 国产高清不卡午夜福利| 精品午夜福利在线看| 久久国内精品自在自线图片| 天天影视国产精品| 亚洲精品自拍成人| 一区二区三区四区激情视频| kizo精华| 有码 亚洲区| 日韩欧美一区视频在线观看| 在线观看三级黄色| 999精品在线视频| 欧美精品一区二区大全| 高清欧美精品videossex| 黄频高清免费视频| 国产免费一区二区三区四区乱码| 99精国产麻豆久久婷婷| 午夜日韩欧美国产| 熟女av电影| 国产综合精华液| 精品一品国产午夜福利视频| 亚洲内射少妇av| 97在线人人人人妻| 久久这里只有精品19| 久久人人97超碰香蕉20202| 大香蕉久久成人网| 成年人午夜在线观看视频| 成人毛片a级毛片在线播放| 日韩免费高清中文字幕av| 国产精品.久久久| 国产免费一区二区三区四区乱码| 久久精品国产亚洲av涩爱| 国产亚洲最大av| 亚洲三级黄色毛片| 国产成人91sexporn| 黄网站色视频无遮挡免费观看| 国产精品二区激情视频| 欧美日韩精品成人综合77777| 99九九在线精品视频| 不卡视频在线观看欧美| 黑人欧美特级aaaaaa片| av有码第一页| 久久97久久精品| 久久久欧美国产精品| 国产精品欧美亚洲77777| tube8黄色片| 性少妇av在线| 久久人人97超碰香蕉20202| 国产成人91sexporn| 国产欧美日韩一区二区三区在线| 国产一区二区三区av在线| 国产黄色视频一区二区在线观看| 午夜福利在线免费观看网站| 我要看黄色一级片免费的| 色94色欧美一区二区| 久久97久久精品| 欧美最新免费一区二区三区| 在线观看免费高清a一片| 午夜福利,免费看| 高清av免费在线| 免费看不卡的av| 精品午夜福利在线看| 韩国精品一区二区三区| av免费观看日本| 久久精品久久久久久久性| 人成视频在线观看免费观看| 久久久久网色| 中文字幕人妻丝袜制服| 美女国产高潮福利片在线看| av.在线天堂| 9191精品国产免费久久| 看十八女毛片水多多多| 国产成人免费观看mmmm| 97人妻天天添夜夜摸| 久久久久国产网址| 国产精品女同一区二区软件| 国产精品不卡视频一区二区| 97在线视频观看| 精品国产一区二区三区四区第35| 一本—道久久a久久精品蜜桃钙片| 日韩制服丝袜自拍偷拍| av在线观看视频网站免费| 美女视频免费永久观看网站| 亚洲精品久久久久久婷婷小说| a 毛片基地| 你懂的网址亚洲精品在线观看| 在线观看www视频免费| 大陆偷拍与自拍| 中国国产av一级| 精品酒店卫生间| 啦啦啦视频在线资源免费观看| 精品少妇黑人巨大在线播放| 亚洲国产精品一区三区| 欧美最新免费一区二区三区| 丝袜美足系列| 久久婷婷青草| 亚洲欧美成人综合另类久久久| 99久国产av精品国产电影| 国产在线视频一区二区| 亚洲av福利一区| 国产亚洲一区二区精品| 母亲3免费完整高清在线观看 | 少妇精品久久久久久久| 国产97色在线日韩免费| 久久婷婷青草| 亚洲欧洲日产国产| 人妻 亚洲 视频| www.精华液| 91精品三级在线观看| 国产综合精华液| 午夜福利乱码中文字幕| 精品少妇久久久久久888优播| 亚洲欧美成人精品一区二区| 美女xxoo啪啪120秒动态图| 国产免费现黄频在线看| 王馨瑶露胸无遮挡在线观看| 国产男女超爽视频在线观看| 国产免费视频播放在线视频| 美女高潮到喷水免费观看| 日日摸夜夜添夜夜爱| 久久亚洲国产成人精品v| 亚洲精品av麻豆狂野| 捣出白浆h1v1| 久久青草综合色| 欧美变态另类bdsm刘玥| 啦啦啦视频在线资源免费观看| 免费大片黄手机在线观看| 卡戴珊不雅视频在线播放| 满18在线观看网站| 9热在线视频观看99| 成人毛片a级毛片在线播放| 亚洲国产精品成人久久小说| 亚洲色图 男人天堂 中文字幕| 飞空精品影院首页| 日韩精品有码人妻一区| 在线观看免费视频网站a站| 国产激情久久老熟女| 考比视频在线观看| 精品久久蜜臀av无| 亚洲第一av免费看| 亚洲精品国产一区二区精华液| 男女无遮挡免费网站观看| 人人澡人人妻人| 国产伦理片在线播放av一区| 天美传媒精品一区二区| 欧美xxⅹ黑人| 亚洲国产色片| 日韩人妻精品一区2区三区| 超碰成人久久| 男的添女的下面高潮视频| 国产成人aa在线观看| 黑丝袜美女国产一区| 王馨瑶露胸无遮挡在线观看| 黄频高清免费视频| 国产精品熟女久久久久浪| 亚洲一码二码三码区别大吗| 最近2019中文字幕mv第一页| 欧美精品一区二区免费开放| 久久久久久久国产电影| 国产精品三级大全| 人妻一区二区av| 看免费av毛片| 永久免费av网站大全| 777久久人妻少妇嫩草av网站| 天天躁夜夜躁狠狠久久av| 秋霞在线观看毛片| 精品一区二区三区四区五区乱码 | 观看av在线不卡| 久久久久久久国产电影| 少妇人妻久久综合中文| 男人舔女人的私密视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲成av片中文字幕在线观看 | 国产精品蜜桃在线观看| 又大又黄又爽视频免费| 三上悠亚av全集在线观看| 国产男女内射视频| 少妇的逼水好多| 两个人看的免费小视频| 免费女性裸体啪啪无遮挡网站| 成年人午夜在线观看视频| 91午夜精品亚洲一区二区三区| 亚洲精品在线美女| 26uuu在线亚洲综合色| 国产亚洲精品第一综合不卡| 日韩一卡2卡3卡4卡2021年| 蜜桃国产av成人99| 高清黄色对白视频在线免费看| 精品久久久精品久久久| 黄频高清免费视频| 97人妻天天添夜夜摸| 青草久久国产| 欧美97在线视频| av一本久久久久| 亚洲成av片中文字幕在线观看 | 如何舔出高潮| 自拍欧美九色日韩亚洲蝌蚪91| 国产又色又爽无遮挡免| 午夜免费鲁丝| 国产女主播在线喷水免费视频网站| 日韩一区二区三区影片| 免费播放大片免费观看视频在线观看| 秋霞伦理黄片| 午夜免费鲁丝| 欧美最新免费一区二区三区| 人妻人人澡人人爽人人| 青草久久国产| www.自偷自拍.com| 观看av在线不卡| 亚洲图色成人| 最黄视频免费看| 亚洲三区欧美一区| 丝袜人妻中文字幕| 飞空精品影院首页| 日韩大片免费观看网站| 亚洲国产日韩一区二区| 咕卡用的链子| 日韩人妻精品一区2区三区| 黑人巨大精品欧美一区二区蜜桃| 欧美精品国产亚洲| 国产欧美亚洲国产| 侵犯人妻中文字幕一二三四区| av免费观看日本| 午夜福利一区二区在线看| 欧美日韩视频高清一区二区三区二| 国产男女超爽视频在线观看| 久久国内精品自在自线图片| 国产极品粉嫩免费观看在线| 一个人免费看片子| 伦理电影免费视频| 欧美xxⅹ黑人| 丰满饥渴人妻一区二区三| 啦啦啦在线观看免费高清www| 午夜福利,免费看| 精品国产国语对白av| 老司机影院毛片| a 毛片基地| 18在线观看网站| 日日啪夜夜爽| 99香蕉大伊视频| 一级爰片在线观看| 各种免费的搞黄视频| 久久这里有精品视频免费| 精品国产国语对白av| 丝袜美腿诱惑在线| 久久人人爽人人片av| 成人手机av| 亚洲美女搞黄在线观看|