• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Fuzzy Logical MPPT Control Strategy for PMSG Wind Generation Systems

    2013-07-29 09:42:26XingPengLiWenLuFuQingJunShiJianBingXuandQuanYuanJiang

    Xing-Peng Li,Wen-Lu Fu,Qing-Jun Shi,Jian-Bing Xu,and Quan-Yuan Jiang

    1.Introduction

    Wind turbine is an essential portion in wind generation systems.The amount of mechanical energy that can be extracted from wind is not only depending on wind speed,but also depending on the wind turbine rotational speed.The wind turbine rotational speed can be adjusted as the wind speed changes to tracking the maximum power point.

    Currently,researchers have developed many maximum power point tracking(MPPT)strategies.There are three common MPPT algorithms[1],[2]:a)hill climbing search(HCS)or perturbation and observation(P&O)[3],[4],b)wind speed measurement(WSM)[5],c)power signal feedback(PSK).There are also other MPPT algorithms introduced in[6]–[11].

    In comparison,the HCS algorithm is popular[12]due to its simplicity and independence of system characteristics and it can avoid using wind speed.However,the step size of HCS algorithm is constant[13].Choosing an appropriate step size is not an easy task,where large step size means faster response and less steady-state efficiency while small step size improves steady-state efficiency but slows down the convergence speed[8].The conventional HCS algorithm cannot combine rapidity and efficiency,which means the algorithm cannot adapt well both in the situation that wind speed changes quickly and in the situation that wind speed is constant.

    In this paper,a fuzzy-logical-controller based MPPT strategy for wind generation systems is proposed,which can realize variable step-size control.The strategy is independent of the turbine’s characteristics.Compared with conventional HCS algorithms with a big step size and a small step size respectively,the proposed algorithm is validated superiorly in MATLAB/Simulink environment.The simulation results indicate the proposed MPPT algorithm has three advantages:a)tracking MPP fast,b)the fluctuation magnitude of real power is small during steady state,and c)the wind energy captured is the most among the three MPPT algorithms.

    This paper is organized as follows:Section 2 gives a brief introduction to the wind turbine characteristics and to the wind generation system.Section 3 presents an introduction to the conventional HCS algorithm.In Section 4,we discuss the proposed fuzzy logical control(FLC)strategy and its advantages compared with conventional HCS strategy.Case studies are presented in detail in Section 5.Conclusions are finally made in Section 6.

    2.System Overview

    2.1 Wind Turbine Characteristics

    Depending on the aerodynamic characteristics,the wind power captured by the wind turbine can be expressed as

    where Cp(λ,β )is the wind turbine power coefficient which is a function of λ and β,ρ is the air density,R is the radius of wind turbine blade,V is the wind speed,β is the blade pitch angle,and λ is the tip speed ratio:

    where w is the wind turbine rotational speed.There exits an optimal tip speed ratio λoptthat can maximize Cpand P.Then,the maximum wind power Pmaxcaptured by wind turbine can be described as

    The output mechanical power versus rotational speed characteristic of wind turbine for different wind speeds is shown in Fig.1,in which the dotted line shows the maximum power points for different wind turbine rotational speed w and different wind speed V.Each P–w curve is characterized by a unique turbine speed corresponding to the maximum power point for that wind velocity[14].The peak power points in the P–w curves correspond to[15].

    A direct driven permanent magnet synchronous generator(PMSG)connected to a utility grid is selected in this paper.The specifications of the simulated PMSG generation system are listed in Table 1.

    2.2 Wind Generation System

    Direct driven PMSG wind generator can connect a utility grid through various converter topologies[16],where double PWM converters are a common topology for PMSG wind generation systems.The double PWM converters own a flexible structure for different control methods and can be used to adjust the motor speed and control the power injected into a utility grid.In this paper,the configuration of the imitation platform for the PMSG wind generation system is shown in Fig.2.

    In the operation control process,two PWM converters play different roles.The grid-side converter uses vector control technology based on decoupling control of active power and reactive power,which can smooth the output active power and provide reactive power support for the utility grid.Another task of the grid-side converter is to maintain the stability of the DC bus voltage.The turbine-side converter controls PMSG using vector control technology based on rotor flux oriented control.Then,the rotational speed can be adjusted to maintain the best tip speed ratio and to achieve the maximum wind power tracking when wind speed changes.The simulation model diagram of turbine-side converter control is shown in Fig.3.From Fig.3,we can see that the turbine is operated in the rotational speed control mode.The reference rotational speed is dynamically modified as the wind speed changes.

    2.3 Issues with MPPT

    To maintain the best tip speed ratio and to achieve MPPT control,the rotational speed needs to be adjusted as the wind speed changes in practical operation.The issue with MPPT is how to determine the optimal rotational speed for different wind speed.

    Many MPPT algorithms have already been proposed.Among them,the HCS method is popularly applied for the method is simple,fast and it can operate independently from predefined wind turbine characteristic.

    Fig.1.Wind turbine P-w characteristics and maximum power curve.

    Table 1:Parameters of PMSG

    Fig.2.PMSG wind generation system with double PWM converters.

    Fig.3.Turbine-side converter control model for simulation.

    Fig.4.Control block of FLC algorithm.

    Fig.5.Principle illustration of HCS control algorithm.

    However,the step size of the conventional HCS algorithm is constant and it cannot change suitably as the environment changes.This paper presents a fuzzy logical control algorithm to determine the reference rotational speed which can realize variable step-size control as wind speed changes.As shown in Fig.4,the input variables of fuzzy logical control algorithm are rotational speed w and mechanical power P.The reference rotational speed wrefcan be calculated through fuzzy logic rules.The proposed FLC algorithm is described in detail in Section 4.

    3.Basic Principle of HCS Algorithm

    The process of the conventional hill climbing searching algorithm used for the maximum power point tracking can be explained using Fig.5.The basic principle of the HCS algorithm is:if the previous increment of rotational speed Δw results in an increase of mechanical power ΔP,the search of Δw continues in the same direction; otherwise,the search reverses its direction.The algorithm is described in detail as follows.

    Assume that the wind turbine is operating at point A in the characteristic curve shown in Fig.5.The wind turbine rotational speed is increased and the corresponding mechanical power is detected.If the power is increased compared with that in the earlier step,the search process is in the correct direction,and the wind turbine rotational speed is increased again.If the power is decreased compared with that in the earlier step,the search will be in the opposite direction.This process is continued until the powers slope becomes zero,indicating that the HCS algorithm succeeds to reach the maximum power point,which corresponds to point B.

    If the wind speed changes from v3to v1,the turbine operating-point will jump to point C from point B instantly.Then P-w slope is positive and the turbine rotational speed is increased.The slope is observed until it becomes zero.Then the wind turbine can track the maximum power point,i.e.,it will operate at point D.Now if there is a decrease in wind speed from v1to v2,the operating-point could eventually shift from point D to point F,depending on the same principle.

    The flow chart of conventional HCS algorithm is illustrated in Fig.6.

    Fig.6.Flow chart of HCS algorithm.

    4.Introduction to FLC Algorithm

    The conventional HCS algorithm implementation is simple and is independent of turbine characteristics[12],but there still exist issues like the selection of step size.A big step size can track the MPP fast but at the same time it can result in severe oscillations around the maximum power point.Reducing the perturbation step size can minimize the oscillations around MPP.However,a small step size can slow down the MPPT process especially when wind speed varies fast.To give a solution to this conflicting situation,a fuzzy logical control algorithm which has a variable perturbation step size is proposed in this paper.The FLC algorithm can effectively track the MPP fast and smoothly.

    In the part of setting reference wind turbine rotational speed,the conventional HCS algorithm is replaced by the proposed FLC algorithm,which can realize variable step-size control.Through fuzzy control,the step size can be large when the operating point is far away from the MPP while the step size can become small when the operating point comes close to the MPP.Therefore,the FLC algorithm can dynamically change its step size,depending on the turbine operation condition.

    The set of the fuzzy logical controller is described as follows:the input variables are ΔP(k)and Δw(k),while the output variable is Δwref(k).ΔP(k)and Δw(k)can be obtained by

    The member function of input variables of fuzzy logical controller with MATLAB is defined as follows:there are seven member functions of input variable ΔP(k):PB(positive big),PM(positive medium),PS(positive small),ZE(zero),NS(negative small),NM(negative medium),and NB(negative big),respectively,as shown in Fig.7; the member functions of input variable Δw(k)are P(positive),Z(zero),and N(negative),respectively.

    Fig.7.Member functions of input variablesΔP(k).

    Fig.8.Member functions of output variableΔwref(k).

    Table 2:Rules for the fuzzy logical controller

    The member functions of output variable Δwref(k),which are similar to ΔP(k),are PB,PM,PS,ZE,NS,NM,NB,respectively.The detail information can be viewed from Fig.8.

    The relationship between turbine mechanical power and turbine rotational speed can be expressed in(6)to(8)depending on the P-w curve.

    where wmppdenotes the turbine rotational speed corresponding to the MPP.

    The fuzzy logical control rules are based on the properties of wind turbine,as shown in Table 2.Then the newly setting reference rotational speed can be updated by

    5.Case Studies

    Case studies on the proposed MPPT control strategy and two conventional HCS algorithms with different size steps have been conducted to validate the proposed MPPT strategy.

    Four performance indices for MPPT in a grid-connected wind generation system are also proposed in this paper.They are the wind energy captured by wind turbine,the maximum power point tracking time when the wind speed changes slowly,the fluctuation magnitude of real power during steady-state,and the wind energy captured by wind turbine when the wind speed changes fast.

    Table 3:Results of case 1

    Table 4:Results of case 2

    Three cases are designed,and three MPPT control strategies are simulated in the environment of MATLAB/Simulink respectively.The three MPPT control strategies are:a)HCS algorithm with a big perturbation step size,b)HCS algorithm with a small perturbation step size,and c)FLC algorithm with variable perturbation step size.

    Initial conditions of the three cases are the same:the wind speed is 7 m/s,and the wind turbine operates at the optimal point,i.e.MPP.

    5.1 Case 1

    Case 1:Wind speed rises to 11 m/s linearly from 0.9 s to 1.0 s.The time used for tracking the MPP is T1after the first change of wind speed.From 1.9 s to 2.0 s,wind speed drops to 8 m/s linearly.The time used for tracking the MPP is T2after the second change of wind speed.The symbol ΔP denotes the fluctuation magnitude of real power during steady state,while the symbol W denotes the wind energy captured by the wind turbine from 0.9 s to 3.0 s.The result of case 1 is shown in Table 3.

    5.2 Case 2

    Case 2:The wind speed is up to 11 m/s in step change at time 1.0 s while down to 8 m/s in step change at time 2.0 s.The result of Case 2 is shown in Table 4.The symbols T1,T2,and ΔP of Table 4 have the same meaning as defined in Case 1.Here W denotes the wind energy captured by the wind turbine from 1.0 s to 3.0 s.

    The output mechanical power curves(1.0 s to 1.5 s)of three different MPPT strategies after the first change of wind speed are given in Fig.9 in order to compare the performance of the three MPPT strategies more easily.Fig.10 shows variable perturbation step size of the proposed FLC algorithm.Through Fig.10,it can be concluded that the step size controlled by the FLC algorithm can be changed suitably depending on the system operation condition.At time 1.073 s,the step size becomes small which can indicate the system operating point is very close to MPP or it is the MPP itself.

    Fig.9.Output power curves of three MPPT strategies:(a)HCS algorithm(step size:0.08 r/min),(b)HCS algorithm(step size:0.04 r/min),and(c)FLC algorithm(variable step size).

    Fig.10.Variable step size of FLC algorithm.

    Fig.11.Curve of wind speed.

    Table 5:Results of Case 3

    5.3 Case 3

    Case 3:The wind speed changes fast and irregularly from 1.0 s to 4.0 s.The curve of wind speed is shown in Fig.11.The wind energies captured by turbines from 1.0 s to 4.0 s through three different MPPT algorithms are listed in Table 5.

    Through the above three cases,we can see that the system can always operate at its optimal points for a certain wind speed by using any of the three MPPT strategies.But the emphasis is when the wind speed changes,the FLC algorithm shows good performances than the conventional HCS algorithm no matter its step size is large or small.FLC algorithm can track the MPP much faster than the other two methods.At the same time,the fluctuation magnitude of real power of FLC algorithm is small during steady state.Case studies also show that the wind energy captured by FLC algorithm is the most among the three MPPT strategies both in the situation of wind speed changing slowly and in the situation of wind speed changing fiercely.All these results can validate that the proposed MPPT algorithm is highly efficient than the conventional HCS algorithms.

    Generally speaking,compared with the conventional HCS control approaches,the proposed algorithm reflects significant advantages no matter in the aspect of tracking speed or in the aspect of the fluctuation magnitude of real power.

    6.Conclusions

    This paper proposes a fuzzy-logical-controller based MPPT strategy with variable step size,which can consider both tracking speed and steady-state efficiency.The proposed algorithm can change its perturbation step size dynamically depending on the change of wind speed,which enables the turbine to track the MPP quickly and smoothly.

    Three MPPT algorithms and three cases were developed in this paper.The effectiveness of the proposed algorithm is verified in MATLAB/Simulink environment with SimPowerSystems and Fuzzy Logical Toolbox.The simulation results indicate that the proposed fuzzy-logicalcontroller based MPPT algorithm shows good performance.The wind turbine could track the optimum operating point swiftly using the proposed algorithm and the steady-state power would not fluctuate fiercely.In general,the proposed FLC MPPT algorithm can enhance the efficiency of wind turbine operation compared with the conventional HCS strategy.

    [1]A.Soetedjo,A.Lomi,and W.P.Mulayanto,“Modeling of wind energy system with MPPT control,” presented at Int.Conf.on Electrical Engineering and Informatics,Bandung,Jul.2011.

    [2]S.M.Barakati,“Modeling and controller design of a wind energy conversion system including a matrix converter,”Ph.D.dissertation,University of Waterloo,Canada,2008.

    [3]E.Koutroulis and K.Kalaitzakis,“Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans.on Industrial Electronics,vol.53,no.2,pp.486–494,Apr.2006.

    [4]Q.Wang and L.Chang,“An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems,” IEEE Trans.on Power Electronics,vol.19,no.5,pp.1242–1249,Sep.2004.

    [5]A.M.Eltamaly,“Modeling of wind turbine driving permanent magnet generator with maximum power point tracking system,” Journal of King Saud University,Engineering Science,vol.19,no.2,pp.223–237,2007.

    [6]C.Patsios,A.Chaniotis,M.Rotas,and A.G.Kladas,“A comparison of maximum-power-point tracking control techniques for low-power variable-speed wind generators,”presented at 2009 8th Int.Symposium on Advanced Electromechanical Motion Systems & Electric Drives Joint Symposium,Lille,Jul.2009.

    [7]M.Shirazi,A.H.Viki,and O.Babayi,“A comparative study of maximum power extraction strategies in PMSG wind turbine system,” in Proc.of 2009 IEEE Electrical Power & Energy Conf.,Montreal,2009,pp.1–6.

    [8]M.A.Abdullah,A.H.M.Yatim,and C.W.Tan.“A study of maximum power point tracking algorithms for wind energy system,” in Proc.of 2011 IEEE First Conf.on Clean Energy and Technology,Kuala Lumpur,2011,pp.321–326.

    [9]S.M.Raza Kazmi,H.Goto,H.-J.Guo,and O.Ichinokura,“Review and critical analysis of the research papers published till date on maximum power point tracking in wind energy conversion system,” in Proc.of 2010 IEEE Energy Conversion Congress and Exposition,Atlanta,2010,pp.4075–4082.

    [10]R.Vepa,“Nonlinear,optimal control of a wind turbine generator,” IEEE Trans.Energy Conversion,vol.26,no.2,pp.468–478,Jun.2011.

    [11]M.Pucci and M.Cirrincione,“Neural MPPT control of wind generators with induction machines without speed sensors,” IEEE Trans.on Industrial Electronics,vol.58,no.1,pp.37–47,Jan.2011.

    [12]S.Musunuri and H.L.Ginn,“A fast maximum power extraction algorithm for wind energy systems,” in Proc.of 2011 IEEE Power and Energy Society General Meeting,Detroit,Jul.2011,pp.1–7.

    [13]M.G.Molina and P.E.Mercado,“A new control strategy of variable speed wind turbine generator for three-phase gridconnected applications,” in 2008 IEEE/PES Transmission and Distribution Conf.and Exposition,Chicago,Aug.2008,pp.1–8.

    [14]V.Agarwal,R.K.Aggarwal,P.Patidar,and C.Patki,“A novel scheme for rapid tracking of maximum power point in wind energy generation systems,” IEEE Trans.Energy Conversion,vol.25,no.1,pp.228–236,Mar.2010.

    [15]R.Datta and V.T.Ranganathan,“A method of tracking the peak power points for a variable speed wind energy conversion system,” IEEE Trans.on Energy Conversion,vol.18,no.1,pp.163–168,Mar.2003.

    [16]J.A.Baroudi,V.Dinavahi,and A.M.Knight,“A review of power converter topologies for wind generators,” Renewable Energy,vol.32,no.14,pp.2369–2385,Nov.2007.

    夜夜看夜夜爽夜夜摸| 国产免费一级a男人的天堂| 女人被狂操c到高潮| 亚洲一区二区三区不卡视频| xxx96com| 91九色精品人成在线观看| 精品福利观看| 757午夜福利合集在线观看| 国产精品98久久久久久宅男小说| 免费看a级黄色片| 久久中文看片网| 舔av片在线| 免费高清视频大片| 欧美在线黄色| 热99在线观看视频| 99热6这里只有精品| 桃红色精品国产亚洲av| av女优亚洲男人天堂| 国产97色在线日韩免费| 国产精品久久久久久人妻精品电影| 成年女人看的毛片在线观看| 99视频精品全部免费 在线| 天天一区二区日本电影三级| 成人高潮视频无遮挡免费网站| 国产高清videossex| 色综合亚洲欧美另类图片| 精品人妻偷拍中文字幕| 日本黄色视频三级网站网址| 亚洲 欧美 日韩 在线 免费| 两个人的视频大全免费| avwww免费| 久久久久久久久久黄片| 日日干狠狠操夜夜爽| 美女cb高潮喷水在线观看| 国产三级黄色录像| 久久精品综合一区二区三区| 国产精品久久视频播放| 国产欧美日韩一区二区精品| x7x7x7水蜜桃| www国产在线视频色| 真实男女啪啪啪动态图| 免费av观看视频| 欧美最新免费一区二区三区 | 亚洲精品国产精品久久久不卡| 69人妻影院| 久久久色成人| 亚洲一区高清亚洲精品| 日本一本二区三区精品| 日本熟妇午夜| 动漫黄色视频在线观看| 成人国产一区最新在线观看| 久久婷婷人人爽人人干人人爱| 国产一区二区激情短视频| 听说在线观看完整版免费高清| 欧美激情在线99| 在线观看午夜福利视频| 狂野欧美白嫩少妇大欣赏| 亚洲avbb在线观看| 日韩大尺度精品在线看网址| 久久精品国产亚洲av涩爱 | 国产亚洲欧美98| 国产精华一区二区三区| 成人无遮挡网站| 男人的好看免费观看在线视频| 免费在线观看成人毛片| 国产av一区在线观看免费| 黄色丝袜av网址大全| 欧美激情久久久久久爽电影| 人妻夜夜爽99麻豆av| 亚洲国产精品sss在线观看| 国产一区二区在线观看日韩 | 久久久久久国产a免费观看| 久久久久久国产a免费观看| av在线天堂中文字幕| 韩国av一区二区三区四区| 日韩欧美在线二视频| 欧美国产日韩亚洲一区| 成人鲁丝片一二三区免费| 久久久久久久久久黄片| 亚洲精品色激情综合| 国产精品自产拍在线观看55亚洲| 91在线精品国自产拍蜜月 | 亚洲第一电影网av| 亚洲片人在线观看| av中文乱码字幕在线| 日韩精品青青久久久久久| 亚洲国产精品sss在线观看| 一a级毛片在线观看| 日韩欧美一区二区三区在线观看| 18禁国产床啪视频网站| 亚洲精品粉嫩美女一区| 久久精品综合一区二区三区| 在线观看美女被高潮喷水网站 | 我的老师免费观看完整版| 人人妻,人人澡人人爽秒播| 国产三级在线视频| 久久婷婷人人爽人人干人人爱| 国产av不卡久久| 听说在线观看完整版免费高清| 精品熟女少妇八av免费久了| 国产在视频线在精品| 黄色成人免费大全| 男女午夜视频在线观看| 中文字幕熟女人妻在线| 禁无遮挡网站| 99热6这里只有精品| 欧美3d第一页| 搡老岳熟女国产| 无遮挡黄片免费观看| 亚洲自拍偷在线| 91久久精品电影网| 亚洲国产精品久久男人天堂| 国产成人啪精品午夜网站| 欧美乱色亚洲激情| 久久精品人妻少妇| www.999成人在线观看| 岛国在线免费视频观看| 国产成人av教育| 99热这里只有是精品50| 99久久精品一区二区三区| 国产亚洲精品综合一区在线观看| 中文资源天堂在线| 亚洲精品影视一区二区三区av| 精品久久久久久久末码| 国产精华一区二区三区| 欧美日韩乱码在线| 日本免费一区二区三区高清不卡| 久久国产乱子伦精品免费另类| 日韩欧美三级三区| 在线观看美女被高潮喷水网站 | av视频在线观看入口| 午夜老司机福利剧场| 毛片女人毛片| 亚洲国产精品久久男人天堂| 国产精品亚洲美女久久久| 成年女人看的毛片在线观看| 女人高潮潮喷娇喘18禁视频| 国产私拍福利视频在线观看| 偷拍熟女少妇极品色| 午夜福利在线观看吧| 中文字幕精品亚洲无线码一区| 午夜亚洲福利在线播放| 免费观看的影片在线观看| 免费在线观看成人毛片| 最新美女视频免费是黄的| 99久久99久久久精品蜜桃| 精品不卡国产一区二区三区| 国产av在哪里看| 丰满人妻一区二区三区视频av | 一个人观看的视频www高清免费观看| 欧美日韩一级在线毛片| 欧美丝袜亚洲另类 | 国产一区二区激情短视频| 国产成人影院久久av| 国产精品亚洲av一区麻豆| 欧美日韩亚洲国产一区二区在线观看| 午夜视频国产福利| 内射极品少妇av片p| 国产精品久久久久久久电影 | 国产精品久久久久久久久免 | 无人区码免费观看不卡| 两个人看的免费小视频| 亚洲欧美日韩东京热| 2021天堂中文幕一二区在线观| 成年女人永久免费观看视频| 99国产精品一区二区蜜桃av| 免费在线观看成人毛片| 日日摸夜夜添夜夜添小说| 精品人妻偷拍中文字幕| 高清日韩中文字幕在线| 亚洲国产欧洲综合997久久,| 成年女人看的毛片在线观看| 久久精品国产99精品国产亚洲性色| 午夜激情欧美在线| 成人欧美大片| 国产av在哪里看| 女人十人毛片免费观看3o分钟| 精品久久久久久久久久久久久| 在线国产一区二区在线| 久久精品综合一区二区三区| 青草久久国产| 真实男女啪啪啪动态图| 亚洲一区二区三区不卡视频| 亚洲专区国产一区二区| 两个人的视频大全免费| 黄色女人牲交| av在线天堂中文字幕| 午夜精品在线福利| 亚洲国产精品久久男人天堂| 内射极品少妇av片p| 精品一区二区三区人妻视频| 在线视频色国产色| 长腿黑丝高跟| 日本 欧美在线| 国产v大片淫在线免费观看| 国产精品野战在线观看| 欧美日韩黄片免| 国产精品久久久人人做人人爽| 18禁国产床啪视频网站| 丰满人妻一区二区三区视频av | 久久久久久九九精品二区国产| 男女下面进入的视频免费午夜| 18禁美女被吸乳视频| 国产爱豆传媒在线观看| 国产私拍福利视频在线观看| 男女视频在线观看网站免费| 国产成人欧美在线观看| 国产毛片a区久久久久| 2021天堂中文幕一二区在线观| 亚洲18禁久久av| 操出白浆在线播放| 久久久久精品国产欧美久久久| 国产精品99久久久久久久久| 麻豆久久精品国产亚洲av| 91av网一区二区| or卡值多少钱| 亚洲五月婷婷丁香| 国产av一区在线观看免费| 99久久九九国产精品国产免费| 亚洲成人精品中文字幕电影| 久久久精品欧美日韩精品| 成人鲁丝片一二三区免费| 精品国内亚洲2022精品成人| 悠悠久久av| 有码 亚洲区| 午夜福利在线观看吧| 制服人妻中文乱码| 三级国产精品欧美在线观看| 热99在线观看视频| 欧美成人一区二区免费高清观看| 久久久久精品国产欧美久久久| 成人永久免费在线观看视频| 日本免费一区二区三区高清不卡| 色吧在线观看| 成年人黄色毛片网站| 麻豆一二三区av精品| 日韩欧美国产一区二区入口| 国产精品,欧美在线| 国产亚洲av嫩草精品影院| 99久久精品一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 天堂√8在线中文| 黄片大片在线免费观看| 黄色丝袜av网址大全| 一进一出抽搐gif免费好疼| 91在线精品国自产拍蜜月 | 一级黄色大片毛片| 亚洲国产日韩欧美精品在线观看 | 国产午夜精品论理片| 日韩欧美精品v在线| 国产成人影院久久av| 成人一区二区视频在线观看| 99视频精品全部免费 在线| 久久精品国产亚洲av香蕉五月| 欧美性猛交╳xxx乱大交人| 久99久视频精品免费| 可以在线观看毛片的网站| 国产精品影院久久| 国产高清视频在线观看网站| 18美女黄网站色大片免费观看| 欧美成人免费av一区二区三区| 欧美日韩瑟瑟在线播放| 亚洲欧美日韩无卡精品| 日韩av在线大香蕉| 成人18禁在线播放| 欧美日韩瑟瑟在线播放| 91av网一区二区| 欧美zozozo另类| 内地一区二区视频在线| 国产精品乱码一区二三区的特点| 神马国产精品三级电影在线观看| 欧美黑人欧美精品刺激| 高清毛片免费观看视频网站| 国产在线精品亚洲第一网站| 婷婷精品国产亚洲av| 最新中文字幕久久久久| 精品久久久久久久末码| 精品人妻一区二区三区麻豆 | 国内揄拍国产精品人妻在线| 日韩有码中文字幕| 国产精品亚洲美女久久久| 日本 av在线| 久久久久久国产a免费观看| 1000部很黄的大片| 午夜a级毛片| 18禁美女被吸乳视频| 婷婷丁香在线五月| 欧美绝顶高潮抽搐喷水| avwww免费| 中国美女看黄片| 观看免费一级毛片| 精品国产超薄肉色丝袜足j| 3wmmmm亚洲av在线观看| 国产精品 国内视频| 内地一区二区视频在线| 九九在线视频观看精品| 国产私拍福利视频在线观看| 久久久国产成人免费| 精品久久久久久久人妻蜜臀av| 日韩欧美国产一区二区入口| 免费大片18禁| 老司机福利观看| 熟女电影av网| 有码 亚洲区| 免费在线观看成人毛片| 黄色日韩在线| 久久久久久久久久黄片| 免费在线观看成人毛片| 日本免费一区二区三区高清不卡| 99精品久久久久人妻精品| 国产亚洲精品久久久久久毛片| 亚洲av熟女| 国产伦一二天堂av在线观看| 超碰av人人做人人爽久久 | 午夜福利在线观看免费完整高清在 | 欧美激情久久久久久爽电影| 91在线精品国自产拍蜜月 | 色精品久久人妻99蜜桃| 国产精品98久久久久久宅男小说| 国产精品 国内视频| 国产精品乱码一区二三区的特点| 精品免费久久久久久久清纯| 国产精品乱码一区二三区的特点| 最近最新中文字幕大全免费视频| 岛国在线观看网站| 69av精品久久久久久| 欧美乱色亚洲激情| 一个人免费在线观看电影| 午夜免费男女啪啪视频观看 | 欧美日韩国产亚洲二区| 欧美性感艳星| 特级一级黄色大片| 亚洲七黄色美女视频| 91在线观看av| 超碰av人人做人人爽久久 | 波多野结衣高清作品| 国产又黄又爽又无遮挡在线| 在线免费观看的www视频| 亚洲精品乱码久久久v下载方式 | 99精品在免费线老司机午夜| 中文字幕人妻丝袜一区二区| 国产探花在线观看一区二区| 久久精品影院6| 国产高清三级在线| 日本精品一区二区三区蜜桃| 啦啦啦韩国在线观看视频| 精品乱码久久久久久99久播| 两个人看的免费小视频| 宅男免费午夜| 久久久精品大字幕| 19禁男女啪啪无遮挡网站| 精品久久久久久久久久免费视频| 五月玫瑰六月丁香| 成人一区二区视频在线观看| 亚洲av日韩精品久久久久久密| 99热精品在线国产| 丰满乱子伦码专区| 久久精品国产综合久久久| 久久久久久大精品| 国产熟女xx| av在线天堂中文字幕| 少妇的逼水好多| 久久久久久久久大av| 成人av在线播放网站| 黄色成人免费大全| 九色成人免费人妻av| 精品日产1卡2卡| 亚洲成人免费电影在线观看| 一二三四社区在线视频社区8| 色视频www国产| 黄色日韩在线| 国产一区二区亚洲精品在线观看| 欧美中文日本在线观看视频| 变态另类成人亚洲欧美熟女| 色综合站精品国产| 在线播放国产精品三级| 国产爱豆传媒在线观看| 老鸭窝网址在线观看| 亚洲在线自拍视频| 国产三级在线视频| 黄片大片在线免费观看| 久久久久免费精品人妻一区二区| 日韩欧美一区二区三区在线观看| 精品无人区乱码1区二区| 精品不卡国产一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 内地一区二区视频在线| 2021天堂中文幕一二区在线观| 午夜福利视频1000在线观看| 久久久久久久久中文| 国产欧美日韩一区二区三| av片东京热男人的天堂| 一级黄色大片毛片| 哪里可以看免费的av片| 亚洲精品456在线播放app | 法律面前人人平等表现在哪些方面| 精品一区二区三区视频在线观看免费| 90打野战视频偷拍视频| 级片在线观看| 日本免费一区二区三区高清不卡| 最近最新免费中文字幕在线| 小蜜桃在线观看免费完整版高清| 久久精品国产清高在天天线| xxxwww97欧美| 熟女电影av网| 亚洲欧美一区二区三区黑人| 最新美女视频免费是黄的| 国产午夜精品久久久久久一区二区三区 | 欧美午夜高清在线| av片东京热男人的天堂| 欧美日韩黄片免| 国产精品久久久久久人妻精品电影| 麻豆一二三区av精品| 欧美午夜高清在线| 首页视频小说图片口味搜索| 不卡一级毛片| 亚洲aⅴ乱码一区二区在线播放| 国内精品久久久久精免费| 啦啦啦免费观看视频1| 久久久色成人| 国产精品1区2区在线观看.| 免费看美女性在线毛片视频| 国产激情欧美一区二区| 90打野战视频偷拍视频| 亚洲最大成人中文| 最后的刺客免费高清国语| 不卡一级毛片| 国内精品久久久久久久电影| 18禁黄网站禁片免费观看直播| 亚洲男人的天堂狠狠| 久久久成人免费电影| 久久久久久久亚洲中文字幕 | 狂野欧美白嫩少妇大欣赏| av天堂在线播放| 久久精品国产99精品国产亚洲性色| 国产精品永久免费网站| 18禁黄网站禁片免费观看直播| 亚洲国产中文字幕在线视频| 亚洲,欧美精品.| 日日夜夜操网爽| 久久久久久大精品| 又黄又爽又免费观看的视频| 欧美日韩乱码在线| 91在线观看av| 亚洲精品国产精品久久久不卡| 亚洲男人的天堂狠狠| 日韩精品青青久久久久久| 日韩高清综合在线| 欧美+日韩+精品| 成人特级av手机在线观看| 久久久久精品国产欧美久久久| av国产免费在线观看| e午夜精品久久久久久久| 12—13女人毛片做爰片一| 国模一区二区三区四区视频| 岛国在线观看网站| 我要搜黄色片| 91在线观看av| 露出奶头的视频| 日日夜夜操网爽| 五月玫瑰六月丁香| 午夜久久久久精精品| 九九久久精品国产亚洲av麻豆| 国产v大片淫在线免费观看| 国产三级在线视频| 亚洲欧美激情综合另类| 精品电影一区二区在线| 久久久国产成人免费| 午夜福利在线观看免费完整高清在 | 久久人妻av系列| 国产不卡一卡二| 蜜桃亚洲精品一区二区三区| 女人高潮潮喷娇喘18禁视频| 18禁黄网站禁片午夜丰满| 亚洲成人久久性| 午夜免费激情av| 波野结衣二区三区在线 | 欧美国产日韩亚洲一区| www日本黄色视频网| 久久草成人影院| 欧美又色又爽又黄视频| 欧美成狂野欧美在线观看| 婷婷亚洲欧美| 99久久精品国产亚洲精品| 午夜影院日韩av| 99久国产av精品| 精品乱码久久久久久99久播| 看黄色毛片网站| 最近最新中文字幕大全免费视频| 一区二区三区激情视频| bbb黄色大片| 中文字幕人成人乱码亚洲影| 91麻豆av在线| 他把我摸到了高潮在线观看| 午夜视频国产福利| 成人午夜高清在线视频| 身体一侧抽搐| 欧美中文日本在线观看视频| 亚洲,欧美精品.| 99久久99久久久精品蜜桃| 国产精品久久久久久人妻精品电影| 亚洲 欧美 日韩 在线 免费| 夜夜夜夜夜久久久久| 色综合亚洲欧美另类图片| 99精品在免费线老司机午夜| 两个人视频免费观看高清| 亚洲精品在线美女| 国产亚洲欧美98| 精品国产美女av久久久久小说| 天堂av国产一区二区熟女人妻| 精品免费久久久久久久清纯| 国产极品精品免费视频能看的| 成年免费大片在线观看| 午夜免费观看网址| 9191精品国产免费久久| 欧美xxxx黑人xx丫x性爽| 日韩人妻高清精品专区| 成人亚洲精品av一区二区| 十八禁网站免费在线| 搞女人的毛片| 午夜精品在线福利| 91av网一区二区| 亚洲第一电影网av| 色综合站精品国产| 精品福利观看| 熟女人妻精品中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 窝窝影院91人妻| 欧美激情在线99| 日韩欧美 国产精品| 国产v大片淫在线免费观看| 日本精品一区二区三区蜜桃| 国产探花极品一区二区| 1024手机看黄色片| 成人三级黄色视频| 亚洲av成人精品一区久久| 日韩欧美免费精品| 午夜福利在线观看免费完整高清在 | 亚洲av免费高清在线观看| 日韩成人在线观看一区二区三区| 国产在线精品亚洲第一网站| 天堂√8在线中文| 亚洲国产精品合色在线| 日韩有码中文字幕| 一a级毛片在线观看| 看免费av毛片| 最近最新中文字幕大全免费视频| 91久久精品电影网| 亚洲久久久久久中文字幕| 久久久久久国产a免费观看| 一个人看的www免费观看视频| 一进一出抽搐动态| www.色视频.com| 9191精品国产免费久久| 嫁个100分男人电影在线观看| 村上凉子中文字幕在线| 欧美一级a爱片免费观看看| 性色av乱码一区二区三区2| 精品一区二区三区视频在线观看免费| 首页视频小说图片口味搜索| 波多野结衣高清作品| 久久久久国产精品人妻aⅴ院| 国产欧美日韩一区二区精品| 国产精品香港三级国产av潘金莲| 国产伦精品一区二区三区四那| 亚洲精品影视一区二区三区av| 中文字幕av成人在线电影| 亚洲国产中文字幕在线视频| 露出奶头的视频| 中文亚洲av片在线观看爽| 亚洲成a人片在线一区二区| 精品乱码久久久久久99久播| 免费看光身美女| 国产淫片久久久久久久久 | 久久精品影院6| 手机成人av网站| 精品一区二区三区视频在线 | 99热精品在线国产| 天天躁日日操中文字幕| 欧美又色又爽又黄视频| 国产色爽女视频免费观看| 51午夜福利影视在线观看| 日韩欧美 国产精品| 欧美国产日韩亚洲一区| 深爱激情五月婷婷| 欧美日韩黄片免| 亚洲男人的天堂狠狠| 中文字幕熟女人妻在线| 日韩中文字幕欧美一区二区| xxxwww97欧美| 亚洲熟妇中文字幕五十中出| 国产黄片美女视频| 国内精品久久久久久久电影| 亚洲精品色激情综合| 老熟妇乱子伦视频在线观看| 久久久久性生活片| 波多野结衣高清作品| 国语自产精品视频在线第100页| 老司机午夜十八禁免费视频| 欧美黑人欧美精品刺激| 亚洲最大成人中文| 少妇人妻精品综合一区二区 | 18禁在线播放成人免费| 1000部很黄的大片| 丰满人妻熟妇乱又伦精品不卡| 少妇裸体淫交视频免费看高清| 99久久久亚洲精品蜜臀av| 高清在线国产一区| 国产精品女同一区二区软件 | 久久香蕉精品热| 欧美成人免费av一区二区三区| 欧美性猛交黑人性爽| 精品一区二区三区视频在线观看免费| 欧美另类亚洲清纯唯美| 欧美性猛交╳xxx乱大交人|