• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Portable and Flexible Communication Protocol Stacks for Smart Metering Projects

    2013-07-29 09:42:22AxelSikora

    Axel Sikora

    1.Introduction

    Efficient,low-cost,secure,and reliable communication solutions are a major stepping stone for smart metering and smart grid applications[1].This especially holds true for the so called primary communication or local metrological network(LMN)between a local meter or actuator and a data collector or gateway[2].The automatic meter reading(AMR)has the potential to become the first machine-tomachine-(M2M)application with really large-scale multivendor installations[3],[4].

    Wireless M-Bus according to EN-13757-4[5]is a major contender for LMNs in smart metering and smart grid applications,as it holds the promise of flexible and optimized solutions.It enjoys wide popularity in continental Europe,but increasingly in many other regions of the world.However,Wireless M-Bus is characterized by a wide variety of different operation modes(C-,D,F-,N-,P-,Q-,S-,and T-modes),which work in different frequency bands(i.e.868 MHz,433 MHz,and 169 MHz).Its application layer can be enhanced by extensions,being defined from vendor alliances,like the Open Metering System(OMS)Group,or from national bodies[6]–[8].

    This paper is structured as follows:Section 2 gives an overview on the different modes and flavors of the Wireless M-Bus standard.Section 3 describes the state-of-the-art of the research and development activities around Wireless MBus.Section 4 briefly elaborates on the major projects that the author’s teams are involved in and which are the background of the ongoing activities.Section 5 describes the required elements for an efficient implementation of a Wireless M-Bus protocol stack,including test,verification,and simulation.The most important tools for commissioning and monitoring of the developed solutions are presented in Section 6.Finally,an outlook on the next steps is given.

    2.Wireless M-Bus and Its Derivatives

    2.1 Background

    The Meter Bus(M-Bus)is a specialized field bus for transmission of metering data from gas,heat,water or other meters.Several meter devices send their data to a data collector,which saves and forwards data to a local display or to a backend system of an energy utility.The data collector may be installed at a fixed location.It may also be used as mobile reading out unit.So an employee of the energy utility may walk or drive through the streets and collect the current energy data from each household for billing.

    2.2 M-Bus Layer Stack

    The different versions of M-Bus are specified by the European Standard EN-13757,which is worked out by TC294 at CEN/CENELEC.The EN-13757 is divided into the six parts(see Table 1).The M-Bus standard describes physical and data link layers as well as the application layer to enable vendor-independent interoperability.

    EN-13757 describes different communication schemes(the so-called modes)for unidirectional and bidirectional data flow.Table 2 shows the dazzling variety of options.Anyhow,the different modes allow an optimized fit to the different requirements of different markets,regions,and topologies.However,the variety also calls for a wellstructured and modular software architecture(Section 5).

    2.3 Derivatives

    As the early versions of the Wireless M-Bus protocol had only insufficient support for commissioning and full application interoperability,space was left for extensions on the application layer.Dutch Smart Meter Requirements(DSMR)and the OMS are the most prominent examples for these extensions,which fit into the general stack according to Fig.1.Especially,the OMS Group is developing a quite complete ecosystem,which includes testing and certification support.However,it also leaves some space for neighbouring activities.

    Table 1.EN-13757―Communication systems for meters and remote reading of meters[5]

    Fig.1.Stack overview of Wireless M-Bus

    Table 2:Operating modes of Wireless M-Bus

    3.State-of-the-Art

    3.1 M-Bus Layer Stack

    A good number of implementations exist for the Wireless M-Bus protocol stack.Many of them,coming directly from module manufacturers,are closely linked to the specific hardware,and therefore do not need this high degree of modularity and portability.In contrast to those solutions,the teams of the author want to provide a portable and flexible solution,which potentially can be directly integrated into a single chip system solution together with customer specific functionality.

    In comparison with its brother ZigBee,which has found broad reception also in the research community,Wireless M-Bus has not succeeded in receiving this attention from scientific world,yet.Consequently,most of the developments are directly product related,use neither new design approaches nor new paradigms,and are neither experimental nor future-oriented.

    3.2 Silicon Support

    The different Wireless M-Bus modes mainly use FSK(frequency shift keying)modulation.Its characteristics are within the specifications of many proprietary RF-transceiver ICs from various silicon manufacturers.Whereas a broad multitude of devices is able to support the 868 MHz specifications,only recent product launches meet the specifications for 169 MHz N-mode.

    The control of the various RF-transceivers mainly poses the following challenges,which are reflected in the solutions from Subsection 5.4.

    · The interfaces to the transceiver ICs from different vendors and different generations may have many variations.

    · Some of the coding schemes of the different Wireless M-Bus modes(e.g.,the 3-out-of-6- and the Manchestercodes)are not supported by all transceiver ICs,and then have to be emulated on the microcontroller.

    · Some of the preamble schemes of the different Wireless M-Bus modes(e.g.,18 bit synchronization word)are not supported by all transceiver ICs,and then have to be emulated on the microcontroller.

    · Partial AES(advanced encryption standard)encryption gets no hardware support by many transceiver ICs and has also to be executed on the microcontroller.

    · Earlier Wireless M-Bus versions allow very large frequency tolerances,which are significantly beyond the specifications of many transceiver ICs.Consequently,software or hardware based workaround must be provided.

    Fig.2.Wireless M-Bus compatible RF-modules.

    4.Projects Background

    4.1 General Overview

    The teams of the authors are active in a broad variety of projects on both the research and development level.We have developed an own Wireless M-Bus stack with the advantages of modern design and software engineering techniques.Our stack has been licensed and applied in a variety of projects together with meter manufacturers and silicon providers.In addition,publicly funded academic projects help to investigate in future solutions.

    4.2 DEMAX

    The research project DEMAX(decentralized energy and network management using flexible energy prices)was partially supported from the German Federal Ministry of Economics and Technology(BMWi).Its target is the distributed measurement and control of energy consumption at the individual household level.For this,legacy tertiary communication techniques are used for the data exchange between premises and energy providers.For the in-house primary communication,the basic Wireless M-Bus protocol stack was developed to read out data from various metering devices like water,gas,heat,electricity and alike.In addition,the first field-proven tooling was developed.

    4.3 ME3GAS

    ME3GAS is the acronym for the full project title “smart gas meters & middleware for energy efficient embedded services”.The objective of the ME3GAS project is to put consumers in control of their energy efficiency and appliances at home.This goal follows the European Directives,which emphasize to share metering information so that customers have full visibility on the consumptions and their energy-saving usage without compromising comfort or convenience.

    In this context,the ME3GAS project addresses the development of a new generation of smart gas meters,based on embedded electronics,communications and the remote management of a shut-off valve,which shall offer a whole range of added values:management of multiple tariffs and payment modalities,remote gas cut off,security alarms,absolute index,temperature correction,and alike.Specification,implementation,and dissemination of an open architecture for wireless communication are also addressed.

    In order to hide the complexity of the underlying device and communications technologies for application developers and to raise the level of programming abstraction to a web services layer,the ME3GAS platform provides the necessary functionality and tools to add energy efficiency features to device networks.ME3GAS will only have commercial and residential relevance if it is successful in saving energy and cost in real-world applications.

    ME3GAS uses real-time energy information as energy-awareness services for all residents and combines household specific services with a community portal.This will enable collective/community activities to motivate positive competition in saving energy,complemented by courses on towards the education on energy efficiency,sustainability,and clarification of complicated legislation aspects.

    It has to be remarked that ME3GAS shall also contribute to the standardization work being carried out currently in Europe in the smart metering field,mainly under the M/441 mandate of the EC.

    More details on the ME3GAS project can be found at http://www.me3gas.eu.

    4.4 WiMBex

    The aim of the WiMBex project(remote wireless water meter reading solution based on the EN-13757 standard,providing high autonomy,interoperability and range,http://www.wimbex.com)is to add a powerful new set of new features to the Wireless M-Bus platforms developed by the SME(small & medium size enterprises)consortium,to enable them to keep pace,and even to surpass the needs of the emergent automatic water meter reading(AWMR)market in Europe.

    WiMBex shall exploit the powerful new features of the P- and Q-mode of the Wireless M-Bus standard,and in this manner,extend the use and impact of the European standard.By introducing the new network Q-mode protocol,which enables precise network time synchronization,the high-power requirements typically associated with multi-hop wireless networks can be significantly reduced by a TDMA(time division multiple access)MAC(media access control)protocol and an efficient energy-aware routing protocol.Energy aware routing protocols have been developed by the research community over the past decade,and have proven to be effective in large-scale network deployments.The metrics for the proposed energy-aware routing protocol are based not only on the legacy parameters like link quality and hop count,but take into account also energy-related parameters of the intermediate nodes.The specification includes at least three parameters,i.e.,node residual energy,energy replenishment rate,and activity rate.Thus,fairness in the way that energy is consumed across the network is introduced when determining optimal routing schedules.

    Some more details of the WiMBex project are described in [7],[8]and at http://www.wimbex.com.

    5.Elements of the Embedded Software Engineering

    5.1 Introduction

    This section describes some of the key elements of the software engineering process applied for the design of the embedded software.Many of these technologies and approaches are widely used in standard software engineering,but up to now have found only limited applications in embedded software design.This is all the more valid in those cases where software of very cost- efficient implementation with regard to memory footprint,processing performance,and energy efficiency shall be implemented.However,the experience from the above projects shows that these objectives can be reached,while still supporting the high efficiency of a modern design flow.

    5.2 Requirements Analysis

    The design flow starts with a detailed requirement analysis,where all aspects of the standard and customer specific requirements are explicitly listed.Table 3 shows an example for this translation,which has been performed for the P-mode of Wireless M-Bus.

    5.3 Model Driven Design

    Based on the overall text-driven requirements specification,a full model driven design flow is executed,where models exclusively are described by using UML2.4.1 and start with sequence diagrams(Fig.3).From there,a finite-state machine driven design is pursued,which leads to the design of the corresponding state machines(Fig.4).These state machines are not restricted to the mere functionality,but also include a systematic set of error handling,time-outs,and alike.As nearly always,the largest portion of complexity does not come from the pure functionality,but from all these different measures to support stability.

    5.4 Platform Selection

    The platform selection includes the elements exemp- lified in Fig.3 for the projects mentioned in Section 4:

    · The basic OS-(operating system)vs.non-OS- decision was answered with either native C,with a software architecture in Fig.5 or with TinyOS as an event-driven OS-platform.In the latter case,coding is done in NesC.

    · The microcontroller selection shows a broad range from energy-efficient 16- and 32-Bit platforms.

    · The transceivers can be selected from a variety of standard products,as discussed in Section 3.2.

    · One special case is the usage of single-chip solutions,which integrate MCU and transceiver into one system-on-chip(SOC)device,like the CC430.

    · Another very specific case comes from the consistent usage of the developed firmware not only for the real hardware implementation,but also for the simulation environments from Subsection 5.6.

    Table 3.Sample requirement specification of data link layer of Wireless M-Bus P-mode,as performed for the WiMBex project(cf.Subsection 4.4); references in the table are related to the full requirements document,M stands for mandatory

    Fig.3.Platform selection for Wireless M-Bus projects.

    Fig.4.UML sequence diagram for direct and routed communication flow of the P-mode of Wireless M-Bus.

    Fig.5.UML state diagram for receive process of the P-mode of Wireless M-Bus.

    The software architecture has to cover the multitude of operation modes from Table 2 and the multitude of the platforms from Fig.3.It therefore supports a very modular approach,shown in Fig.6 and Fig.7.

    5.5 Test and Verification

    Four elements support a well-defined and comfortable automatic test environment,which efficiently also support regression testing throughout the complete software engineering process.

    · Unit test provides the lowest level and guarantees the functioning of the individual modules.

    · The second level is provided by a PC-based software,which verifies the correct and stable functionality of each communication node.

    Fig.6.Software architecture for flexible platform selection for Wireless M-Bus projects.

    Fig.7.Functional split for flexible platform selection for Wireless M-Bus projects.

    · A network emulator provides the third level of the test environment.This emulator was originally proposed by Ringwald et al.[9],but significantly enhanced with regard to automatic and web-based control.It is shown in Fig.8 and interconnects the nodes with RF-wave guides,splitter-combiner,and attenuation elements.These elements are remotely controlled by microcontrollers,so that arbitrary network topologies and coexistence scenarios can be generated and reproduced,and full network tests can be performed.

    · The final step is the interoperability test against the third party devices.The OMS Group[8]has recently launched the first element of a standardized interoperability test-suite.Before,each provider ran his own test-suite.

    5.6 Simulation

    The use of network simulations offers several benefits for the development,the prediction of the suitability and the parameterization of a network.The main objectives of simulations are as follows.

    · To provide an early and comfortable development environment that behaves close to the later target system.Since the development and production of target hardware may be time consuming and costly,a simulation environment with abstracted hardware opens the possibility to start an early implementation and verification of concepts.

    · A better observability of the internal behavior,since processes are reproducible and can be analyzed in detail.This also helps to get to know the system.Especially in cases of errors or incorrect behavior,this offers a practical starting point for debugging and problem solving.

    · A better controllability and reproducibility of processes.

    · Evaluation and prediction of the behavior of large network topologies at low efforts.The results of a simulation might help to indicate eventual bottlenecks or risks of the system and to improve its performance.

    In simulations,a variety of scenarios can easily be executed.Therefore,an automated simulation environment was developed to support the selection the scenarios as well as the easy parameterization of the participating models via a user interface.A further benefit of the environment is the filtering and preparation of the simulation output for a presentation according to the chosen output parameters.

    The simulation environment was created with a set of Matlab functions and scripts.For the simulation,engine OPNET modeler is used.

    It has to be highlighted that the identical code can be used for the embedded firmware and the simulation models.Only the hardware abstraction layer(HAL)and the RF drivers need to be adapted for the integration into the OPNET simulation engine.The core stack implementation remains completely unchanged,since it does not contain any platform-dependent directives.For convenience,an API(application program interface)selection layer was added to automatically select scenarios and protocols from the simulation environment.

    Fig.9 shows the node architecture of a Wireless M-Bus stack with the required adaptations for the use in a network simulator.More details on the simulation setup and some results can be found in [10].For the TinyOS based implementation,the firmware functionality can be simulated in the open-source OMNET++ using NesCT.

    Fig.8.Physical test bed for automated verification of routing mechanisms.

    Fig.9.Node architecture of a Wireless M-Bus stack adapted for the use in a network simulator.

    Fig.10.Wireless M-Bus suite for commissioning,parameterization,and testing purposes.

    6.Tools

    6.1 Commissioning

    A Java-based fat-client was developed for the parameterization of the nodes,for the commissioning of network,and also for the execution of the functional tests(cf.Subsection 5.5).A screenshot of this tool is shown in Fig.10.

    6.2 Monitoring

    For the monitoring of the spatially distributed networks,a gateway and sniffer platform was developed to provide a direct and bidirectional access to the wireless nodes.This web server based platform supports long-term monitoring with or without online connectivity.Remote access is provided via wide-area networks(WAN),i.e.GPRS,WLAN or Ethernet.A client computer accesses the input from the management nodes.As management traffic is pure HTTP and XML,there is only a single requirement to the client computer:It shall be capable to run a JavaScript enabled web client.Tests were performed with PC platforms,but also with portable communication devices,i.e.smart phones.

    A dedicated hardware platform was developed,as shown in Fig.11.Interfaces to wireless modules allow the access to the wireless network.

    The software architecture illustrated in Fig.12 is described as follows.

    · The heart is an embedded web server from the author’s team.

    Fig.11.PCB for gateway platform.

    Fig.12.Embedded web2.0 web server in radio networks.

    · A serial handler reads and writes the data to the wireless modules.

    · The web server software gains the access to these telegrams via an exposed API,which allows for retrieval of specific telegrams as well as initialization of the buffers and deletion of the content.

    · The data is retrieved from a web-client via HTTP,whereas the whole web page including the Java Script Libs has to be downloaded at the first run,after that it is only the XML-Feeds that follow.Thus,the communication channel can be kept very lean.It should be highlighted that all functionality is performed on the client,i.e.display,sorting,filtering,and storing.

    It is also well possible to access the data within an M2M-architecture.Then,an automated HTTP-client retrieves the data from the distributed web servers and stores it in a backend database.

    7.Outlook

    Further activities of the authors’ team are mainly directed towards the following topics:

    · Integration of security solutions,as they are anticipated by BSI(Federal Office of Security in Information Technology),into the Wireless M-Bus stack and the gateway solution,in order to secure a very vulnerable part of the infrastructure against cyberattacks[9];

    · Involvement of harmonization between currently heterogeneous solutions on application level and management level;

    · Support of middleware solutions for efficient operation of heterogeneous and horizontally integrated networks.

    [1]R.Abe,H.Taoka,and D.McQuilkin,“Digital grid:communicative electrical grids of the future,” IEEE Trans.on Smart Grid,vol.2,no.2,pp.399–410,2011.

    [2]R.Padil,“A best fit for ‘short haul communication protocol’in smart metering,” presented at Embedded World Conf.,Nuremberg,2012.

    [3]G.Wu,S.Talwar,K.Johnsson,N.Himayat,and K.D.Johnson,“M2M:from mobile to embedded internet,” IEEE Communications Magazine,vol.49,no.4,pp.36–43,2011.

    [4]Internet of Things in 2020,Commission of the European communities,EpoSS,Brussels,2008.

    [5]Communication systems for meters and remote reading of meters,Part 1:Data exchange,EN 13757-1,2002; Part 2:Physical and link layer,EN 13757-2,2004; Part 3:Dedicated application layer,EN 13757-3,2004; Part 4:Wireless meter readout(Radio meter reading for operation in the 868 MHz to 870 MHz SRD band),EN 13757-4,2005 Part 5:Wireless Relaying,EN 13757-5,2009; Part 6:Local Bus,EN 13757-6,2009.

    [6]A.Sikora and K.Landwehr,“Communication solutions for smart gas meters and energy efficient embedded services,”presented at Embedded World Conf.,Nuremberg,2012.

    [7]A.Sikora,P.Villalonga,and K.Landwehr,“Extensions to wireless m-bus protocol for smart metering and smart grid application,” in Proc.of Int.Conf.on Advances in Computing,Communications,and Informatics,Chennai,2012,pp.399–404.

    [8]A.Sikora,P.Digeser,M.Klemm,M.Tubolino,and R.Werner,“Model based development of a TinyOS-based Wireless M-Bus implementation,” in Proc.of 1st IEEE Int.Symposium on Wireless Systems within the Conf.on Intelligent Data Acquisition and Advanced Computing Systems,Offenburg,2012,pp.91–94.

    [9]M.Ringwald and K.R?mer,“Deployment of sensor networks:problems and passive inspection,” in Proc.of the Fifth Workshop on Intelligent Solutions in Embedded Systems,Madrid,2007,pp.179–192.

    [10]A.Sikora and M.Schappacher,“Network simulation of wireless metering networks,” presented at Embedded World Conf.,Nuremberg,2012.

    [9]A.Hahn and M.Govindarasu,“Cyber attack exposure evaluation framework for the smart grid,” IEEE Trans.on Smart Grid,vol.2,no.4,pp.835–843,2011.

    水蜜桃什么品种好| 国产免费又黄又爽又色| 最新在线观看一区二区三区 | 午夜老司机福利片| 尾随美女入室| 新久久久久国产一级毛片| a级毛片黄视频| 午夜激情久久久久久久| 99国产综合亚洲精品| 亚洲精品一二三| 18禁动态无遮挡网站| 欧美精品av麻豆av| 国产av码专区亚洲av| 啦啦啦 在线观看视频| 久久久久久久大尺度免费视频| 国产日韩欧美视频二区| 国产精品99久久99久久久不卡 | 欧美在线黄色| 精品亚洲成a人片在线观看| 免费黄色在线免费观看| 久久热在线av| 久久精品久久久久久噜噜老黄| 19禁男女啪啪无遮挡网站| 日韩精品免费视频一区二区三区| 亚洲精品在线美女| 日日摸夜夜添夜夜爱| 丰满迷人的少妇在线观看| 欧美精品一区二区免费开放| 99re6热这里在线精品视频| 免费在线观看完整版高清| 午夜免费观看性视频| 精品亚洲成国产av| 老司机亚洲免费影院| 中文字幕高清在线视频| 国产1区2区3区精品| 制服人妻中文乱码| 一本—道久久a久久精品蜜桃钙片| 免费在线观看黄色视频的| 亚洲激情五月婷婷啪啪| 国产av精品麻豆| 高清视频免费观看一区二区| 午夜福利视频在线观看免费| 伊人久久大香线蕉亚洲五| 免费看av在线观看网站| 国产精品熟女久久久久浪| 精品一区二区三区av网在线观看 | 国产成人系列免费观看| 建设人人有责人人尽责人人享有的| www.精华液| 亚洲国产中文字幕在线视频| 亚洲美女黄色视频免费看| 久久国产精品男人的天堂亚洲| 欧美乱码精品一区二区三区| 成人18禁高潮啪啪吃奶动态图| 国产男女内射视频| 精品一区二区免费观看| 亚洲精品日韩在线中文字幕| 午夜日本视频在线| 国产免费现黄频在线看| 日韩 欧美 亚洲 中文字幕| 黑人巨大精品欧美一区二区蜜桃| 777久久人妻少妇嫩草av网站| 一本大道久久a久久精品| 亚洲综合精品二区| 色视频在线一区二区三区| 国产97色在线日韩免费| a级毛片在线看网站| 伊人亚洲综合成人网| 欧美日本中文国产一区发布| 少妇被粗大的猛进出69影院| 免费看不卡的av| 国产毛片在线视频| 久久鲁丝午夜福利片| 亚洲图色成人| 亚洲美女搞黄在线观看| 高清在线视频一区二区三区| 欧美成人午夜精品| 亚洲国产最新在线播放| 国产精品久久久久久精品电影小说| netflix在线观看网站| 777米奇影视久久| 欧美日韩一级在线毛片| 老鸭窝网址在线观看| 亚洲人成电影观看| 天天操日日干夜夜撸| 大香蕉久久网| 久久av网站| 亚洲国产毛片av蜜桃av| 中文字幕制服av| 三上悠亚av全集在线观看| 男女午夜视频在线观看| 亚洲精华国产精华液的使用体验| 亚洲欧美一区二区三区黑人| 香蕉国产在线看| 国产日韩一区二区三区精品不卡| 国产精品国产三级国产专区5o| av视频免费观看在线观看| 欧美精品一区二区大全| 国产亚洲欧美精品永久| 欧美 亚洲 国产 日韩一| 亚洲成人免费av在线播放| 叶爱在线成人免费视频播放| 成人国产av品久久久| 日本vs欧美在线观看视频| 久久久精品94久久精品| netflix在线观看网站| 亚洲国产最新在线播放| 亚洲欧美激情在线| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美成人精品一区二区| 亚洲成av片中文字幕在线观看| 国产有黄有色有爽视频| 纵有疾风起免费观看全集完整版| 亚洲精品自拍成人| 国产一区二区在线观看av| 别揉我奶头~嗯~啊~动态视频 | 人妻人人澡人人爽人人| 可以免费在线观看a视频的电影网站 | 捣出白浆h1v1| 欧美在线黄色| 国产乱人偷精品视频| 久久久久久人人人人人| 天天躁狠狠躁夜夜躁狠狠躁| 天天躁狠狠躁夜夜躁狠狠躁| 免费少妇av软件| 美女视频免费永久观看网站| 悠悠久久av| 性色av一级| 亚洲五月色婷婷综合| 纯流量卡能插随身wifi吗| 亚洲专区中文字幕在线 | 国产熟女欧美一区二区| 九草在线视频观看| 十八禁网站网址无遮挡| 亚洲久久久国产精品| 一本一本久久a久久精品综合妖精| 成人午夜精彩视频在线观看| 午夜免费男女啪啪视频观看| 中文字幕人妻丝袜一区二区 | 国产精品秋霞免费鲁丝片| 亚洲熟女精品中文字幕| 亚洲激情五月婷婷啪啪| 大香蕉久久网| www.av在线官网国产| 亚洲精品美女久久av网站| 极品少妇高潮喷水抽搐| 一级a爱视频在线免费观看| 欧美国产精品va在线观看不卡| av女优亚洲男人天堂| 水蜜桃什么品种好| 在线免费观看不下载黄p国产| 一区二区三区激情视频| 在线观看www视频免费| 韩国高清视频一区二区三区| 丝瓜视频免费看黄片| 熟妇人妻不卡中文字幕| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美色中文字幕在线| 成年动漫av网址| 1024香蕉在线观看| 亚洲第一青青草原| 精品国产一区二区三区久久久樱花| 99精国产麻豆久久婷婷| 老鸭窝网址在线观看| 欧美精品一区二区免费开放| 黄片无遮挡物在线观看| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕人妻熟女乱码| 日本vs欧美在线观看视频| 国产精品欧美亚洲77777| 国产精品免费大片| 久久久久久久久免费视频了| 国产成人欧美在线观看 | 老熟女久久久| 乱人伦中国视频| 亚洲av在线观看美女高潮| 十八禁高潮呻吟视频| 美女午夜性视频免费| 欧美av亚洲av综合av国产av | 婷婷色综合大香蕉| 欧美国产精品一级二级三级| 熟女少妇亚洲综合色aaa.| 免费不卡黄色视频| 国产精品免费大片| 国产精品欧美亚洲77777| 亚洲国产最新在线播放| 国产片特级美女逼逼视频| 自线自在国产av| 精品亚洲乱码少妇综合久久| 欧美 日韩 精品 国产| 80岁老熟妇乱子伦牲交| 国产一区二区激情短视频 | 91精品伊人久久大香线蕉| 欧美日韩国产mv在线观看视频| 亚洲熟女毛片儿| 麻豆精品久久久久久蜜桃| 九九爱精品视频在线观看| av视频免费观看在线观看| 亚洲av电影在线进入| 国产精品国产三级专区第一集| 极品人妻少妇av视频| 日本av手机在线免费观看| 美女国产高潮福利片在线看| 丝瓜视频免费看黄片| 亚洲人成网站在线观看播放| 亚洲成人av在线免费| 国产黄色免费在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 成年女人毛片免费观看观看9 | 久久久久久人妻| 久久人人97超碰香蕉20202| 久久精品aⅴ一区二区三区四区| 高清视频免费观看一区二区| 亚洲国产精品999| 国产精品.久久久| 国产女主播在线喷水免费视频网站| 日韩中文字幕视频在线看片| 亚洲精品国产色婷婷电影| 欧美 亚洲 国产 日韩一| 久久久久久免费高清国产稀缺| 国产精品麻豆人妻色哟哟久久| 99国产精品免费福利视频| 十八禁网站网址无遮挡| 久久99一区二区三区| 久久性视频一级片| 日韩中文字幕视频在线看片| 亚洲情色 制服丝袜| 一边摸一边抽搐一进一出视频| 国产成人欧美| 久久毛片免费看一区二区三区| 欧美人与善性xxx| 成年人免费黄色播放视频| 欧美日本中文国产一区发布| 天天躁夜夜躁狠狠久久av| 亚洲av男天堂| av一本久久久久| 男男h啪啪无遮挡| 亚洲一区中文字幕在线| 如何舔出高潮| 在线观看一区二区三区激情| 国产在线视频一区二区| 色94色欧美一区二区| 国产黄频视频在线观看| 十分钟在线观看高清视频www| 久久久精品94久久精品| 青春草亚洲视频在线观看| 国产男女超爽视频在线观看| 制服丝袜香蕉在线| 交换朋友夫妻互换小说| 亚洲成国产人片在线观看| 一区二区三区四区激情视频| 日韩免费高清中文字幕av| 美女视频免费永久观看网站| 宅男免费午夜| 精品免费久久久久久久清纯 | av片东京热男人的天堂| 色婷婷av一区二区三区视频| 亚洲欧洲国产日韩| 只有这里有精品99| 国产精品人妻久久久影院| 91精品国产国语对白视频| 欧美成人午夜精品| 国产xxxxx性猛交| 亚洲av日韩精品久久久久久密 | 男女午夜视频在线观看| 80岁老熟妇乱子伦牲交| 黑丝袜美女国产一区| 操出白浆在线播放| 精品久久蜜臀av无| 高清欧美精品videossex| 在线亚洲精品国产二区图片欧美| 80岁老熟妇乱子伦牲交| 欧美xxⅹ黑人| 久久久国产一区二区| 日韩 亚洲 欧美在线| 国产一区二区激情短视频 | 男女午夜视频在线观看| 天天添夜夜摸| 操美女的视频在线观看| 国产免费一区二区三区四区乱码| 亚洲美女搞黄在线观看| 精品国产露脸久久av麻豆| 777米奇影视久久| a级毛片黄视频| 80岁老熟妇乱子伦牲交| 国产av码专区亚洲av| 成人国语在线视频| 少妇猛男粗大的猛烈进出视频| 国产 精品1| 秋霞伦理黄片| 纵有疾风起免费观看全集完整版| 精品午夜福利在线看| av国产久精品久网站免费入址| 三上悠亚av全集在线观看| 18禁国产床啪视频网站| 婷婷色麻豆天堂久久| 两个人看的免费小视频| 少妇 在线观看| 国产成人午夜福利电影在线观看| 日韩,欧美,国产一区二区三区| 超色免费av| 在线观看国产h片| 久久人人爽人人片av| 美女中出高潮动态图| 精品国产乱码久久久久久男人| 女人精品久久久久毛片| 丰满少妇做爰视频| 成年av动漫网址| 岛国毛片在线播放| 日韩一卡2卡3卡4卡2021年| 亚洲情色 制服丝袜| 热re99久久精品国产66热6| 午夜福利一区二区在线看| 高清黄色对白视频在线免费看| 人人妻人人澡人人看| 丁香六月欧美| 麻豆乱淫一区二区| 免费在线观看完整版高清| 亚洲一区二区三区欧美精品| svipshipincom国产片| 国产免费一区二区三区四区乱码| 国产深夜福利视频在线观看| 伦理电影大哥的女人| 成人手机av| 亚洲欧洲日产国产| 国产片特级美女逼逼视频| 亚洲欧美色中文字幕在线| 色94色欧美一区二区| 人人妻人人澡人人看| 一二三四中文在线观看免费高清| 99热全是精品| 久久亚洲国产成人精品v| 别揉我奶头~嗯~啊~动态视频 | 午夜福利视频在线观看免费| 看免费成人av毛片| 欧美日韩视频精品一区| 卡戴珊不雅视频在线播放| 在线观看www视频免费| 十八禁网站网址无遮挡| 亚洲国产av影院在线观看| 王馨瑶露胸无遮挡在线观看| 丝瓜视频免费看黄片| 人人妻人人爽人人添夜夜欢视频| 色精品久久人妻99蜜桃| 中国国产av一级| 天堂俺去俺来也www色官网| 久久鲁丝午夜福利片| 69精品国产乱码久久久| 国产一区二区 视频在线| 亚洲精品第二区| 热99久久久久精品小说推荐| 国产精品 国内视频| www.熟女人妻精品国产| 亚洲精品第二区| 欧美黄色片欧美黄色片| 亚洲精品久久久久久婷婷小说| 国产精品 欧美亚洲| 黄色视频在线播放观看不卡| 亚洲国产看品久久| 精品福利永久在线观看| 激情五月婷婷亚洲| 欧美成人午夜精品| 在线精品无人区一区二区三| 波多野结衣一区麻豆| 精品人妻熟女毛片av久久网站| av网站免费在线观看视频| 一级片'在线观看视频| 少妇人妻精品综合一区二区| 亚洲久久久国产精品| 精品国产乱码久久久久久小说| 精品少妇内射三级| 国产爽快片一区二区三区| 精品国产一区二区三区久久久樱花| 日韩中文字幕视频在线看片| 国产爽快片一区二区三区| 91国产中文字幕| 国产精品99久久99久久久不卡 | 日本爱情动作片www.在线观看| 热99久久久久精品小说推荐| xxx大片免费视频| 天堂俺去俺来也www色官网| 美女高潮到喷水免费观看| 人人妻人人添人人爽欧美一区卜| 一区二区日韩欧美中文字幕| 又粗又硬又长又爽又黄的视频| 性色av一级| 亚洲av国产av综合av卡| 9热在线视频观看99| 波野结衣二区三区在线| 校园人妻丝袜中文字幕| 国产精品久久久人人做人人爽| 熟女少妇亚洲综合色aaa.| 亚洲欧美色中文字幕在线| 操美女的视频在线观看| www.自偷自拍.com| 街头女战士在线观看网站| 黄色视频在线播放观看不卡| 精品国产一区二区三区久久久樱花| 伦理电影免费视频| 人妻 亚洲 视频| 熟女少妇亚洲综合色aaa.| 免费黄频网站在线观看国产| 免费不卡黄色视频| 国产欧美日韩一区二区三区在线| 91国产中文字幕| 欧美成人午夜精品| 日韩人妻精品一区2区三区| 99九九在线精品视频| 国产免费现黄频在线看| 亚洲色图综合在线观看| 精品人妻熟女毛片av久久网站| 人人澡人人妻人| 人妻一区二区av| 国产亚洲午夜精品一区二区久久| 美女中出高潮动态图| 啦啦啦在线观看免费高清www| 国产精品麻豆人妻色哟哟久久| 桃花免费在线播放| 性色av一级| 91国产中文字幕| 天堂俺去俺来也www色官网| 亚洲精品久久久久久婷婷小说| 最近的中文字幕免费完整| 久久久亚洲精品成人影院| 女性被躁到高潮视频| 亚洲第一区二区三区不卡| 亚洲精品国产av成人精品| 美女脱内裤让男人舔精品视频| 亚洲婷婷狠狠爱综合网| 久久久国产精品麻豆| 精品一区二区三区av网在线观看 | 亚洲一码二码三码区别大吗| 老司机深夜福利视频在线观看 | 青草久久国产| 日本91视频免费播放| 母亲3免费完整高清在线观看| 一本色道久久久久久精品综合| 999精品在线视频| 纵有疾风起免费观看全集完整版| 久久久久久久精品精品| 午夜福利视频在线观看免费| 久久99精品国语久久久| 色婷婷久久久亚洲欧美| 亚洲av日韩精品久久久久久密 | 国产一区二区三区综合在线观看| 日韩av免费高清视频| 国产精品蜜桃在线观看| 中文天堂在线官网| 精品久久久精品久久久| 国产不卡av网站在线观看| 精品久久久久久电影网| 少妇人妻精品综合一区二区| 人人妻人人澡人人爽人人夜夜| av一本久久久久| 国产精品麻豆人妻色哟哟久久| 欧美精品一区二区免费开放| 9热在线视频观看99| 久久精品人人爽人人爽视色| 欧美另类一区| videos熟女内射| 免费人妻精品一区二区三区视频| 一边摸一边抽搐一进一出视频| 国产精品一区二区在线观看99| 欧美精品av麻豆av| 天天影视国产精品| 亚洲色图 男人天堂 中文字幕| 亚洲五月色婷婷综合| 51午夜福利影视在线观看| 亚洲精品久久午夜乱码| 国产一卡二卡三卡精品 | 国产成人a∨麻豆精品| 午夜福利,免费看| 可以免费在线观看a视频的电影网站 | 中文字幕制服av| 汤姆久久久久久久影院中文字幕| 欧美 亚洲 国产 日韩一| www.av在线官网国产| 激情五月婷婷亚洲| 久久久久久久国产电影| 18在线观看网站| 亚洲色图综合在线观看| 考比视频在线观看| 亚洲国产欧美在线一区| 国产亚洲精品第一综合不卡| 午夜av观看不卡| 水蜜桃什么品种好| 黑丝袜美女国产一区| 亚洲av电影在线观看一区二区三区| h视频一区二区三区| 久久青草综合色| 欧美97在线视频| 国产麻豆69| 美女视频免费永久观看网站| 亚洲精品视频女| 国产精品久久久久久精品电影小说| 宅男免费午夜| 男女边吃奶边做爰视频| 自线自在国产av| 亚洲天堂av无毛| 韩国av在线不卡| 亚洲av欧美aⅴ国产| 王馨瑶露胸无遮挡在线观看| 欧美激情极品国产一区二区三区| 亚洲国产精品一区三区| 成年动漫av网址| 免费不卡黄色视频| 亚洲图色成人| 日本午夜av视频| 妹子高潮喷水视频| 免费人妻精品一区二区三区视频| 曰老女人黄片| 亚洲av日韩在线播放| av电影中文网址| 国产在线免费精品| 欧美日韩视频高清一区二区三区二| 美女午夜性视频免费| 中文精品一卡2卡3卡4更新| 精品亚洲成a人片在线观看| 别揉我奶头~嗯~啊~动态视频 | 亚洲人成电影观看| 久久久久国产精品人妻一区二区| 欧美日韩一区二区视频在线观看视频在线| 嫩草影院入口| 成人亚洲精品一区在线观看| av卡一久久| 成年人免费黄色播放视频| 亚洲精品av麻豆狂野| 国产精品国产av在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 一级爰片在线观看| 人人妻人人澡人人看| 午夜精品国产一区二区电影| 成人黄色视频免费在线看| 侵犯人妻中文字幕一二三四区| 51午夜福利影视在线观看| 亚洲欧美一区二区三区久久| 精品少妇黑人巨大在线播放| 高清不卡的av网站| 99国产综合亚洲精品| 国产片特级美女逼逼视频| 交换朋友夫妻互换小说| 丝袜脚勾引网站| 国产女主播在线喷水免费视频网站| 九色亚洲精品在线播放| 亚洲精品自拍成人| 欧美日韩精品网址| 美女大奶头黄色视频| 久久久久网色| 男女下面插进去视频免费观看| 老司机影院成人| 国产成人精品久久久久久| 一本久久精品| 亚洲七黄色美女视频| 一本大道久久a久久精品| 成人亚洲精品一区在线观看| 色播在线永久视频| 你懂的网址亚洲精品在线观看| 欧美人与性动交α欧美软件| 你懂的网址亚洲精品在线观看| 一区二区三区乱码不卡18| 国产av精品麻豆| 日韩欧美精品免费久久| 五月开心婷婷网| 嫩草影院入口| 夫妻性生交免费视频一级片| 热re99久久国产66热| 午夜福利免费观看在线| 毛片一级片免费看久久久久| 色网站视频免费| 色婷婷久久久亚洲欧美| 国产精品国产三级专区第一集| 亚洲五月色婷婷综合| 日本一区二区免费在线视频| 一级爰片在线观看| 国产人伦9x9x在线观看| 久久久久精品人妻al黑| 久久青草综合色| 看十八女毛片水多多多| 精品卡一卡二卡四卡免费| 国产熟女欧美一区二区| 曰老女人黄片| 母亲3免费完整高清在线观看| 日韩中文字幕欧美一区二区 | 超色免费av| 国产 精品1| 美女大奶头黄色视频| 麻豆乱淫一区二区| 中文字幕人妻熟女乱码| 国产亚洲精品第一综合不卡| 爱豆传媒免费全集在线观看| 午夜免费观看性视频| 免费久久久久久久精品成人欧美视频| 巨乳人妻的诱惑在线观看| 一级毛片电影观看| 在线精品无人区一区二区三| 91精品伊人久久大香线蕉| 午夜福利在线免费观看网站| 国产精品久久久久成人av| 天天操日日干夜夜撸| 亚洲欧美一区二区三区国产| 香蕉国产在线看| 嫩草影视91久久| 久久久久国产一级毛片高清牌| 天天影视国产精品| 精品一区在线观看国产| 亚洲男人天堂网一区| 久久97久久精品| 国产av精品麻豆| 热99国产精品久久久久久7| 色精品久久人妻99蜜桃| 亚洲三区欧美一区| 视频区图区小说| 丝袜喷水一区| 国产亚洲欧美精品永久| 亚洲成人国产一区在线观看 |