• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Carbon Nanofibers-Supported Ni Catalyst for Hydrogen Production from Bio-Oil through Low-Temperature Reforming

    2013-07-25 09:12:14XUYongJIANGPeiWenLIQuanXin
    物理化學(xué)學(xué)報(bào) 2013年5期

    XU Yong JIANG Pei-Wen LI Quan-Xin

    (Anhui Key Laboratory of Biomass Clean Energy,Department of Chemical Physics,University of Science&Technology of China,Hefei 230026,P.R.China)

    1 lntroduction

    Hydrogen is a clean energy without generating any environmental pollutants,which is identified to be an ideal energy carrier with high efficiency.There is a great interest in use of hydrogen as fuel,especially in high-efficiency systems such as fuel cells,and its application in the transportation sector.1Hydrogen is also one of the most important chemicals and has been widely used for ammonia production,oil refineries,and methanol production,which may play the indispensable role in the future global economy.2-4Currently,main processes for commercial hydrogen production are catalytic steam reforming of natural gas and oil-derived naphtha,partial oxidation of heavy oils,gasification of coal as well as electrolysis of water.5-7

    In recent years,the increase in crude oil price and the limited petroleum resources have led to an increased interest in the alternative routes for the production of bio-fuels and chemicals using biomass as feedstocks.8,9As the only renewable carbon resource on the earth,biomass,as well as liquids derived from fast pyrolysis of various plant components of lignocellulosic biomass(bio-oil),has been proved to produce hydrogenviabiomass gasification,biomass catalytic pyrolysis or bio-oil steam reforming.10-12Compared with solid biomass as the raw material,liquid bio-oil,which can be readily stored and transported,is more suitable for the production of bio-fuels or chemicals on a large scale.Production of hydrogen from bio-oil reforming is probably one of the most promising options because it can achieve higherhydrogenyieldandhighercontentof hydrogen.13-20

    Bio-oil is a dark organic liquid derived from fast pyrolysis of biomass,which contains numerous and complex organic compounds including acids,alcohols,aldehydes,ketones,substituted phenolics,and other oxygenates.21As mentioned above,bio-oil can be further converted into hydrogenviacatalytic steam reforming.Generally,bio-oil steam reforming can be simplified as the steam reforming of the oxygenated organic compounds(CnHmOk)by the following reactions:22,23

    Thus,the overall steam reforming reaction can be given by:

    During the bio-oil steam reforming,the decomposition of the organic compounds in the bio-oil as well as the Boudouard reaction may simultaneously occur.

    High hydrogen yield and low operation temperature are essential for production of hydrogen using bio-oil steam reforming.Even though high temperature and highnS/nC(the molar ratio of steam to carbon)are favor for bio-oil steam reforming,high temperature not only increases the energy consumption and cost,also easily causes coke deposition on the catalyst.24,25The remaining challenges for production of hydrogen from bio-oil include realizing low-temperature reforming and suppressing catalyst deactivation.

    With regards to the reforming catalysts,noble metal catalysts(e.g.,Pd,Ru,and Rh-based catalyst)26-29and non-noble metal catalysts(e.g.,Ni-,Co-,Fe-based catalysts)2,11,30,31were explored for bio-oil steam reforming.Generally,noble metal catalysts are more efficient than non-noble metal catalysts in terms of H2yield and bio-oil conversion at lower reaction temperatures.In view of the economy,bio-oil steam reforming using non-noble metal catalysts should be more economical and attractive.Among the non-noble metal catalysts,the Ni-based catalysts have been widely used for studying the reforming reactions of bio-oil as well as bio-oil model compounds.1,2,10,11,22

    Carbon materials have been widely used as catalyst supporter in heterogeneous catalysis.As a unique form of carbon,the carbon nanofibers(CNFs)have been demonstrated to be promising alternative support materials owing to their intrinsic properties such as higher surface area,unique electronic properties,and thermal stability.32-35The objective of this paper is to prepare a high active carbon nanofibers-supported Ni catalyst for producing hydrogen from bio-oilviasteam reforming,and investigate the effects of temperature andnS/nCon the reforming.

    2 Experimental

    2.1 Materials

    Bio-oil from sawdust was produced in a circulating fluidized bed with a capacity of 120 kg·h-1of oil in our lab(Anhui Key Laboratory of Biomass Clean Energy,Hefei,China),whose main characteristics are listed as follows:C/H/O,54.5/6.7/38.7(w,%),pH=2.1,moisture:21%(w),density:1300 kg·m-3,Lower heat value:18.2 MJ·kg-1;CNFs were purchased from Shenzhen Nanotech Port Co.,Ltd.China;γ-Al2O3(analytically pure),ethanol(analytically pure),HNO3(analytically pure),H2SO4(analytically pure),and Ni(NO3)2·6H2O(analytically pure)were obtained from Sinopharm Chemical Reagent Co.,Ltd.,Shanghai,China.

    2.2 Catalyst preparation

    CNFs-supported Ni catalysts were prepared by impregnation.First of all,CNFs were pre-oxidized in a mixed acid of HNO3and H2SO4(V/V=3:1)at 120°C for 4 h,and then washed with deionized water till the pH value of the filtrate was about 7,and then the filtered solid was overnight dried at 100°C.Secondly,the purified CNFs and Ni(NO3)2·6H2O were dispersed in ethanol respectively,and then dropped the prepared nickel nitrate solution into CNF solution under a moderate magnetic stirring for 4 h.After that,the mixture solution was aged for 1 h,and followed by an overnight drying at 100°C.Finally,the dried precursor was subjected to a calcination at 350 °C for 4 h.Besides,the 20%Ni/γ-Al2O3catalyst used as a comparison was also prepared by impregnating the nickel nitrate aqueous solution intoγ-Al2O3,and the ultrasonic was used for a well dispersion of Ni onγ-Al2O3.The pH value was kept at 7 during the impregnation,after 2 h ultrasonic impregnation,the precursor was overnight dried at 120°C,and then calcinated at500°C for 4 h.

    2.3 Catalyst characterization

    The metallic element contents in the prepared catalysts were measured by inductively coupled plasma and atomic emission spectroscopy(ICP/AES,Atom Scan Advantage of Thermo Jarrell Ash Corporation,USA).The Brunauer-Emmett-Teller(BET)surface area and pore volume were evaluated from the N2adsorption-desorption isotherms obtained at 77 K over the whole range of relative pressures by using a COULTER SA 3100 analyzer.The X-ray diffraction(XRD)was measured on an X'pert Pro Philips diffractrometer with a CuKαradiation.The microstructure of the catalyst and dispersion of Ni was evaluated by conventionalscanning electron microscope(SEM,XL-30 ESEM).

    2.4 Reaction system and analysis of products

    The bio-oil steam reforming was carried out in a fixed bed under atmosphere,and the schematic diagram of continuous fixed bed reaction system has been reported elsewhere.2,10,11Briefly,bio-oil was fed into the quartz reactor using a micro-injection pump(TS2-60,Baoding Longer Precision Pump).The inner diameter of the quartz reactor was 40 mm,the catalyst with a mean size of 40-60 mesh was mixed with sand and installed in the center of the reactor.The steam was produced from a stream generator,it was simultaneously fed into the reactor to carry the bio-oil into catalyst bed,as well as to adjust the molar ratio of steam to carbon(nS/nC),and the steam and gas flow was controlled and measured by mass flow controllers.Before the bio-oil was fed into the reactor,the catalysts used for bio-oil steam reforming were pre-reduced in H2(99.9%)for 3 h,the gas hourly space velocity(GHSV)was 10000 h-1during the process of reduction.The online analyses of gaseous products were carried out using two gas chromatographs(GC).The hydrocarbons(CH4etc.)were detected by GC1(Model:SP6890,column:PorapakQ-S)with a flame ionization detector(FID),H2,CO,and CO2were detected by GC2(Model:SP6890,column:TDX-01)with a thermal conductivity detector(TCD).The performance of bio-oil steam reforming was evaluated by the carbon conversion of bio-oil(Eq.(6))and the yield of hydrogen(Eq.(7)).All the tests were repeated for three times.

    3 Results and discussion

    3.1 Characterizations of catalysts

    From the ICP-AES analysis,as shown in Table 1,the real contents of Ni loading on CNFs were 11.3%,22.1%,and 37.2%(w)respectively,referred as the 11%Ni/CNFs,22%Ni/CNFs,and 37%Ni/CNFs catalysts.For the typical 22%Ni/CNFs catalyst,the BET surface area and pore volume were 75.6 m2·g-1and 0.33 cm3·g-1,respectively.With increasing the Ni loading from 11.3%to 37.2%,the BET surface area of the CNFs-supported Ni catalysts slightly decreased from 93.4 to 60.3 m2·g-1,accompanied by a decrease in the pore volume from 0.35 to 0.29 cm3·g-1.This observation suggested that the part of the pores in CNFs was occupied by the Ni particles when Ni was added to CNFs,especially at a higher Ni loading amount.Because the most of the Ni particles were well dispersed on the carbon nanofiber surface,no significant decline in the BET surface area and pore volume occurred in our investigated range.

    The XRD analysis was carried out to investigate the diffraction structures of the different Ni-based catalysts and supporter.Fig.1 displays the typical XRD spectra from the purified CNFs,the fresh 20%Ni/γ-Al2O3catalyst,the fresh 22%Ni/CNFs catalyst,the reduced 20%Ni/γ-Al2O3catalyst by 20%(volume fraction)H2at 500°C for 3 h,and the reduced 22%Ni/CNFs catalyst by 20%H2at 350°C for 3 h.For the purified CNFs,no obvious diffraction peaks were observed,indicating that the purified carbon nanofibers belong to an amorphous structure.For the Ni/γ-Al2O3and Ni/CNFs catalysts before the reduction treatment,three peaks at 2θ=37.5°,43.3°,62.9°were assigned to the NiO phases of NiO(222),NiO(400),and NiO(440),respectively.After the Ni-based catalysts were reduced by 20%H2,new peaks corresponding to the diffractions of the Ni(111),Ni(200),and Ni(220)at 2θ=44.4°,51.9°,76.4°were identified,indicating that NiO in the Ni/CNFs catalysts was reduced into metallic Ni.Moreover,the SEM measurement was employed for the morphologies of catalysts,as shown in Fig.2.For the sample of 11%Ni/CNFs,some scattered Ni particles were covered on the surface of carbon nanofibers(Fig.2(a)).When the Ni loading was increased over 22%,the most of the Ni particles were also uniformly dispersed on the surface of CNFs along with a small amount of agglomeration of the Ni particles(Fig.2(b,c)).However,it was observed that agglomeration of the Ni particles in 20%Ni/γ-Al2O3catalyst was muchmoreserious as comparedwiththeNi/CNFs catalysts.

    Table 1 BET surface area and pore volume of catalysts

    3.2 Catalytic activities of different Ni-based catalysts for bio-oil reforming

    In this work,we performed the comparative tests on the production of hydrogen from the bio-oil using different Ni-based catalysts including:the purified CNFs;20%Ni/γ-Al2O3catalyst;11%Ni/CNFs catalyst;22%Ni/CNFs catalyst;37%Ni/CNFs catalyst.As shown in Fig.3,the hydrogen yield from the bio-oil reforming with different catalysts decreased in the following order:37%Ni/CNFs≈22%Ni/CNFs>11%Ni/CNFs>20%Ni/γ-Al2O3.The purified CNFs without Ni loading were nearly inactive for the bio-oil steam reforming in our investigated ranges.When the Ni was added onto CNFs,the performance of bio-oil steam reforming was significantly improved,and the carbon conversion and the H2yield reached about 94.7%and 92.1%respectively with the 22%Ni/CNFs catalyst at 550°C.Further increasing Ni content from 22%to 37%,there was no obvious increase in carbon conversion and H2yield,indicating that the optimized Ni loading content was around 22%.As a contrast,the conventional reforming catalyst of 20% Ni/γ-Al2O3catalyst was also tested under the same operation conditions.It was found that both bio-oil conversion and the H2yield using the 20%Ni/γ-Al2O3catalyst were significantly lower than the level over the 22%Ni/CNFs catalyst,especially at lower reforming temperature(350-450°C).Higher efficiency of production hydrogen with Ni/CNFs catalyst was attributed to highly dispersed Ni active sites when the carbon nanofibers were used as a supporter(see Fig.2).

    Fig.2 Typical SEM images of(a)11%Ni/CNFs,(b)22%Ni/CNFs,(c)37%Ni/CNFs,and(d)20%Ni/γ-Al2O3catalysts

    Fig.3 Performance of bio-oil steam reforming measured over different catalysts

    3.3 lnfluence of reaction conditions on production of hydrogen from bio-oil

    Reforming temperature plays a key role in the production of hydrogen from the bio-oil.Fig.4 shows the effect of the reforming temperature on the hydrogen yield,the carbon conversion,and gas compositions of the reforming products with the selected 22%Ni/CNFs catalyst.At 400°C,the yield of hydrogen and the conversion of bio-oil were about 45.1%and 40.7%respectively,indicating that the 22%Ni/CNFs catalyst has a good low temperature catalytic activity.With increasing temperature to 550°C,both the bio-oil conversion and hydrogen yield remarkably increased to 94.7%and 92.1%respectively.On the other hand,the reforming temperature also affected the compositions of gaseous products.As shown in Fig.4b,with increasing the temperature from 350 to 550°C,the content of H2increased from 41.2%to 69.1%,while the concentrations of CO and CH4show negative impact to the increasing temperature.Specifically,the CH4content decreased from 8.5%to 0.9%,and the CO content reduced from 22.5%to 1.5%.The steam reforming of bio-oil mainly involves in the reforming reactions of the oxygenated organic compounds(CnHmOk)along with the bio-oil cracking and the water-gas shift reaction.36The reforming and cracking reactions of bio-oil are endothermic processes in thermodynamics,and increasing temperature enhances the conversion of bio-oil as well as the hydrogen yield.The decrease in the methane content at higher temperature reflects that the cracking fragments of the bio-oil will be further reformed with the following reactions.

    Fig.5(a-c)shows the yield of hydrogen,the carbon conversion,and the distribution of the products as a function of thenS/nCratio.Both the bio-oil conversion and the hydrogen yield gradually increased with increasing thenS/nCratio from 2 to 7.The hydrogen content also increased along with a decrease in the methane and CO contents at a highernS/nCratio.Increasing thenS/nCratio promoted the bio-oil conversion and the hydrogen yield,which can be attributed to that the reforming reaction(CnHmOk+(n-k)H2O→nCO+(n+m/2-k)H2)and the watergas shift reaction(CO+H2O→CO2+H2)are shifted to hydrogen formation at a highernS/nCratio.

    3.4 Stability of carbon nanofibers supported-Ni catalysts

    The stability of the carbon nanofibers supported-Ni catalyst during the bio-oil steam reforming was tested by measuring the carbon conversion and the yield of hydrogen as a function of the time on stream.The bio-oil steam reforming was tested over the 22%Ni/CNFs catalyst.As shown in Fig.6,the hydrogen yield initially increased for about 15 min as the bio-oil was fed into the reactor,and reached a maximum after almost 60 min.In the following 600 min,no obvious decrease in carbon conversion and hydrogen yield were observed,which indicated that no obvious inactivation of the 22%Ni/CNFs catalyst occurred in the process of bio-oil steam reforming.However,the carbon conversion and the H2yield decreased to 39.2%and 36.0%respectively after 1200 min.The deactivation was caused by coke deposition on the catalyst.

    Fig.4 Effects of temperature on the performance of bio-oil reforming over the 22%Ni/CNFs catalyst

    Fig.5 Effects of nS/nCon the performance of bio-oil reforming over the 22%Ni/CNFs catalyst

    Fig.6 Effects of the time on stream on(a)the carbon conversion and(b)the hydrogen yield for bio-oil steam reforming over the 22%Ni/CNFs catalyst

    4 Conclusions

    In conclusion,we presented a low-temperature bio-oil reforming process using well dispersed and high activity Ni/CNFs catalysts.The prepared Ni/CNFs catalyst shows a good hydrogen yield as well as a higher bio-oil conversion even at lower temperature(350-450°C).The performance of bio-oil reforming over the Ni/CNFs catalyst was much higher than that from the Ni/γ-Al2O3catalyst.Results also show that the reaction temperature,the molar ratio of steam to carbon,and the content of Ni significantly affect the performance of bio-oil steam reforming in terms of hydrogen yield and products distribution.High hydrogen yield and lower operation temperature may potentially provide a promising candidate for the production of hydrogen using renewable bio-oil feedstocks.

    (1) Galdámez,J.R.;García,L.;Bilbao,R.Energy Fuels2005,19,1133.doi:10.1021/ef049718g

    (2)Hou,T.;Yuan,L.X.;Ye,T.Q.;Gong,L.;Tu,J.;Yamamoto,M.;Youshifumi,T.;Li,Q.X.Int.J.Hydrog.Energy2009,34,9095.doi:10.1016/j.ijhydene.2009.09.012

    (3) Haryanto,A.;Fernando,S.;Murali,N.;Adhikari,S.Energy Fuels2005,19,2098.doi:10.1021/ef0500538

    (4) Das,D.;Vezirolu,T.N.Int.J.Hydrog.Energy2001,26,13.doi:10.1016/S0360-3199(00)00058-6

    (5) Nourouzi,L.S.;Larachi,F.;Benali,M.Ind.Eng.Chem.Res.2008,47,7118.doi:10.1021/ie800773a

    (6) Holladay,J.D.;Hu,J.;King,D.L.;Wang,Y.Catal.Today2009,139,244.doi:10.1016/j.cattod.2008.08.039

    (7) Medrano,J.A.;Oliva,M.;Ruiz,J.;García,L.;Arauzo,J.Energy2011,36,2215.doi:10.1016/j.energy.2010.03.059

    (8) Bridgwater,A.V.Biomass Bioenerg.2012,38,68.doi:10.1016/j.biombioe.2011.01.048

    (9) Yildiz,K.;Arif,H,I.Int.J.Hydrog.Energy2009,34,8799.doi:10.1016/j.ijhydene.2009.08.078

    (10) Kan,T.;Xiong,J.X.;Li,X.L.;Ye,T.Q.;Yuan,L.X.;Youshifumi,T.;Yamamoto,M.;Li,Q.X.Int.J.Hydrog.Energy2010,35,518.doi:10.1016/j.ijhydene.2009.11.010

    (11) Ye,T.Q.;Yuan,L.X.;Chen,Y.Q.;Kan,T.;Tu,J.;Zhu,X.F.;Torimoto,Y.;Yamamoto,M.;Li,Q.X.Catal.Lett.2009,127,323.doi:10.1007/s10562-008-9683-2

    (12) Ekaterini,C.V.;Angeliki,A.L.Appl.Catal.A2007,351,111.

    (13) Xie,J.J.;Su,D.R.;Yin,X.L.;Wu,C.Z.;Zhu,J.X.Int.J.Hydrog.Energy2011,36,15560.

    (14) Kinoshita,C.M.;Turn,S.Q.Int.J.Hydrog.Energy2003,28,1065.

    (15) Chornet,E.;Czernik,S.Nature2002,418,928.

    (16) Huber,G.W.;Shabaker,J.W.;Dumesic,J.A.Science2003,300,2075.doi:10.1126/science.1085597

    (17) Stefan,C.;Robert,E.;Richard,F.Catal.Today2007,129,265.doi:10.1016/j.cattod.2006.08.071

    (18) Ekaterini,C.V.;Angeliki,A.L.Int.J.Hydrog.Energy2007,32,212.doi:10.1016/j.ijhydene.2006.08.021

    (19) Jonathan,R.M.;Joelle,D.B.;Shannon,M.;Robert,J.E.;Stefan,C.;Richard,J.F.;Anthony,M.D.Int.J.Hydrog.Energy2009,34,8519.doi:10.1016/j.ijhydene.2009.07.099

    (20) Kechagiopoulos,P.N.;Voutetakis,S.S.;Lemonidou,A.A.;Vasalos,I.A.Energy Fuels2006,20,2155.doi:10.1021/ef060083q

    (21) Ba,T.;Chaala,A.;Garcia,P.M.;Rodrigue,D.;Roy,C.Energy Fuels2004,18,704.doi:10.1021/ef030118b

    (22) Seyedeyn,A.F.;Salehi,E.;Abedi,J.;Harding,T.Fuel Process.Technol.2011,92,563.doi:10.1016/j.fuproc.2010.11.012

    (23) Rioche,C.;Kulkarni,S.;Meunier,F.C.;Breen,J.P.;Burch,R.Appl.Catal.B2005,61,130.doi:10.1016/j.apcatb.2005.04.015

    (24) Garcia,L.;French,R.;Czernik,S.;Chornet,E.Appl.Catal.A2000,201,225.doi:10.1016/S0926-860X(00)00440-3

    (25) Takanabe,K.;Aika,K.;Seshan,K.;Lefferts,L.J.Catal.2004,227,101.doi:10.1016/j.jcat.2004.07.002

    (26) Liguras,D.K.;Kondarides,D.I.;Verykios,X.E.Appl.Catal.B2003,43,345.doi:10.1016/S0926-3373(02)00327-2

    (27) Kugai,J.;Velu,S.;Song,C.Catal.Lett.2005,101,255.doi:10.1007/s10562-005-4901-7

    (28)Aupretre,F.;Descorme,C.;Duprez,D.Catal.Commun.2002,3,263.doi:10.1016/S1566-7367(02)00118-8

    (29) Domine,M.E.;Iojoiu,E.E.;Davidian,T.;Guilhaume,N.;Mirodatos,C.Catal.Today2008,133-135,565.

    (30)Xu,X.W.;Jiang,E.C.;Wang,M.F.;Li,B.S.Renew.Energy2012,39,126.doi:10.1016/j.renene.2011.07.030

    (31)Wang,S.R.;Li,X.B;Guo,L.;Luo,Z.Y.Int.J.Hydrog.Energy2012,37,11122.doi:10.1016/j.ijhydene.2012.05.011

    (32)Wang,C.;Qiu,J.S.;Liang,C.H.;Xing,L.;Yang,X.M.Catal.Commun.2008,9,1749.

    (33) Bezemer,G.L.;Radstake,P.B.;Falke,U.;Oosterbeek,H.;Kuipers,H,P.;Dillen,A.J.;Jong,K.P.J.Catal.2006,237,152.doi:10.1016/j.jcat.2005.10.031

    (34) Eva,D.;Marta,L.;Salvador,O.Int.J.Hydrog.Energy2010,35,4576.

    (35) Wang,H.J.;Zhao,F.Y.;Fujitac,S.I.;Masahiko,A.Catal.Commun.2008,9,362.doi:10.1016/j.catcom.2007.07.002

    (36) Cortright,R.D.;Davda,R.R.;Dumesic,J.A.Nature2002,418,964.doi:10.1038/nature01009

    伊人久久精品亚洲午夜| 观看美女的网站| 变态另类成人亚洲欧美熟女| 国产大屁股一区二区在线视频| 在线观看午夜福利视频| 亚洲av美国av| 一区二区三区高清视频在线| 三级国产精品欧美在线观看| 亚洲午夜理论影院| 国产在视频线在精品| 国产精品伦人一区二区| 亚洲精品456在线播放app | 国产精品av视频在线免费观看| 亚洲国产精品999在线| 久久精品久久久久久噜噜老黄 | 九九在线视频观看精品| 国产精品久久久久久亚洲av鲁大| 91久久精品电影网| 好男人电影高清在线观看| www日本黄色视频网| 此物有八面人人有两片| 国产精品影院久久| 国产男靠女视频免费网站| 国产91精品成人一区二区三区| 一个人免费在线观看的高清视频| 舔av片在线| 69人妻影院| 18禁裸乳无遮挡免费网站照片| 久久精品综合一区二区三区| 欧美zozozo另类| 麻豆国产av国片精品| 国产色爽女视频免费观看| 精品不卡国产一区二区三区| 男女床上黄色一级片免费看| 简卡轻食公司| 亚洲中文日韩欧美视频| 欧美日本亚洲视频在线播放| 岛国在线免费视频观看| 校园春色视频在线观看| 一本综合久久免费| 天天一区二区日本电影三级| 窝窝影院91人妻| 又爽又黄a免费视频| 精品久久久久久久人妻蜜臀av| 亚洲一区二区三区色噜噜| 宅男免费午夜| 亚洲人成电影免费在线| 9191精品国产免费久久| 亚洲乱码一区二区免费版| 亚洲性夜色夜夜综合| 中文字幕精品亚洲无线码一区| 成人一区二区视频在线观看| 人人妻人人澡欧美一区二区| 欧美性猛交╳xxx乱大交人| 亚洲欧美激情综合另类| 91在线观看av| 精品人妻视频免费看| 偷拍熟女少妇极品色| xxxwww97欧美| 日韩国内少妇激情av| 无遮挡黄片免费观看| 超碰av人人做人人爽久久| 色视频www国产| 成人精品一区二区免费| 成人三级黄色视频| 中国美女看黄片| 99久久成人亚洲精品观看| 一级黄色大片毛片| 91麻豆精品激情在线观看国产| 精品久久久久久久末码| 啦啦啦观看免费观看视频高清| 精品一区二区三区人妻视频| 欧美性感艳星| 老司机午夜福利在线观看视频| 国产免费男女视频| 久久亚洲精品不卡| 国产亚洲精品久久久com| 国产色婷婷99| 91狼人影院| 97碰自拍视频| 免费大片18禁| 欧美日韩亚洲国产一区二区在线观看| 九九在线视频观看精品| 琪琪午夜伦伦电影理论片6080| 三级毛片av免费| 看黄色毛片网站| 国产乱人视频| 国产伦人伦偷精品视频| 精品久久久久久久久久久久久| 国产精品久久久久久久电影| 午夜福利免费观看在线| 美女高潮的动态| 天天一区二区日本电影三级| 欧美黄色片欧美黄色片| 国产中年淑女户外野战色| 在线播放无遮挡| 国产真实伦视频高清在线观看 | 嫁个100分男人电影在线观看| 九色国产91popny在线| 亚洲一区二区三区色噜噜| 色哟哟·www| 在线免费观看不下载黄p国产 | 深夜a级毛片| 91在线精品国自产拍蜜月| 欧美另类亚洲清纯唯美| 999久久久精品免费观看国产| 天堂√8在线中文| 51国产日韩欧美| 午夜日韩欧美国产| 一区福利在线观看| 午夜精品久久久久久毛片777| 亚洲av中文字字幕乱码综合| 在线观看一区二区三区| 麻豆成人午夜福利视频| 亚洲va日本ⅴa欧美va伊人久久| av欧美777| 性色avwww在线观看| 天堂网av新在线| 成人国产一区最新在线观看| 色播亚洲综合网| 国产综合懂色| av天堂在线播放| 日本a在线网址| 欧洲精品卡2卡3卡4卡5卡区| 一进一出抽搐gif免费好疼| 淫秽高清视频在线观看| 午夜福利成人在线免费观看| 亚洲一区二区三区色噜噜| 在线播放国产精品三级| 欧美中文日本在线观看视频| 99国产综合亚洲精品| 欧美黑人巨大hd| 精品欧美国产一区二区三| 中文字幕精品亚洲无线码一区| 男人狂女人下面高潮的视频| 免费一级毛片在线播放高清视频| 一区二区三区激情视频| 国产野战对白在线观看| 丰满人妻一区二区三区视频av| 女生性感内裤真人,穿戴方法视频| 国产精品久久久久久人妻精品电影| 国产亚洲精品久久久com| 午夜老司机福利剧场| 99精品久久久久人妻精品| 国内久久婷婷六月综合欲色啪| 99久久精品一区二区三区| 少妇熟女aⅴ在线视频| 亚洲天堂国产精品一区在线| 国产成人影院久久av| 亚洲内射少妇av| 欧美精品国产亚洲| 香蕉av资源在线| 欧美日韩中文字幕国产精品一区二区三区| av在线天堂中文字幕| 禁无遮挡网站| 免费看日本二区| 国内精品久久久久精免费| 国产欧美日韩精品一区二区| 国产毛片a区久久久久| 日韩精品青青久久久久久| 他把我摸到了高潮在线观看| or卡值多少钱| 午夜精品在线福利| 久久久久精品国产欧美久久久| 色5月婷婷丁香| 久久久久久九九精品二区国产| 特级一级黄色大片| 久久99热这里只有精品18| 哪里可以看免费的av片| 美女xxoo啪啪120秒动态图 | 国内精品久久久久精免费| 亚洲国产精品合色在线| 亚洲专区国产一区二区| 国产真实伦视频高清在线观看 | 听说在线观看完整版免费高清| 久99久视频精品免费| 欧美潮喷喷水| 男女做爰动态图高潮gif福利片| 久久久色成人| 久久性视频一级片| aaaaa片日本免费| 天堂影院成人在线观看| 老司机深夜福利视频在线观看| 久久欧美精品欧美久久欧美| 亚洲国产欧美人成| 亚洲成人久久爱视频| 国产探花在线观看一区二区| 人妻制服诱惑在线中文字幕| 此物有八面人人有两片| 91av网一区二区| 麻豆国产97在线/欧美| 国产成人影院久久av| 欧美日韩福利视频一区二区| 乱码一卡2卡4卡精品| 他把我摸到了高潮在线观看| 亚洲无线在线观看| 好男人在线观看高清免费视频| 男人和女人高潮做爰伦理| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 最近中文字幕高清免费大全6 | 亚洲国产日韩欧美精品在线观看| 欧美黑人欧美精品刺激| 亚洲不卡免费看| 久久热精品热| 青草久久国产| 成人高潮视频无遮挡免费网站| 国产成年人精品一区二区| 97超级碰碰碰精品色视频在线观看| 波野结衣二区三区在线| 亚洲av一区综合| 久久国产精品人妻蜜桃| 国产真实伦视频高清在线观看 | 免费观看精品视频网站| 一进一出好大好爽视频| 特大巨黑吊av在线直播| 国产三级中文精品| 欧美乱妇无乱码| 老司机深夜福利视频在线观看| 五月玫瑰六月丁香| 男人狂女人下面高潮的视频| 此物有八面人人有两片| 1024手机看黄色片| av天堂中文字幕网| av视频在线观看入口| 美女被艹到高潮喷水动态| 久久精品国产自在天天线| 简卡轻食公司| 国产极品精品免费视频能看的| 欧美日韩乱码在线| 午夜免费男女啪啪视频观看 | av国产免费在线观看| 亚洲国产色片| 一区二区三区激情视频| 精品久久久久久久末码| 人妻制服诱惑在线中文字幕| 极品教师在线免费播放| 国产精品野战在线观看| 亚洲av免费在线观看| 男人狂女人下面高潮的视频| 99国产极品粉嫩在线观看| 久久性视频一级片| 亚洲国产精品合色在线| 在线观看美女被高潮喷水网站 | www.色视频.com| 亚洲成a人片在线一区二区| 国产极品精品免费视频能看的| 两个人视频免费观看高清| 丁香六月欧美| 波多野结衣高清作品| 人妻久久中文字幕网| 又粗又爽又猛毛片免费看| 国模一区二区三区四区视频| 成人永久免费在线观看视频| 噜噜噜噜噜久久久久久91| 一本精品99久久精品77| 久久99热这里只有精品18| 欧美黄色淫秽网站| 国内少妇人妻偷人精品xxx网站| 最近最新免费中文字幕在线| 欧美精品啪啪一区二区三区| 极品教师在线免费播放| 日韩欧美在线乱码| 成年女人永久免费观看视频| 欧美一级a爱片免费观看看| 色噜噜av男人的天堂激情| 国产成人av教育| 一区二区三区激情视频| 丝袜美腿在线中文| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产欧美人成| 99精品在免费线老司机午夜| 男女床上黄色一级片免费看| 久久人妻av系列| 午夜福利欧美成人| 免费看日本二区| 嫩草影视91久久| 欧美成狂野欧美在线观看| 国产黄片美女视频| 两个人视频免费观看高清| 人人妻人人看人人澡| 欧美黑人欧美精品刺激| 十八禁国产超污无遮挡网站| 久久久成人免费电影| 国产视频内射| 神马国产精品三级电影在线观看| 国产人妻一区二区三区在| 国产精品亚洲一级av第二区| 久久天躁狠狠躁夜夜2o2o| 国产精品99久久久久久久久| 嫩草影院精品99| 国产精品电影一区二区三区| АⅤ资源中文在线天堂| 久久久精品大字幕| 88av欧美| 成人美女网站在线观看视频| 国产91精品成人一区二区三区| 色av中文字幕| 欧美在线黄色| 亚洲av不卡在线观看| 人人妻人人澡欧美一区二区| 久久久久性生活片| 此物有八面人人有两片| 中文字幕精品亚洲无线码一区| 精品一区二区三区人妻视频| 毛片女人毛片| 一区二区三区激情视频| 亚洲五月婷婷丁香| 国产视频一区二区在线看| 欧美zozozo另类| 欧美激情国产日韩精品一区| 久久精品国产自在天天线| 最近最新免费中文字幕在线| 美女高潮的动态| 成人高潮视频无遮挡免费网站| 久久精品国产亚洲av香蕉五月| bbb黄色大片| 久久精品91蜜桃| 一边摸一边抽搐一进一小说| 国产视频一区二区在线看| 99久久无色码亚洲精品果冻| 国产白丝娇喘喷水9色精品| 51午夜福利影视在线观看| 91在线观看av| 97超视频在线观看视频| 久久久久性生活片| 色综合婷婷激情| 在线播放国产精品三级| 亚洲电影在线观看av| 女生性感内裤真人,穿戴方法视频| 欧美黄色淫秽网站| 日本黄色视频三级网站网址| 国产免费av片在线观看野外av| 51午夜福利影视在线观看| 日韩欧美在线二视频| 成人特级黄色片久久久久久久| 亚洲av日韩精品久久久久久密| 欧美色欧美亚洲另类二区| 国产精品综合久久久久久久免费| 日韩有码中文字幕| 成人av一区二区三区在线看| 可以在线观看的亚洲视频| av在线蜜桃| 一本一本综合久久| 一进一出抽搐gif免费好疼| 亚洲欧美日韩高清专用| 成人av一区二区三区在线看| 国产麻豆成人av免费视频| 精品一区二区三区人妻视频| 国产人妻一区二区三区在| 免费在线观看影片大全网站| 久久久国产成人免费| 欧美日韩黄片免| 高清毛片免费观看视频网站| 欧美三级亚洲精品| 真人一进一出gif抽搐免费| 亚洲第一区二区三区不卡| 高清毛片免费观看视频网站| 日本黄大片高清| 亚洲成av人片免费观看| 国产免费一级a男人的天堂| 99久久成人亚洲精品观看| 一区福利在线观看| www.熟女人妻精品国产| 欧美午夜高清在线| 成人美女网站在线观看视频| 国产黄a三级三级三级人| 看免费av毛片| 久久久久久大精品| 日日摸夜夜添夜夜添av毛片 | 免费搜索国产男女视频| 日本成人三级电影网站| 毛片女人毛片| 日本免费一区二区三区高清不卡| 午夜激情福利司机影院| 欧美日本亚洲视频在线播放| 老司机福利观看| 国内揄拍国产精品人妻在线| 蜜桃久久精品国产亚洲av| 久久这里只有精品中国| 观看免费一级毛片| 亚洲av免费在线观看| 亚洲在线自拍视频| 国产精品日韩av在线免费观看| 麻豆一二三区av精品| 亚洲av日韩精品久久久久久密| 中文字幕av在线有码专区| 嫩草影院精品99| 亚洲一区二区三区不卡视频| 日韩av在线大香蕉| 在线a可以看的网站| 18美女黄网站色大片免费观看| 在线观看66精品国产| a在线观看视频网站| 亚洲精品在线美女| 国产人妻一区二区三区在| 久久精品人妻少妇| 欧美中文日本在线观看视频| 精品国产三级普通话版| 九色国产91popny在线| 亚洲熟妇中文字幕五十中出| 午夜免费男女啪啪视频观看 | 精品久久国产蜜桃| 国产亚洲精品av在线| 日韩欧美免费精品| h日本视频在线播放| 欧美成人一区二区免费高清观看| 久久久久久久久久成人| av欧美777| 久久精品久久久久久噜噜老黄 | 色哟哟·www| 国产精品久久久久久久久免 | 国产欧美日韩一区二区三| 无人区码免费观看不卡| 日本黄色视频三级网站网址| 色播亚洲综合网| 小蜜桃在线观看免费完整版高清| 一区福利在线观看| aaaaa片日本免费| 国产精品综合久久久久久久免费| 国模一区二区三区四区视频| 欧美一级a爱片免费观看看| 久久婷婷人人爽人人干人人爱| 97超级碰碰碰精品色视频在线观看| 午夜福利高清视频| 性色avwww在线观看| 伦理电影大哥的女人| av在线天堂中文字幕| 在线国产一区二区在线| 亚洲国产欧美人成| 欧美一级a爱片免费观看看| 精品乱码久久久久久99久播| 欧美高清性xxxxhd video| 亚洲乱码一区二区免费版| 成人性生交大片免费视频hd| 在线a可以看的网站| 中国美女看黄片| 国语自产精品视频在线第100页| 51午夜福利影视在线观看| 日本在线视频免费播放| 村上凉子中文字幕在线| 99热6这里只有精品| 在线观看av片永久免费下载| 午夜福利视频1000在线观看| 国语自产精品视频在线第100页| 岛国在线免费视频观看| 国产熟女xx| 淫秽高清视频在线观看| 美女被艹到高潮喷水动态| 国产精品久久久久久精品电影| 亚洲第一欧美日韩一区二区三区| 97碰自拍视频| 国产精华一区二区三区| 亚洲,欧美,日韩| 精品久久久久久久久av| 在线播放国产精品三级| 日韩高清综合在线| 亚洲精品影视一区二区三区av| 性欧美人与动物交配| 日本黄大片高清| 成人午夜高清在线视频| 日韩大尺度精品在线看网址| 久久婷婷人人爽人人干人人爱| 99热这里只有是精品在线观看 | 久久婷婷人人爽人人干人人爱| 国产中年淑女户外野战色| 人妻夜夜爽99麻豆av| 亚洲av免费高清在线观看| 久久精品91蜜桃| 美女cb高潮喷水在线观看| 亚洲经典国产精华液单 | 91在线观看av| 精品乱码久久久久久99久播| 别揉我奶头 嗯啊视频| 久久精品久久久久久噜噜老黄 | 一本一本综合久久| 国产精品久久久久久久电影| 在线观看午夜福利视频| 又黄又爽又免费观看的视频| 我要看日韩黄色一级片| 亚洲av成人精品一区久久| 高清日韩中文字幕在线| 给我免费播放毛片高清在线观看| 精品久久久久久久人妻蜜臀av| 久久久久久久午夜电影| www.999成人在线观看| 午夜久久久久精精品| 最新中文字幕久久久久| 国产人妻一区二区三区在| 精品福利观看| 欧美成人性av电影在线观看| a级一级毛片免费在线观看| eeuss影院久久| 51国产日韩欧美| 日韩欧美 国产精品| 99精品久久久久人妻精品| 12—13女人毛片做爰片一| 午夜福利视频1000在线观看| 欧美日韩综合久久久久久 | 精品国产三级普通话版| 亚洲av电影不卡..在线观看| 久久精品夜夜夜夜夜久久蜜豆| 18禁黄网站禁片午夜丰满| 波野结衣二区三区在线| 欧美在线一区亚洲| 成人高潮视频无遮挡免费网站| 精品乱码久久久久久99久播| 亚洲av电影不卡..在线观看| 国产一区二区在线观看日韩| 国产单亲对白刺激| 亚洲精品日韩av片在线观看| 亚洲人与动物交配视频| 91字幕亚洲| 美女 人体艺术 gogo| 日韩人妻高清精品专区| 能在线免费观看的黄片| 日韩免费av在线播放| 麻豆成人午夜福利视频| 国产极品精品免费视频能看的| 高清毛片免费观看视频网站| 小说图片视频综合网站| 十八禁人妻一区二区| 99视频精品全部免费 在线| 日韩欧美精品免费久久 | 久久天躁狠狠躁夜夜2o2o| 又紧又爽又黄一区二区| 最近最新免费中文字幕在线| 国产老妇女一区| 国产精华一区二区三区| 欧美日韩黄片免| 国产真实乱freesex| 午夜福利高清视频| 国产麻豆成人av免费视频| 亚洲精品在线观看二区| 黄色丝袜av网址大全| 噜噜噜噜噜久久久久久91| 在线观看66精品国产| 亚洲人成伊人成综合网2020| 国产私拍福利视频在线观看| 国产午夜精品论理片| 久久久久九九精品影院| 亚洲乱码一区二区免费版| 午夜久久久久精精品| 听说在线观看完整版免费高清| 一级黄色大片毛片| 国产视频内射| 黄片小视频在线播放| 久久久久久久久久成人| 国产精品嫩草影院av在线观看 | 亚洲激情在线av| 91在线观看av| 久久性视频一级片| 美女大奶头视频| 怎么达到女性高潮| 亚洲国产精品成人综合色| 中文字幕av成人在线电影| 国内久久婷婷六月综合欲色啪| or卡值多少钱| 日本黄色视频三级网站网址| 蜜桃亚洲精品一区二区三区| АⅤ资源中文在线天堂| 激情在线观看视频在线高清| 午夜激情欧美在线| 免费电影在线观看免费观看| 欧美乱色亚洲激情| 在现免费观看毛片| eeuss影院久久| 麻豆一二三区av精品| 一边摸一边抽搐一进一小说| 欧美日本亚洲视频在线播放| 夜夜躁狠狠躁天天躁| av视频在线观看入口| 91字幕亚洲| 中文字幕人妻熟人妻熟丝袜美| 听说在线观看完整版免费高清| 亚洲电影在线观看av| 蜜桃亚洲精品一区二区三区| 国产一区二区在线av高清观看| 免费无遮挡裸体视频| 一级黄片播放器| 欧美黄色片欧美黄色片| 国产亚洲精品综合一区在线观看| 观看美女的网站| 在线观看66精品国产| 婷婷精品国产亚洲av| 久久天躁狠狠躁夜夜2o2o| 亚洲电影在线观看av| 亚洲人成电影免费在线| 国产野战对白在线观看| 中文字幕免费在线视频6| 五月伊人婷婷丁香| 91麻豆av在线| 久久精品国产亚洲av香蕉五月| 欧美日韩亚洲国产一区二区在线观看| 午夜福利欧美成人| 女人被狂操c到高潮| 神马国产精品三级电影在线观看| 夜夜夜夜夜久久久久| 国内揄拍国产精品人妻在线| 国产精品久久久久久久久免 | 精品国产三级普通话版| 日本一本二区三区精品| 一个人免费在线观看的高清视频| 亚洲国产精品合色在线| 午夜福利视频1000在线观看| 久久欧美精品欧美久久欧美| 色综合欧美亚洲国产小说| 黄片小视频在线播放| 欧美高清成人免费视频www| av视频在线观看入口| 动漫黄色视频在线观看| 一级黄片播放器| 亚洲片人在线观看| 高潮久久久久久久久久久不卡| 18禁在线播放成人免费| 白带黄色成豆腐渣|