• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spontaneous Deposition of Pt Nanoparticles on Poly(diallyldimethylammonium chloride)/Carbon Nanotube Hybrids and Their Electrocatalytic Oxidation of Methanol

    2013-07-25 09:09:46CUIYingKUANGYinJieZHANGXiaoHuaLIUBoCHENJinHua
    物理化學學報 2013年5期
    關鍵詞:小金學報化學

    CUI Ying KUANG Yin-Jie ZHANG Xiao-Hua LIU Bo CHEN Jin-Hua,*

    (1State Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry and Chemical Engineering,Hunan University,Changsha 410082,P.R.China; 2Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,School of Chemistry and Biological Engineering,Changsha University of Science&Technology,Changsha,410114,P.R.China; 3Xi'an Taijin Industrial Electrochemical Technology Co.,Ltd.,Northwest Institute for Non-ferrous Metal Research,Xi'an 710016,P.R.China)

    1 lntroduction

    Due to its high power density,relatively quick start-up,rapid response to varying loading,and low operating temperatures,direct methanol fuel cell(DMFC)has been regarded as an ideal power source for electric vehicles and electronic portable devices.1So far,Pt and Pt-based alloy are the most common catalysts for the anodic oxidation of methanol.However,the high cost of the Pt-based catalysts,together with their limited reserves on earth,is one of the main barriers for the large-scale commercialization of DMFCs.2In order to lower the cost of noble-metal nanocatalysts,carbon materials with high surface area are usually used as supports to enhance the dispersion of metal nanoparticles(NPs)and thus to increase the efficiency and utilization of the noble-metal nanocatalysts.3Carbon nanotubes(CNTs)have been considered as an attractive material for supporting noble-metal NPs owing to their high specific surface area,excellent electronic conductivity,outstanding chemical and electrochemical stability,and so on.4Unfortunately,the metal NPs on the pristine CNTs usually have poor dispersion,because the CNT surface does not have enough binding sites to anchor the precursors of metal ions or metal NPs.

    In order to obtain high dispersion of noble-metal NPs on CNTs,CNTs is usually modified by the covalent5or noncovalent6methods to introduce lots of binding sites,which can adsorb the metal precursors by electrostatic attraction and coordination effect.Finally,the metal precursors are reduced to metal NPs by the reductant in solution.Whereas,this kind of methods has some disadvantages including more affecting factors on metal deposition,the waste of the metal precursors and reductant.Chenet al.7reported the spontaneous deposition of Pt NPs on the surface of CNTs by oxidizing CNTs in strong acid solution to introduce lots of carboxyl and hydroxyl groups.But the acid-oxidation treatment in strong acid will destroy the structure of CNTs and decrease their conductivity and anti-corrosion ability.

    On the other hand,the durability of the electrocatalyst is another issue in DMFCs.At high potential and during long operating period,the dissolution/agglomeration of noble-metal NPs and the corrosion of carbon supports are generally responsible for the degradation of electrocatalytic performance.8Colmenareset al.9reported that the graphitized carbon had stronger resistance towards carbon corrosion at high potential.However,the graphitized process needs extra high temperature.

    Fig.1 Scheme of the functionalization of CNTs with PDDAand the dispersion of Pt NPs on CNTs-PDDA

    In this paper,we reported an alternative strategy to spontaneously deposit noble metal NPs on CNTs with high dispersion and to improve the resistance to the corrosion of CNTs.Poly(diallyldimethylammonium chloride)(PDDA),an environment-friendly polymer,10has been used widely in advanced catalysts and chemo/biosensors.11It can easily coat on the CNT surface byπ-πstacking interaction,12introducing sufficient binding sites to anchor the metal precursorviaelectrostatic self-assembly(Fig.1).Herein,it not only acts as a reductant13to reduce the metal precursor,its oxidation product but also serves as a stabilizer to anchor thein-situproduced metal NPs on CNTs by the coordination action of plentiful nitrogen atoms.Furthermore,the outstanding film-forming ability of PDDA will make it easy to form a thin film on the CNT surface,12awhich will inhibit the corrosion of CNTs in fuel cell operating conditions and thus improve the operating stability of noble-metal NPs/CNTs electrocatalysts.It is expected that Pt NPs will be dispersed uniformly on the PDDA-functionalized CNTs(CNTs-PDDA)and the resulting catalysts(Pt NPs/CNTs-PDDA)will show excellent electrocatalytic performance for the methanol oxidation.For comparison,the pristine CNTs-supported Pt NPs(Pt NPs/CNTs)were prepared.

    2 Experimental

    2.1 Materials

    Multi-walled carbon nanotubes(CNTs)(length 1-2 μm,diameter 20-60 nm)were purchased from Shenzhen Nanotech Port Co.Ltd.,China.PDDA(20%(w)in water,MW=200000-350000)was purchased from Sigma Aldrich.Aqueous solutions were prepared with double-distilled water.Other chemicals were of analytical grade and used as received.

    2.2 Functionalization of CNTs with PDDA

    The procedure for the noncovalent functionalization of CNTs with PDDA was as follows:CNTs(50 mg)were first ultrasonicated in double-distilled water(200 mL)containing PDDA(0.5%(w))and NaCl(0.5%(w))for 3 h.Then,the obtained suspensions were stirred overnight,filtered using a nylon membrane and washed with vast double-distilled water to remove excess PDDA and NaCl.The final product,denoted as CNTs-PDDA,was dried at 60°C in vacuum for 24 h.

    2.3 Preparation of Pt NPs/CNTs-PDDA and Pt NPs/CNTs nanohybrids

    Deposition of Pt NPs on the CNTs-PDDA was carried out by a microwave-assisted reduction process in water and the details were as follows:CNTs-PDDA(5 mg)was ultrasonicated in double-distilled water(10 mL)for 30 min to yield stable suspensions.Then,H2PtCl6(19.3 mmol·L-1,332 μL)was added to the suspensions and mixed under stirring for 30 min.After the pH value of the solution was adjusted to 8-9 with 1.0 mol·L-1NaOH aqueous solution,the mixture was then placed in a microwave oven and heated by microwave irradiation(800 W)at 80°C for 20 min.The products were centrifuged and washed three times with double-distilled water.The obtained CNTs-PDDA supported Pt NPs,denoted as Pt NPs/CNTs-PDDA,were dried in vacuum oven at 60°C for 12 h.For comparison,Pt NPs supported on the pristine CNTs,labeled as Pt NPs/CNTs,were prepared under the same procedure as described above.

    2.4 Characterization

    Fourier transform infrared(FTIR)spectrometry(Nicolet,6700,USA)was employed to analyze the surface chemical compositions of the CNTs-PDDA.The mass fraction of the PDDA in the CNTs-PDDA was determined by thermogravimetric analysis(TGA)(NETZSCH STA 409PC,Germany).The Raman spectrum(Labram-010,France)was also used to study the integrity and electronic structure of the CNTs and CNTs-PDDA.The morphology of the samples was characterized by transmission electron microscopy(TEM,JEM-3010,Japan)with an accelerating voltage of 200 kV.The metal Pt loading mass for the Pt NPs/CNTs-PDDA and Pt/CNTs catalysts was determined by Inductively Coupled Plasma-Atom Emission Spectroscopy(ICP-AES,Spectro Ciros,Germany).

    2.5 Electrochemical measurements

    For electrochemical investigation,a glassy carbon(GC,5 mm diameter)electrode was polished with the slurry of 0.50 and 0.03 μm alumina successively and washed ultrasonically in double-distilled water prior to use.The catalyst ink was prepared by dispersing 5 mg of catalyst in 5 mL of water by sonication.Then,40 μL of the ink was dropped onto the GC electrode using micro-syringe.After dried in air,the electrode was coated with 5 μL of 0.05%(w)Nafion ethanol solution.The electrochemical surface area(ESA)and the electrochemical performance of the electrocatalysts were evaluated by cyclic voltammetry(CV)and chronoamperometry.All electrochemical measurements were performed on a CHI660B electrochemical workstation(Chenhua Instrument Company of Shanghai,China).A conventional three-electrode glass cell was used with a platinum wire as the counter electrode and a saturated calomel electrode(SCE)as the reference electrode.All the potentials reported herein were with respect to SCE.Double-distilled water was used throughout.

    3 Results and discussion

    3.1 CNTs-PDDA characterization

    Fig.2 FTIR spectra of(a)pristine CNTs,(b)PDDA,and(c)CNTs-PDDA

    Surface-functionalization of CNTs with PDDA was characterized by FTIR spectroscopy.Fig.2 shows the FTIR spectra of the pristine CNTs,PDDA,and CNTs-PDDA.The FTIR spectrum of PDDA(curve b)shows some characteristic peaks at 2865 and 2933 cm-1(C―H stretching vibration from methylene),1465 cm-1(C―H asymmetrical deformation vibration from N―CH3),and 1415 cm-1(C―H symmetrical deforma-tion vibration from N―CH3).The absorption peak at 1635 cm-1in curve b is ascribed to the stretching vibration of C=C,which comes from the unsaturated impurity existing in PDDA chain.12b,14These characteristic peaks are absent in the FTIR spectrum of the pristine CNTs(curve a).However,The mainly characteristic peaks of PDDA are also observed in the spectrum of the CNTs-PDDA nanohybrids(curve c)and slightly shift to lower wavenumbers,which might be attributed to the interaction between PDDA and CNTs.12bThis confirms the presence of PDDAon the CNT surface.

    The mass fraction of the PDDA film coated on the CNT surface was further determined by TGA.TGA was performed on a NETZSCH STA 409PC at a heating rate of 10 °C·min-1in N2atmosphere and the corresponding results are shown in Fig.3.For the pristine CNTs,there is almost no weight loss in the measured temperature range of 300-1000 K.However,for the PDDA-functionalized CNTs,an obvious weight loss can be observed in temperature range of 300-1000 K,which is due to the decomposition of PDDA functionalized on CNT surface.From the difference in weight loss of the CNTs without and with PDDA at 1000 K,the mass fraction(w)of PDDA in the CNTs-PDDAis estimated to be about 21.7%.

    Fig.3 TGAcurves of(a)pristine CNTs and(b)CNTs-PDDA

    Fig.4 Raman spectra of(a)CNTs-PDDAand(b)pristine CNTs

    The Influence of the PDDA film on the structure of the CNTs was also investigated by Raman spectroscopy.As shown in Fig.4,the peak at 1321 cm-1is assigned to the stretching mode of the poor crystallization of graphite(disorder band,D-band).The peak at~1570 cm-1is ascribed to the stretching mode of the crystal graphite(graphitic band,G-band),reflecting the structure of thesp2hybridized carbon atoms.An additional side band at~1600 cm-1was also observed,which is assigned as theD′band.Both theDand theD'bands are due to the defect sites in the hexagonal framework of graphite materials.15From Fig.4,it can be calculated that the intensity ratio ofDandGbands(ID/IG)of CNTs-PDDA is 1.24 and lower than that of the pristine CNTs(1.37),which is consistent with the results of Wanget al.6aThis result indicates that the functionalization of CNTs with PDDA has no detrimental effect on the structure of CNTs.Taking into account the good film-forming ability of PDDA,the results from Fig.4 imply that the CNTs-PDDA may have good anti-corrosion ability during the long-term operating process of methanol electro-oxidation.

    Fig.5 Cyclic voltammogramms of(a)PDDA-CNTs and(b)CNTs electrodes in nitrogen-saturated 0.5 mol·L-1H2SO4solution before and after carbon corrosion tests at a scan rate of 20 mV·s-1

    Fig.6 Pictures of the dispersion of(a)CNTs and(b)CNTs-PDDA in aqueous solution(1 mg·mL-1)standing for 8 h

    It is well known that the corrosion of carbon is an important factor that the performance of carbon-supported catalyst degrades.The investigation of carbon corrosion was carried out at a constant potential of 1.25 V for 8 h.16Carbon corrosion can be clearly identified with the related cyclic voltammograms before and after corrosion test.Fig.5 shows the CV results before and after carbon corrosion tests in a nitrogen-saturated 0.5 mol·L-1H2SO4aqueous solution.It is noted that the capacitive currents of both CNTs and PDDA-CNTs increase after the carbon corrosion test,implying that both CNTs and PDDA-CNTs occur oxidation.However,the increment of the capacitive current of CNTs is much larger than that of PDDA-CNTs,indicating that the oxidation degree of CNTs is much higher than that of PDDACNTs.On the other hand,it can be seen obviously that there are redox current peaks at about 0.35 V on both CNTs and PDDA-CNTs electrodes.The faradic peak indicates the surface oxide formation due to the hydroquinone-quinone(HQ-Q)redox couple on the carbon nanotube surface.16,17The amount of surface oxides on the carbons can be quantified by the charge due to the above reaction.It is noted that the surface oxides of CNTs were obviously increased by 322.8%after corrosion test(Fig.5(a))and the increment is much higher than that occurred on the PDDA-CNTs(Fig.5(b))(61.6%),indicating further a higher oxidation degree on the CNT surface.These indicate that PDDA-CNTs have higher resistance to electrochemical corrosion than CNTs.It is widely recognized that the electrochemical oxidation of CNTs preferentially occurs at the defects on the CNTs.16,17On the surface of the PDDA-CNTs,PDDA molecules cover the original defect sites of CNTs and easily form a thin film to prevent the invasion of corrosion medium.The results from Fig.5 imply that the PDDA-CNTs may be the good catalyst support for the electrocatalysts with good longterm stability.

    On the other hand,the dispersibility of CNTs in solvents is one of the key issues for the applications of CNTs.Here,the comparison of the dispersibility of CNTs-PDDA and pristine CNTs in water was carried out and the corresponding results are shown in Fig.6.It is noted that CNTs-PDDA can easily and uniformly disperse in water(Fig.6(a)).In comparison,it is hard for pristine CNTs to uniformly disperse in water and obvious aggregation and precipitation are observed(Fig.6(b)).This implies that the dispersibility of CNTs in water is greatly improved by the surface functionalization with PDDA because of the excellent hydrophilicity of PDDA.Moreover,the presence of PDDA molecules make the surface of CNTs create positive charge,which prevents aggregation of CNTs by electrostatic repulsion and induces stable CNT suspension in water.

    Based on the above results,the excellent anti-corrosion ability,good dispersibility in aqueous solution and nitrogen-containing groups make PDDA-CNTs be the promising catalyst supports for noble metal NPs in fuel cells.

    3.2 Deposition of Pt NPs on CNTs

    Fig.7 TEM images of Pt NPs in(a)Pt NPs/CNTs-PDDAand(b)Pt NPs/CNTs nanohybrids

    Fig.7 shows the TEM images of the Pt NPs/CNTs-PDDA and Pt NPs/CNTs nanohybrids.As shown in Fig.7(a),lots of Pt NPs with an average particle size of(2.0±0.5)nm are uniformly dispersed on the surface of the CNTs-PDDA.It is noted that no aggregation of NPs is clearly observed on the CNT surface.In contrast,for the Pt NPs/CNTs nanohybrids,Pt NPs have a poor dispersion on the CNT surface and the diameter is much longer than that of Pt NPs in Pt NPs/CNTs-PDDA(Fig.7(b)).The reasons should be as follows:The pristine CNTs usually have some uneven defects generated during the growth and post-synthesis treatment of the CNTs.When PtCl62-is reduced by the defects of CNTs,Pt NPs tend to deposit on these localized defect sites,thus resulting in poor dispersion and aggregation.However,for the PDDA-functionalized CNTs,lots of PDDA molecules on the CNT surface introduce a uniform distribution of the ammonium groups that serve as functional groups for the self-assembly of Pt precursors.Furthermore,PDDA acts as a reductant10,13for thein-situreduction of PtCl62-and itself is simultaneously oxidized to another polymer containing higher valence of nitrogen element.10,13Therefore,a much more uniform distribution of Pt NPs is observed on the surface of the CNTs-PDDA.The ICP-AES results show that the amount of Pt loading in Pt NPs/CNTs-PDDA nanohybrids(17.5%)is higher than that in Pt NPs/CNTs nanohybrids(13.5%),implying the more effective reducing ability of CNTs-PDDA than that of the pristine CNTs.

    3.3 Electrochemical properties

    Fig.8 Cyclic voltammograms of(a)Pt NPs/CNTs-PDDAand(b)Pt NPs/CNTs nanohybrids in nitrogen-saturated 0.5 mol·L-1 H2SO4solution at a scan rate of 50 mV·s-1

    Fig.8 shows the cyclic voltammograms of the Pt NPs/CNTs-PDDA and Pt NPs/CNTs nanohybrids in nitrogen-satu-rated 0.5 mol·L-1H2SO4solution.Based on the hydrogen adsorption-desorption charges,the values of the ESA of Pt NPs supported on the CNTs-PDDA and pristine CNTs could be calculated according to the following equation:18

    where,QH(mC·cm-2)represents the mean value between the amounts of charge exchanged during the electro-adsorption and desorption of H2on Pt sites,[Pt]is the Pt loading(mg·cm-2)on the electrode and 0.21(mC·cm-2)represents the charge required to oxidize a monolayer of H2on bright Pt.The calculated ESA value of Pt NPs/CNTs-PDDA catalyst is 47.8 m2·g-1,higher than that of Pt NPs/CNTs catalyst(30.6 m2·g-1),most likely due to the much smaller particle size and better dispersion of Pt NPs on CNTs-PDDA.This also demonstrates that the Pt NPs deposited on the CNTs-PDDA are electrochemically more accessible,which is very important for electrochemical oxidation of methanol.

    The electrochemical performance of the Pt NPs/CNTs-PDDA(curve a)and Pt NPs/CNTs catalysts(curve b)for methanol oxidation was investigated by cyclic voltammetry in nitrogen-saturated 0.5 mol·L-1H2SO4+1.0 mol·L-1CH3OH solution and the corresponding results are shown in Fig.9.Comparing Pt NPs/CNTs catalyst,the significant enhancement of the peak current of methanol oxidation can be observed on Pt NPs/CNTs-PDDA catalyst.It is noted that the forward peak current of methanol oxidation on the Pt NPs/CNTs-PDDA catalyst is 333 mA·mg-1and almost 1.6 times higher than that on the Pt NPs/CNTs catalyst(211 mA·mg-1).This indicates that Pt NPs/CNTs-PDDA catalyst has higher mass activity for methanol oxidation than Pt NPs/CNTs catalyst,due to the optimum particle diameter(ca 2 nm),19better dispersion and higher ESA of the Pt NPs on the Pt NPs/CNTs-PDDAcatalyst.

    Fig.9 Cyclic voltammograms of(a)Pt NPs/CNTs-PDDAand(b)Pt NPs/CNTs nanohybrids in nitrogen-saturated 0.5 mol·L-1 H2SO4+1.0 mol·L-1CH3OH solution at a scan rate of 50 mV·s-1

    Fig.10 (a)Chronoamperometric curves of the different electrocatalysts at a fixed potential of 0.4 V,(b)the long-term cycle stability of the different electrocatalysts at a scan rate of 50 mV·s-1

    In practical application,the long-term stability of the catalysts is of great importance and the chronoamperometry is a useful method for the evaluation of the stability of the electrocatalysts in fuel cells.The electrochemical stabilities of the Pt NPs/CNTs-PDDA and Pt NPs/CNTs catalysts were investigated and the results are shown in Fig.10(a).Within 2 h of operation,although the current gradually decays for both catalysts,the Pt NPs/CNTs-PDDA catalyst always shows a much larger methanol oxidation current than Pt NPs/CNTs.At the end,the steady-state current on the Pt NPs/CNTs-PDDA(18.1 mA·mg-1)is 8.8 times larger than that on the Pt NPs/CNTs(2.1 mA·mg-1),indicating a much better electrochemical stability of Pt NPs/CNTs-PDDAcatalyst.20

    On the other hand,the long-term cycle stabilities of the Pt NPs/CNTs-PDDA and Pt NPs/CNTs catalysts were further investigated by cyclic voltammetry and the corresponding results are shown in Fig.10(b).The ratio between the peak current obtained from the forward anodic peak(J)and that at the first cycle(J0)was used to evaluate the long-term stability of the electrocatalysts.It can be observed that the value ofJ/J0decreases gradually with the successive scanning.After 750 cycles of CV,the value ofJ/J0is 88.8%for the Pt NPs/CNTs-PDDA nanohybrids,which is much higher than that for the Pt NPs/CNTs catalysts(67.3%).It implies that the electrochemical durability of the Pt NPs/CNTs-PDDA nanohybrids is much better than that of the Pt NPs/CNTs catalysts.The reason may be as follows:The interaction between Pt NPs and PDDA prevents Pt NPs from migrating/agglomerating on the carbon support and from detaching from the carbon support.20Moreover,a thin film of PDDA coated on CNTs is helpful to inhibit the electrochemical corrosion of CNTs under high potential and thus to re-strain the detachment of Pt NPs from CNTs.

    4 Conclusions

    In summary,We have developed an alternative strategy for the spontaneous deposition of Pt NPs on CNTs by noncovalent functionalization of the CNT surface with PDDA,which acts as the reductant for the Pt precursor(PtCl62-)and film-forming reagent to increase the corrosion resistance of CNTs,its oxidation products also stabilize the reduced Pt NPsin situ.In comparison with Pt NPs deposited on the pristine CNTs,the Pt NPs on the CNTs-PDDA showed a smaller particle size and better dispersion,which resulted in much-better electrocatalytic performance towards methanol electro-oxidation.

    (1) (a)McGrath,K.M.;Prakash,G.K.S.;Olah,G.A.J.Ind.Eng.Chem.2004,10(7),1063.

    (b)Aricò,A.S.;Srinivasan,S.;Antonucci,V.Fuel Cells2001,1(2),133.

    (c)Liu,H.S.;Song,C.J.;Zhang,L.;Zhang,J.J.;Wang,H.J.;Wilkinson,D.P.J.Power Sources2006,155(2),95.

    (2) (a)Colón-Mercado,H.R.;Kim,H.;Popov,B.N.Electrochem.Commun.2004,6(8),795.doi:10.1016/j.elecom.2004.05.028

    (b)Liu,Z.L.;Ling,X.Y.;Su,X.D.;Lee,J.Y.J.Phys.Chem.B2004,108(24),8234.

    (3) (a)Wang,J.J.;Yin,G.P.;Shao,Y.Y.;Zhang,S.;Wang,Z.B.;Gao,Y.Z.J.Power Sources2007,171(2),331.doi:10.1016/j.jpowsour.2007.06.084

    (b)Rao,V.;Simonov,P.A.;Savinova,E.R.;Plaksin,G.V.;Cherepanova,S.V.;Kryukova,G.N.;Stimming,U.J.Power Sources2005,145(2),178.

    (c)Wang,Z.B.;Yin,G.P.;Shi,P.F.Carbon2006,44(1),133.

    (d)Zhao,Y.;E.Y.;Fan,L.Z.;Qiu,Y.F.;Yang,S.H.Electrochim.Acta2007,52(19),5873.

    (e)Xu,Q.J.;Zhou,X.J.;Li,Q.X.Acta Phys.-Chim.Sin.2010,26(8),2135.[徐群杰,周小金,李巧霞,李金光.物理化學學報,2010,26(8),2135.]doi:10.3866/PKU.WHXB20100802

    (4) Quinn,B.M.;Dekker,C.;Lemay,S.G.J.Am.Chem.Soc.2005,127(17),6146.doi:10.1021/ja0508828

    (5) (a)Hernadi,K.;Siska,A.;Thiên-Nga,L.;Forró,L.;Kiricsi,I.Solid State Ionics2001,141-142,203.

    (b)Li,Y.L.;Hu,F.P.;Wang,X.;Shen,P.K.Electrochem.Commun.2008,10(7),1101.

    (c)Xu,H.;Zeng,L.P.;Xing,S.J.;Shi,G.Y.;Xian,Y.Z.;Jin,L.T.Electrochem.Commun.2008,10(12),1839.

    (6) (a)Wang,S.Y.;Jiang,S.P.;Wang,X.Nanotechnology2008,19(26),265601.doi:10.1088/0957-4484/19/26/265601

    (b)Wang,S.Y.;Jiang,S.P.;White,T.J.;Guo,J.;Wang,X.J.Phys.Chem.C2009,113(43),18935.

    (c)Sanles-Sobrido,M.;Correa-Duarte,M.A.;Carregal-Romero,S.;Rodríguez-González,B.;álvarez-Puebla,R.A.;Hervés,P.;Liz-Marzán,L.M.Chem.Mater.2009,21(8),1531.

    (7) Chen,J.;Wang,M.;Liu,B.;Fan,Z.;Cui,K.;Kuang,Y.J.Phys.Chem.B2006,110(24),11775.

    (8) (a)Shrestha,S.;Liu,Y.;Mustain,W.E.Catal.Rev.2011,53(3),256.doi:10.1080/01614940.2011.596430

    (b)Shao,Y.;Yin,G.;Gao,Y.J.Power Sources2007,171(2),558.

    (9) Colmenares,L.C.;Wurth,A.;Jusys,Z.;Behm,R.J.J.Power Sources2009,190(1),14.

    (10)Zhang,S.;Shao,Y.Y.;Liao,H.G.;Engelhard,M.H.;Yin,G.P.;Lin,Y.H.ACS Nano2011,5(3),1785.

    (11) (a)He,W.;Zou,L.L.;Zhou,Y.;Lu,X.J.;Li,Y.;Zhang,X.G.;Yang,H.Chem.J.Chin.Univ.2012,33(1),133.[何 衛(wèi),鄒亮亮,周 毅,盧向軍,李 媛,張校剛,楊 輝.高等學?;瘜W學報,2012,33(1),133.]

    (b)He,W.;Jiang,H.J.;Zhou,Y.;Yang,S.D.;Xue,X.Z.;Zou,Z.Q.;Zhang,X.G.;Akins,D.L.;Yang,H.Carbon2012,50(1),265.

    (c)Shen,X.F.;Chen,Q.;Pang,Y.H.;Cui,Y.;Qian,H.Sci.China Chem.2011,41(7),1184. 沈曉芳,陳 沁,龐月紅,崔 燕,錢 和.中國科學:化學,2011,41(7),1184.]

    (d)Qin,X.;Wang,H.;Wang,X.;Miao,Z.;Chen,L.;Zhao,W.;Shan,M.;Chen,Q.Sensors and Actuators B:Chemical2010,147(2),593.

    (12) (a)Chakraborty,S.;Raj,C.R.Carbon2010,48(11),3242.doi:10.1016/j.carbon.2010.05.014

    (b)Yang,D.Q.;Rochette,J.F.;Sacher,E.J.Phys.Chem.B2005,109(10),4481.

    (13)Chen,H.J.;Wang,Y.L.;Wang,Y.Z.;Dong,S.J.;Wang,E.Polymer2006,47(2),763.doi:10.1016/j.polymer.2005.11.034

    (14)Wang,S.Y.;Yu,D.S.;Dai,L.M.J.Am.Chem.Soc.2011,133(14),5182.

    (15)Hsin,Y.L.;Hwang,K.C.;Yeh,C.T.J.Am.Chem.Soc.2007,129(32),9999.

    (16) Li,L.;Xing,Y.J.Electrochem.Soc.2006,153(10),A1823.

    (17)(a)Wang,J.;Yin,G.;Shao,Y.;Wang,Z.;Gao,Y.J.Power Sources2008,176(1),128.doi:10.1016/j.jpowsour.2007.10.057

    (b)Li,L.;Xing,Y.J.Power Sources2008,178(1),75.

    (18) Pozio,A.;De Francesco,M.;Cemmi,A.;Cardellini,F.;Giorgi,L.J.Power Sources2002,105(1),13.

    (19) (a)Leger,J.M.;Lamy,C.Berichte der Bunsengesellschaft für Physikalische Chemie1990,94(9),1021.doi:10.1002/bbpc.v94:9

    (b)Hamnett,A.Catal.Today1997,38(4),445.

    (20)Zhang,S.;Shao,Y.Y.;Yin,G.P.;Lin,Y.H.J.Mater.Chem.2009,19(42),7995.doi:10.1039/b912104h

    猜你喜歡
    小金學報化學
    小金橘樹
    致敬學報40年
    愛“喧嘩”的我
    奇妙的化學
    奇妙的化學
    我愛小金龍
    小金龍
    奇妙的化學
    奇妙的化學
    學報簡介
    午夜亚洲福利在线播放| 国产乱人伦免费视频| 国产精品 欧美亚洲| 人人澡人人妻人| 国产精品亚洲av一区麻豆| 美女 人体艺术 gogo| 青草久久国产| 18禁黄网站禁片午夜丰满| 一个人观看的视频www高清免费观看 | 精品高清国产在线一区| 午夜日韩欧美国产| 超碰成人久久| 国产午夜福利久久久久久| 男人舔女人的私密视频| 亚洲国产欧洲综合997久久, | 成人18禁高潮啪啪吃奶动态图| 国产亚洲精品综合一区在线观看 | 国内少妇人妻偷人精品xxx网站 | 欧美黑人欧美精品刺激| 俄罗斯特黄特色一大片| 色精品久久人妻99蜜桃| 免费在线观看亚洲国产| 成人18禁在线播放| 一级毛片高清免费大全| 白带黄色成豆腐渣| 亚洲精品国产区一区二| 色在线成人网| 精品电影一区二区在线| 婷婷六月久久综合丁香| 久久久久久久午夜电影| 国产精品 国内视频| 别揉我奶头~嗯~啊~动态视频| 给我免费播放毛片高清在线观看| 国产麻豆成人av免费视频| 亚洲欧美精品综合久久99| 国产99久久九九免费精品| 国产熟女xx| 两性午夜刺激爽爽歪歪视频在线观看 | 久久国产精品影院| 免费高清视频大片| 特大巨黑吊av在线直播 | bbb黄色大片| 一进一出好大好爽视频| 热re99久久国产66热| xxxwww97欧美| 国产精品综合久久久久久久免费| 首页视频小说图片口味搜索| 香蕉丝袜av| 国产又色又爽无遮挡免费看| 伦理电影免费视频| 日本在线视频免费播放| 亚洲精品久久成人aⅴ小说| netflix在线观看网站| 可以在线观看毛片的网站| 国产久久久一区二区三区| 后天国语完整版免费观看| 国产精品久久久人人做人人爽| 精华霜和精华液先用哪个| 亚洲中文字幕日韩| 国产高清视频在线播放一区| 不卡一级毛片| 中国美女看黄片| 亚洲国产看品久久| 亚洲成人精品中文字幕电影| www日本黄色视频网| 2021天堂中文幕一二区在线观 | 亚洲 欧美一区二区三区| 亚洲成国产人片在线观看| 国产精品美女特级片免费视频播放器 | 亚洲精品色激情综合| 中文字幕精品免费在线观看视频| 精品一区二区三区av网在线观看| 最新在线观看一区二区三区| 99国产精品一区二区蜜桃av| 日韩 欧美 亚洲 中文字幕| 国产精品影院久久| 久久久久久人人人人人| 亚洲av五月六月丁香网| 国产精品美女特级片免费视频播放器 | cao死你这个sao货| 亚洲人成77777在线视频| 久久久久久久久久黄片| av有码第一页| 日日夜夜操网爽| 欧美另类亚洲清纯唯美| 99精品久久久久人妻精品| 女生性感内裤真人,穿戴方法视频| 国产一区二区激情短视频| www.自偷自拍.com| 黑人操中国人逼视频| 国产人伦9x9x在线观看| 三级毛片av免费| 两个人视频免费观看高清| 久久久久久久久久黄片| 91成人精品电影| 久热爱精品视频在线9| 在线观看舔阴道视频| 伦理电影免费视频| 欧美色欧美亚洲另类二区| 69av精品久久久久久| 99国产极品粉嫩在线观看| 手机成人av网站| 一级a爱视频在线免费观看| 日韩精品中文字幕看吧| 成人18禁高潮啪啪吃奶动态图| 国产黄a三级三级三级人| 欧美最黄视频在线播放免费| 久久久久免费精品人妻一区二区 | 女同久久另类99精品国产91| 91字幕亚洲| 丝袜在线中文字幕| 男女那种视频在线观看| 性欧美人与动物交配| 亚洲天堂国产精品一区在线| 精品卡一卡二卡四卡免费| 99国产精品一区二区三区| av免费在线观看网站| 99国产精品一区二区三区| 欧美性猛交╳xxx乱大交人| 午夜福利高清视频| 岛国在线观看网站| 熟妇人妻久久中文字幕3abv| 国语自产精品视频在线第100页| 亚洲自偷自拍图片 自拍| 久久国产精品影院| av免费在线观看网站| 日本三级黄在线观看| 欧美不卡视频在线免费观看 | 国产一区二区三区在线臀色熟女| 国产不卡一卡二| 久热这里只有精品99| 国产精品久久久久久精品电影 | 精品日产1卡2卡| 久9热在线精品视频| 男人操女人黄网站| 婷婷丁香在线五月| 国产亚洲欧美精品永久| 久久精品国产99精品国产亚洲性色| 久久久久精品国产欧美久久久| 中文字幕高清在线视频| 美国免费a级毛片| 亚洲人成网站在线播放欧美日韩| 每晚都被弄得嗷嗷叫到高潮| www日本在线高清视频| 久久久久久久午夜电影| 久久久国产精品麻豆| 欧美日韩乱码在线| 免费人成视频x8x8入口观看| 午夜精品久久久久久毛片777| 高清毛片免费观看视频网站| 日韩国内少妇激情av| 中国美女看黄片| 免费看十八禁软件| 久久精品91无色码中文字幕| 男女视频在线观看网站免费 | 国产精品精品国产色婷婷| 18禁国产床啪视频网站| www.999成人在线观看| 变态另类丝袜制服| 天堂动漫精品| 十八禁网站免费在线| 天堂动漫精品| 免费高清视频大片| 亚洲精品美女久久av网站| 亚洲男人天堂网一区| 午夜福利欧美成人| 日韩精品青青久久久久久| 日韩欧美国产一区二区入口| 久久久久久人人人人人| 18禁观看日本| 大型黄色视频在线免费观看| 欧美一区二区精品小视频在线| 老司机靠b影院| 一区二区三区激情视频| 一区二区三区激情视频| 久久香蕉精品热| 亚洲午夜理论影院| netflix在线观看网站| 欧美乱码精品一区二区三区| 免费在线观看视频国产中文字幕亚洲| svipshipincom国产片| 中文字幕精品亚洲无线码一区 | 一本综合久久免费| 久久久久久九九精品二区国产 | 高清在线国产一区| 可以在线观看的亚洲视频| 亚洲精品久久国产高清桃花| 人妻久久中文字幕网| 国产在线精品亚洲第一网站| 欧美日韩瑟瑟在线播放| 999精品在线视频| 精品国产亚洲在线| 一级a爱视频在线免费观看| 国产三级在线视频| 亚洲精品色激情综合| 母亲3免费完整高清在线观看| av福利片在线| √禁漫天堂资源中文www| 中文字幕最新亚洲高清| 99久久精品国产亚洲精品| 久久香蕉激情| 久久久久国内视频| 麻豆国产av国片精品| e午夜精品久久久久久久| 欧美国产日韩亚洲一区| 亚洲专区字幕在线| 亚洲国产精品合色在线| 熟女少妇亚洲综合色aaa.| 成人18禁在线播放| 50天的宝宝边吃奶边哭怎么回事| 色综合婷婷激情| 侵犯人妻中文字幕一二三四区| 久久久国产欧美日韩av| 国产黄a三级三级三级人| 日韩高清综合在线| 欧美成人性av电影在线观看| 又大又爽又粗| 精品日产1卡2卡| 最新美女视频免费是黄的| 午夜日韩欧美国产| 色老头精品视频在线观看| 久久久国产欧美日韩av| 亚洲av日韩精品久久久久久密| 大型黄色视频在线免费观看| 熟女电影av网| 91成人精品电影| 1024香蕉在线观看| 亚洲人成77777在线视频| 国产精品爽爽va在线观看网站 | 国产成人一区二区三区免费视频网站| 国产久久久一区二区三区| 欧美乱色亚洲激情| 白带黄色成豆腐渣| 悠悠久久av| 巨乳人妻的诱惑在线观看| 一区二区日韩欧美中文字幕| av有码第一页| 免费搜索国产男女视频| tocl精华| 婷婷丁香在线五月| 俺也久久电影网| 99在线视频只有这里精品首页| 亚洲avbb在线观看| 国产精品亚洲av一区麻豆| 国产亚洲欧美98| 色综合欧美亚洲国产小说| 日本一本二区三区精品| 久久久久久久久中文| 亚洲av五月六月丁香网| 黄色 视频免费看| 人妻久久中文字幕网| 亚洲免费av在线视频| 伦理电影免费视频| 无限看片的www在线观看| 熟妇人妻久久中文字幕3abv| 欧美亚洲日本最大视频资源| 一区二区日韩欧美中文字幕| 亚洲黑人精品在线| 校园春色视频在线观看| 国产亚洲精品一区二区www| 精品人妻1区二区| 18禁国产床啪视频网站| 宅男免费午夜| 国产黄a三级三级三级人| 精品乱码久久久久久99久播| a级毛片在线看网站| 欧美日韩亚洲国产一区二区在线观看| 搞女人的毛片| 精华霜和精华液先用哪个| 亚洲第一青青草原| 国产一区二区激情短视频| 日韩高清综合在线| 国产人伦9x9x在线观看| 变态另类成人亚洲欧美熟女| 亚洲国产看品久久| 国产av不卡久久| 免费人成视频x8x8入口观看| 亚洲av第一区精品v没综合| 成年人黄色毛片网站| 真人一进一出gif抽搐免费| 久99久视频精品免费| 久久久久久久久免费视频了| 亚洲三区欧美一区| 草草在线视频免费看| 满18在线观看网站| 满18在线观看网站| 色精品久久人妻99蜜桃| 美女 人体艺术 gogo| 国内精品久久久久精免费| 国产视频一区二区在线看| 久久亚洲精品不卡| 中亚洲国语对白在线视频| 日韩欧美在线二视频| 一二三四在线观看免费中文在| 国产不卡一卡二| 最近最新免费中文字幕在线| 免费在线观看亚洲国产| 日韩欧美国产在线观看| 亚洲三区欧美一区| 亚洲熟妇熟女久久| 桃红色精品国产亚洲av| 久久久国产成人精品二区| 国产精品一区二区免费欧美| 日本成人三级电影网站| 亚洲激情在线av| 亚洲九九香蕉| 国产v大片淫在线免费观看| 亚洲国产欧美网| 亚洲一区二区三区不卡视频| 亚洲av五月六月丁香网| 在线观看www视频免费| 亚洲精品色激情综合| 国产av又大| 亚洲免费av在线视频| 成人国语在线视频| 精品国内亚洲2022精品成人| 亚洲人成网站在线播放欧美日韩| av在线播放免费不卡| 99国产综合亚洲精品| 国产真实乱freesex| 天堂影院成人在线观看| 免费无遮挡裸体视频| 无遮挡黄片免费观看| videosex国产| 欧美黑人巨大hd| 校园春色视频在线观看| 精品不卡国产一区二区三区| 宅男免费午夜| 国产精品久久久久久人妻精品电影| 美女 人体艺术 gogo| 人妻丰满熟妇av一区二区三区| 色婷婷久久久亚洲欧美| 国产av在哪里看| 国产欧美日韩精品亚洲av| 色精品久久人妻99蜜桃| 特大巨黑吊av在线直播 | 亚洲精品一区av在线观看| 欧美日韩乱码在线| 成年女人毛片免费观看观看9| 熟女少妇亚洲综合色aaa.| 好看av亚洲va欧美ⅴa在| 自线自在国产av| 黄片小视频在线播放| 国产成人精品无人区| 成人国语在线视频| 亚洲国产欧美网| 国产爱豆传媒在线观看 | 国产一区在线观看成人免费| av在线天堂中文字幕| 99精品久久久久人妻精品| 淫妇啪啪啪对白视频| 亚洲一区中文字幕在线| 免费看a级黄色片| 黑丝袜美女国产一区| 首页视频小说图片口味搜索| 91在线观看av| 97人妻精品一区二区三区麻豆 | 精品一区二区三区四区五区乱码| 国产精品野战在线观看| 国产三级在线视频| 亚洲性夜色夜夜综合| 99久久国产精品久久久| 免费一级毛片在线播放高清视频| 大型黄色视频在线免费观看| 免费高清在线观看日韩| 欧美一级毛片孕妇| 麻豆成人av在线观看| 亚洲精品国产精品久久久不卡| 亚洲免费av在线视频| 久热爱精品视频在线9| 国产精品久久久久久亚洲av鲁大| 免费看美女性在线毛片视频| 久久久国产成人精品二区| 国产精品99久久99久久久不卡| 88av欧美| 日韩一卡2卡3卡4卡2021年| 国产亚洲精品一区二区www| 免费在线观看影片大全网站| 国产欧美日韩精品亚洲av| 亚洲色图 男人天堂 中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 欧美 亚洲 国产 日韩一| 日韩欧美三级三区| 日本撒尿小便嘘嘘汇集6| 免费无遮挡裸体视频| 国产精品一区二区三区四区久久 | 美女 人体艺术 gogo| 欧美乱码精品一区二区三区| 嫩草影视91久久| 亚洲片人在线观看| 99国产精品一区二区蜜桃av| 人人澡人人妻人| 久久久久久九九精品二区国产 | 天天添夜夜摸| 日本在线视频免费播放| 91字幕亚洲| 久久亚洲真实| 一卡2卡三卡四卡精品乱码亚洲| 99国产精品一区二区三区| 亚洲成av片中文字幕在线观看| 狂野欧美激情性xxxx| 国产99白浆流出| 满18在线观看网站| 国产精品一区二区免费欧美| 大型黄色视频在线免费观看| 狠狠狠狠99中文字幕| 淫妇啪啪啪对白视频| 波多野结衣av一区二区av| 母亲3免费完整高清在线观看| 欧美一级a爱片免费观看看 | 精品电影一区二区在线| 午夜免费观看网址| 男女视频在线观看网站免费 | 午夜福利成人在线免费观看| 黄色成人免费大全| videosex国产| 国产aⅴ精品一区二区三区波| www.自偷自拍.com| 国产一区二区三区在线臀色熟女| 性欧美人与动物交配| 国产99久久九九免费精品| av天堂在线播放| av视频在线观看入口| 成人三级做爰电影| 精品不卡国产一区二区三区| 99在线人妻在线中文字幕| 桃色一区二区三区在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜久久久在线观看| 黄网站色视频无遮挡免费观看| 满18在线观看网站| 免费在线观看日本一区| 国产av在哪里看| 日本a在线网址| 丰满人妻熟妇乱又伦精品不卡| 久久久久久免费高清国产稀缺| 美女高潮到喷水免费观看| 国产亚洲欧美98| 精品福利观看| 长腿黑丝高跟| 一进一出抽搐动态| 91九色精品人成在线观看| 精品国产一区二区三区四区第35| 国产精品美女特级片免费视频播放器 | 国产成人欧美在线观看| 亚洲国产精品久久男人天堂| 精品电影一区二区在线| www.www免费av| 中文字幕高清在线视频| 精品国产一区二区三区四区第35| 禁无遮挡网站| 中文字幕高清在线视频| 两个人免费观看高清视频| 精品一区二区三区四区五区乱码| 一级黄色大片毛片| 性色av乱码一区二区三区2| 窝窝影院91人妻| 国产av一区二区精品久久| av福利片在线| 国产精品99久久99久久久不卡| 久久久久久国产a免费观看| 欧美成狂野欧美在线观看| 欧美最黄视频在线播放免费| 午夜福利欧美成人| 在线观看日韩欧美| 老熟妇乱子伦视频在线观看| 亚洲成av片中文字幕在线观看| 亚洲第一欧美日韩一区二区三区| 丝袜在线中文字幕| 一夜夜www| 精品高清国产在线一区| 99热只有精品国产| 午夜福利成人在线免费观看| 亚洲全国av大片| 两个人视频免费观看高清| 亚洲av中文字字幕乱码综合 | 午夜老司机福利片| 女同久久另类99精品国产91| 欧美性猛交╳xxx乱大交人| xxx96com| 国产又爽黄色视频| 亚洲成人久久爱视频| 在线观看免费视频日本深夜| 亚洲欧美一区二区三区黑人| 色播在线永久视频| 日本在线视频免费播放| 99国产极品粉嫩在线观看| 在线观看免费日韩欧美大片| 欧美 亚洲 国产 日韩一| 免费高清视频大片| 久久伊人香网站| 日韩欧美国产一区二区入口| 国产欧美日韩一区二区精品| 日本成人三级电影网站| 日本a在线网址| 久久久久免费精品人妻一区二区 | 麻豆av在线久日| 真人做人爱边吃奶动态| 久久天堂一区二区三区四区| 在线看三级毛片| 久久久久久免费高清国产稀缺| 国产成人精品久久二区二区91| 精品久久久久久久人妻蜜臀av| 香蕉av资源在线| 国产精品亚洲av一区麻豆| 12—13女人毛片做爰片一| 最近最新免费中文字幕在线| 欧美乱码精品一区二区三区| 免费高清视频大片| 日本三级黄在线观看| 国产在线观看jvid| 国产视频内射| 精品电影一区二区在线| 99在线视频只有这里精品首页| 成年版毛片免费区| 听说在线观看完整版免费高清| xxx96com| 午夜a级毛片| xxxwww97欧美| 老司机靠b影院| 国产精品 国内视频| 亚洲国产日韩欧美精品在线观看 | 99re在线观看精品视频| 无人区码免费观看不卡| 久久香蕉精品热| 久久精品国产亚洲av高清一级| 看黄色毛片网站| 免费高清视频大片| 级片在线观看| 久久精品aⅴ一区二区三区四区| 成人亚洲精品av一区二区| 久久国产精品男人的天堂亚洲| 亚洲第一欧美日韩一区二区三区| 国产三级在线视频| 国产视频内射| 国产精品影院久久| bbb黄色大片| 熟女电影av网| 亚洲黑人精品在线| 又黄又粗又硬又大视频| 国产精品日韩av在线免费观看| 久久久久久久久免费视频了| 深夜精品福利| 国产av一区在线观看免费| 男女做爰动态图高潮gif福利片| 精品久久蜜臀av无| 亚洲自拍偷在线| 夜夜夜夜夜久久久久| 老熟妇仑乱视频hdxx| 日韩高清综合在线| 麻豆成人av在线观看| 久久久久九九精品影院| 国产精品免费视频内射| 日本 欧美在线| 在线观看66精品国产| 在线观看午夜福利视频| 国产亚洲av高清不卡| 午夜福利视频1000在线观看| 成人特级黄色片久久久久久久| 亚洲国产精品成人综合色| 99国产精品一区二区三区| av在线天堂中文字幕| 成人精品一区二区免费| 欧美黄色片欧美黄色片| 黄色丝袜av网址大全| 亚洲精品久久成人aⅴ小说| 美女扒开内裤让男人捅视频| 日韩精品免费视频一区二区三区| 亚洲avbb在线观看| 草草在线视频免费看| 伦理电影免费视频| 日韩欧美三级三区| 久久青草综合色| 90打野战视频偷拍视频| 色播在线永久视频| 欧美性猛交黑人性爽| 国产精品野战在线观看| 亚洲精品国产精品久久久不卡| 欧美最黄视频在线播放免费| 一二三四社区在线视频社区8| 亚洲欧美日韩高清在线视频| 亚洲,欧美精品.| 怎么达到女性高潮| 国产欧美日韩一区二区三| 一本精品99久久精品77| 美女高潮喷水抽搐中文字幕| 免费在线观看日本一区| 国产一区二区激情短视频| 女人爽到高潮嗷嗷叫在线视频| 性色av乱码一区二区三区2| 亚洲最大成人中文| 亚洲黑人精品在线| 国产亚洲精品久久久久久毛片| 18禁裸乳无遮挡免费网站照片 | 亚洲自拍偷在线| 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产清高在天天线| 亚洲第一电影网av| 一二三四社区在线视频社区8| 久久久久久久久中文| 久久久精品欧美日韩精品| 国产熟女xx| 亚洲九九香蕉| 欧美日韩瑟瑟在线播放| 午夜免费激情av| 欧美日韩黄片免| 国内精品久久久久久久电影| 亚洲真实伦在线观看| 日本撒尿小便嘘嘘汇集6| 搡老岳熟女国产| 亚洲国产精品久久男人天堂| 国产一卡二卡三卡精品| 最近最新中文字幕大全电影3 | 欧美黑人巨大hd| 一二三四在线观看免费中文在|