• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distortion-Free Data Embedding Scheme for High Dynamic Range Images

    2013-07-25 07:07:00ChinChenChangThaiSonNguyenandChiaChenLin

    Chin-Chen Chang, Thai-Son Nguyen, and Chia-Chen Lin

    1. Introduction

    Today, with the rapid development of multimedia technology and computer science, most information and multimedia data are exchanged by computers and the Internet without geographic limitations at any time. This leads to the wide transmission of huge amounts of information and multimedia (i.e., digital images, text, audio,and video), which means that malicious users can easily catch important content from the Internet without authorization. Therefore, ensuring the secrecy and security of data transmission is of great importance. Recently,researchers have proposed several protection algorithms,such as cryptography[1],[2]and data hiding[3]–[6]. In the cryptography, the sender will convert secret data into an unrecognizable form. Then, only an authorized receiver can reconstruct this secret data into their original form by using a secret key known only by the authorized sender and receiver. However, the meaningless form of secret data will be significantly drawn by malicious users, who may attempt to decrypt messages to get information. By contrast, data hiding is a better method to guarantee the security of data transmission by avoiding the attention of malicious attackers.In data hiding, the secret information is hidden into cover digital multimedia without arousing the attention of malicious attackers. Because of the original nature of the cover, the multimedia remains even though it conveys the secret data.

    Data hiding can be divided into two basic types. The first is irreversible data hiding, which hides secret data into a cover image. Many irreversible data hiding techniques[4],[6]have been proposed. One primary advantage of irreversible data hiding is that high hiding capacity is transmitted through the Internet. However, a weakness in irreversible data hiding is that the cover image may be damaged and cannot be reconstructed after the secret data are extracted.

    The second type of data hiding is reversible data hiding[3],[5](also known as lossless data hiding and distortion free data hiding), which has a reversibility feature to deal with the weakness of irreversible data hiding. This reversibility enables the cover image to be recovered correctly after extraction of secret information. This property makes reversible data hiding useful for real-time applications in medical and military areas, where the visual quality of reconstructed image is essential.

    Recently, the interest of researchers has increased significantly in high dynamic range (HDR) images, which contrast to low dynamic range (LDR) images. HDR images have become popular in several fields such as computer graphics, remote sensing, digital photography, movie,computer game, medical imaging, etc. Over last three years,some data hiding schemes[7],[8]in HDR images have been proposed. In 2009, Cheng and Wang[7]proposed the first steganography approach for HDR images. They used a two-sided algorithm that is modified from Chang and Tseng’s scheme[9]and developed their own L-sided algorithm, inspired from Zhang and Wang[10]. This scheme presents the high visual quality of a stego image when a large amount of secret data is embedded. However, image distortion is unavoidable and the original image cannot be reconstructed exactly after secret data are extracted. In 2011,Yuet al.[8]proposed a new distortion-free data hiding technique involving HDR images encoded by the radiance red-green-blue-exponent (RGBE) format[11]. In this scheme,the secret data are embedded by depending on the advantage of some homogeneous representations inherent in the radiance RGBE encoding format. This scheme achieves the exact identity between the tone-mapped cover image and tone-mapped stego image. However, the average embedding capacity of Yuet al.’s scheme is approximately 0.12 bpp.To further improve the embedding capacity, in this paper,we propose a distortion-free data embedding scheme that depends on the Cartesian product algorithm to try using the homogeneous representations of pixels in HDR images flexibly in data embedding. The experimental results confirm that our scheme is superior to Yuet al.’s scheme in terms of the embedding capacity while guaranteeing that the tone-mapped cover image and stego-image are identical.

    The rest of the paper is organized as follows. Section 2 reviews Yuet al.’s scheme[11]. Then, the details of our proposed scheme are demonstrated in Section 3. Section 4 illustrates experimental results. Finally, some conclusions are given in Section 5.

    2. Related Work

    In 1991, Ward[11]introduced the format of HDR images,also known as the 32-bit radiance RGBE format, since then which has found widespread utilization in graphics communication. In the HDR image encoded with the radiance RGBE format, the pixel value is represented by three primary channels and one exponent channel. Each channel is in the range of 0 to 255. This means that each channel will use 8 bits to store its value. Fig.1 shows the HDR pixel encoded in the 32-bit radiance RGBE format.

    Basically, the color of the HDR pixel is a floating point value. Therefore, it can be derived by using the floating point conversion which is defined as

    where the color pixel (R,G,B) represents the floating point.Assume thatP(r,g,b,e) indicates the pixel encoded with the radiance RGBE format, with the three primary color channelsr,g,bandeshown as an exponent channel,respectively.

    Likewise, the color pixel with the floating point (R,G,B) can be converted into the radiance RGBE format (r,g,b,e) by using integer conversion as shown in (2):

    It is clear that with the exponent channelein the radiance format more than one representation can be used to show one color pixel. By using the division operation with the divisor 2 for each primary channel and adding 1 to the exponent channel, or by using the multiplication operation with the multiplier 2 for each primary channel and subtracting 1 from the exponent channel, we can get the new representation of pixels that can provide nearly the same floating point color value and also give the identical color value with the original pixel when a tone mapping scheme is applied. For example, assume that an original pixel isP(r,g,b,e). By using division or multiplication, the new representations are produced asP(r/2,g/2,b/2,e+1) orP(r×2,g×2,b×2,e–1), respectively. However, the new representationP(r/2,g/2,b/2,e+1) must satisfy that each channel still has an integer value. For the new representationP(r×2,g×2,b×2,e–1), each channel must be in the legal range from 0 to 255. By using the above mentioned process,each pixel contains a number of different representations. In other words, each pixel has a set of different representations,known as the homogeneous representation group (RG). In the RG group, each element can describe the same color pixel as the original oneP(r,g,b,e). We define the number of elements in the group RG asN. Table 1 shows the detailed example of the sorted RG group with the number of elementsN.

    By exploiting the RG group of each pixel in an HDR image, Yuet al.[8], in 2011, proposed a new distortion-free data hiding algorithm that can embed secret messages into the HDR images. The advantage of Yuet al.’s scheme is that it can convey the secret message to generate the stego HDR image. Moreover, when the tone mapping technique is processed, there is no distortion between the original and stego images. In this scheme, a RG group of pixels, as shown in Table 1, is explored to embed the secret bits. The homogeneous index table is generated in advance to support embedding data, as shown in Table 2.

    Fig.1. HDR pixel in 32-Bit of radiance RGBE format.

    Table 1: Detail example of RG group with N=3

    Table 2: Homogeneous index table used to embed secret bits

    The embedding algorithm is shown as follows.

    Input: the HDR cover imageI, homogeneous index table HIT, and secret messageB.

    Output: HDR stego imageI′.

    Step 1. Read a pixelPfrom the imageI.

    Step 2. Determine the sorted homogeneous representation group RGPand the number of elementsNof group RGP.

    Step 3. IfN≤1, it means that no secret bits can be embedded, go back to Step 1. Otherwise, compute the number of bits, |bP|, of the secret bitsbPthat can be embedded by

    Then, the secret bitsbPis read from the secret messageB.

    Step 4. Depending onNand secret bitsbP, the suitable indexdis found in HIT.

    Step 5. Then the stego pixelP′will be generated by choosing the corresponding representation in the RG group which has the homogeneous index equal tod.

    Step 6. Repeat Steps 1 to 5 until all pixels in the imageIare processed completely.

    After completing the embedding phase, the sender sends the stego imageI′to the decoder. HIT is also sent to the receiver to support the extracting process. To better illustrate the embedding algorithm, an example is presented as follows. Assume that the original pixelP(32, 24, 80, 128)is given. Then the group RGPis determined as shown in Table 3. The number of elementsNof group RGPis 5.Therefore, from (3), the number of secret bits that can be embedded into pixelPis 2. Suppose that two secret bits,bp,are read as “11”. Then, according to the number of elements of group RGP,N=5, andbp=“11”, the homogeneous indexd=2 will be selected from HIT. Then the stego pixelP′is the element in the group RGP,which has the corresponding homogeneous indexd=2. Therefore,for this case, the stego pixelP′is (16, 12, 40, 129).

    After the embedding phase is processed completely, the sender sends the HDR stego imageI′to the decoder. When the receiver gets the HDR stego imageI′, the following extraction algorithm is used to extract secret messageB.

    Input: the HDR stego imageI′and homogeneous index table HIT.

    Output: the secret messageB.

    Step 1. Read the pixelP′from the imageI′.

    Step 2. Determine the group RGPandNof RGP.

    Step 3. IfN≤1, it means that no secret bits can be extracted, and go back to Step 1. Otherwise, compute the number of bits of secret bitsbPthat can be extracted by using (3).

    Step 4. Determine the suitable homogeneity indexdof stego pixelP′from the group RGP.

    Step 5. By depending onNand the homogeneity indexd, the extracted secret bitsbPis found from the table HIT.Then,bPis sent to the secret messageB.

    Step 6. Repeat Steps 1 to 5 until all pixels in imageI′are processed completely.

    After the above six steps are processed completely, the secret messageBis extracted. Here is an example to explain our extracting phase in detail. Suppose that the stego pixelP′is (16, 12, 40, 129). Now, to extract the secret bitsbPfrom the pixelP′, the group RGPofP′is determined as Table 3, and the number of elementNof group RGPequals 5. It is easy to see that the homogeneity index of pixelP′isd=2 in the group RGP. Therefore, throughNand the homogeneity indexd, secret bitsbP=“11” are found in the HIT table, which are the extracted secret bits. Then,bPis sent to the messageB.

    3. Proposed Scheme

    The proposed scheme is described in detail in this section. The cover image is the HDR imageIsizedW×H,and the secret messageBis denoted asB=(b0,b1, ··,br),wherebjis the secret bit generated randomly andbj∈{0, 1},0≤j≤r. The proposed distortion-free data hiding scheme can be divided into two phases, data embedding and data extracting, which are discussed in Subsection 3.1 and Subsection 3.2, respectively.

    3.1 Data Embedding Phase

    After carefully observing Yuet al.’s hiding scheme[8],we figure out that for each pixel, the number of secret bits islog2(N), which is embedded into each pixel of imageI,whereNis the number of elements of RG group. Therefore,the total embedding capacity of imageIsizedW×His

    Table 3: Homogeneous representation group RGP of color pixel P(32, 24, 80, 128)

    It is obvious to see that the summary oflog2aandlog2bwill be smaller or equal tolog2(a×b), whereaandbare integer values. For example, ifa=5 andb=13,respectively,log25+log213=5≤log2(5×13)=log265=6.Therefore, by exploiting the above mentioned idea, in this paper, we use a Cartesian product algorithm to further improve the embedding capacity of Yuet al.’s scheme while guaranteeing the high quality of the stego image.

    Basically, a Cartesian product is the direct product of two setsAandB,which is denoted asA×BandAandBare the ordered set of all possible ordered pairs whose first component is a member ofAand whose second component is a member ofB, as given by

    For example, the Cartesian product of 4-element setA,namely by {1, 2, 3, 4}, and 3-element setBgiven as {x,y,z}, is the 12-element set with all possible ordered pairs as{(1,x), (1,y), (1,z), (2,x),···, (4,z)}. The corresponding Cartesian product has 4×3=12 elements.

    In general, a Cartesian product of two finite sets can be shown by a table, with one set as the rows and the others as the columns and creating the order pairs, the cells of the table, by selecting the set from the row and column.

    Fig.2 shows the flowchart of our embedding algorithm,which involves four operations, namely determining the RG group for each pixel, computing the Cartesian productSof all RG groups, then selecting the suitable bit string for each element inS, and the embedding process.

    Our proposed data embedding phase can be divided into four steps. The corresponding algorithm is shown in detail as below.

    Input: the original HDR imageIsizedW×Hand secret messageB.

    Output: the stego imageI′.

    Step 1. For each pixelPi, determine the sorted homogeneous representation group RGiand the corresponding number of elementNiin RGi, whereiis in the range from 1 toW×H.

    Step 2. Compute the Cartesian productSof all groups RGiby using (6), where the number of elements of setS, |S|,is computed by using (7).

    Step 3. Compute the suitable secret bit stringrifor each element of setS.Here, the length ofriis calculated by

    Step 4. To embed the secret messageB, the corresponding element inS, which has secret bit stringriequal toB, is found.Then this element is sent out as the stego imageI′.

    Fig.2. Detailed flowchart of embedding algorithm.

    Fig.3. Original image I and correspond RGi and Ni of each pixel.

    Fig.4. Stego image I′.

    After these four steps are processed completely, the stego imageI′is obtained, which is sent to the receiver without any extra information. This example explains the data embedding phase in detail. Assume that the original HDR image is given as Fig.3.

    In Fig.3, it is clear to see that the first pixelP1has group RG1={x1,y1} and its number of elements of group RG1,N1=2. Then the Cartesian productSof the 4 groups RG1, RG2, RG3, and RG4is 36 possible elements as {(x1,x2,x3,x4), (x1,x2,x3,y4), (x1,x2,x3,z4), ··, (y1,z2,y3,z4)}.According to (8), the number of elements of setSwill be|S|=2×3×2×3=36 elements. For each element in setS, we match one secret bit stringriwhich has the length=log2|S|=log2|36|=5 bits (from “00000” to“11111”). This means that we can embed the secret messageBwhich has the same length as the secret bit stringri. Therefore, suppose that the secret messageB=“00010” is embedded. According to Step 4 in the embedding algorithm,we can get the stego imageI′(x1,x2,x3,z4), which is the element in the setS, have the secret bit stringrithat is the same as the secret messageB. Then, the stego imageI′is generated as presented in Fig.4.

    Fig.5. Detailed flowchart of our data extracting phase.

    Fig.6. Example of extracting phase.

    3.2 Data Extracting Phase

    After receiving the stego imageI′from the sender, the receiver can extract the secret messageBexactly by using the following steps in our data extracting phase. A detailed flowchart of our data extracting phase is provided in Fig.5.

    Extracting algorithm:

    Input: the stego imageI′.

    Output: the extracted secret messageB.

    Step 1. For each pixelPifrom the imageI′,determine the sorted homogeneous representation group RGiand the corresponding number of elementNiof group RGi, whereiis in the range from 1 toW×H.

    Step 2. Compute the Cartesian productSof all groups RGiby using (6), where the number of element of setS, |S|,is determined by (7) .

    Step 3. Select the suitable secret bit stringrifor each element of setS.Here, the length ofriis calculated by (8).

    Step 4. To extract the secret messageB, find the element in the setSwhich has the same color value as the stego imageI′.Then the corresponding secret bit string of this element is the extracted secret messageB.

    After these four steps, the secret messageBis extracted correctly. For example, suppose that the stego HDR imageI′is given, as shown in Fig.6. Then determine the corresponding group RGiand the number of elementsNifor each pixel of the stego image, as shown in Fig.6. The Cartesian productSof 4 groups RG1, RG2, RG3, and RG4has 36 possible elements as {(x1,x2,x3,x4), (x1,x2,x3,y4),(x1,x2,x3,z4),··, (y1,z2,y3,z4)}, and the number of element of setSis |S|=2×3×2×3=36 elements. For each element inS,the corresponding secret bit stringrihas the length=log2|S|=log2|36|=5 bits (from “00000” to“11111”). Then, to extract the secret message, the setSis searched to find the element which has the same value as the stego imageI′. When the match element is found, the secret messageBis extracted as the corresponding secret bit stringriof the match element. Thus, for this case, the stego imageI′equals to the third element (x1,x2,x3,z4).Therefore, the extracted secret messageBis the corresponding secret bit stringriof the third element,“00010”.

    4. Experimental Results

    To illustrate the performance of our proposed scheme and Yuet al.’s schemes[8], five HDR test images, “Church,”“Hall,” “Aspen,” “Bush,” and “Pine” presented in Fig.7 were used in our experiments. The size of the first four images is 720×480 pixels, and that of the last test image is 2000×1312 pixels. All computing was performed on a PC with a 2.1 GHz Intel(R) Core?2 CPU and a 1 GB RAM.The operating system was Windows 7 Professional and our algorithm was programmed by Microsoft Visual Studio 2005 C#.

    Table 4 shows the details of the five HDR test images.For example, the “Church” HDR image has 302482 pixels which have the number of elementN=1 in the group RG,and has 37640 pixels whenN=2, respectively.

    Fig.7. Five HDR test images: (a) Church, (b) Hall, (c) Aspen (d)Bush, and (e) Pine.

    Table 4: Detail characteristics of five HDR test images

    Table 5: Embedding capacity of our scheme and Yu et al.’s scheme[8] for five HDR test images

    Fig.8. Tone mapped cover and stego of three test images: (a) the tone mapped cover image “Hall” and the tone mapped stego image “Hall”, (b) the tone mapped cover image “Aspen” and the tone mapped stego image “Aspen”, and (c) the tone mapped cover image “Bush” and the tone mapped stego image “Bush”.

    Table 5 presents the comparison of our scheme and Yuet al.’s in term of the embedding capacity. Obviously, the embedding capacity of our scheme is better in all HDR images. The average embedding rate of our scheme is 0.1355 bpp, and that of Yuet al.’s scheme is 0.1270 bpp.Yuet al.’s scheme is worse than ours. This is because Yuet al.’s scheme does not use some homogeneous representation to embed secret bits. For example, in line 7 of Table 2, when the number of elements in the group RG equals 6, Yuet al.’s scheme only used the first four homogeneous representations to embed two secret bits, and the last two representations have not been used. Besides, in Yuet al.’s scheme, the homogeneous index table HIT is needed as extra information that is sent to the receiver to support the extracting process. In contrast, our scheme applies the Cartesian product to try to use all homogeneous representations of each group RG,and no extra information is required.Thus, our scheme can achieve higher embedding capacity compared with Yuet al.’s scheme.

    Fig.8 provides the tone mapping results of utilizing the Luminance HDR software for the HDR images “Hall,”“Aspen,” and “Bush.” Obviously, the tone mapped cover stego images are identical with different types of tone mapping algorithms. When the Reinhardet al.’s tone mapping scheme[12]is used with the parameters of gamma=1.000, brightness=-10.0, chromatic=1.00, and light=0.00, respectively, the tone mapped cover image“Hall” and the tone mapped stego image “Hall” are identical, as shown in Fig.8 (a). Fig.8 (b) presents the tone mapping result of the HDR image “Aspen” by utilizing the tone mapping method of Durand and Dorsey[13]with four parameters gamma=1.000, spatial=8.00, range=0.40, and contrast=5.00, respectively. The “Bush” HDR image using the tone mapping scheme of Mantuiket al.[14]is shown in Fig.8 (c), and three parameters, gamma, contrast, and saturation, are set as 1.000, 0.300, and 0.800, respectively.From Fig.8 the tone mapped cover image and tone mapped stego image are identical; therefore, we can conclude that our proposed scheme leads to a distortion-free data hiding scheme for HDR images encoded in the RGBE format.

    5. Conclusions

    In this paper, the distortion-free data hiding scheme for HDR image encoded in the 32-bits radiance RGBE format is proposed to further improve the performances of Yuet al.’s scheme[8]. In term of the embedding capacity, the average embedding rate of our proposed scheme is around 0.1355 bpp, which outperforms Yuet al.’s scheme (0.1270 bpp). This is because, in our scheme, all homogeneous representations are used to embed secret bits. Moreover, the experiment shows that the tone mapped cover and stego images are identical. It means that our scheme tends to distortion-free data embedding. In other words, when compared with Yuet al.’s scheme, our scheme achieves a better result in embedding capacity, while maintaining the good quality of the stego image. However, the embedding capacity is still low, for the average embedding capacity is smaller than 0.15 bpp. Thus, in the future, we intend to design a new distortion free data embedding algorithm for HDR images with higher embedding capacity by using all homogeneous representations of each pixel more efficiently.

    [1] R. M. Davis, “The data encryption standard in perspective,”IEEE Communication Magzine,vol. 16, no. 6, pp. 5–9,1978.

    [2] R. Rivest, A. Shamir, and L. Adlenan, “A method for obtaining digital signature and public key cryptosystems,”Communication ACM, vol. 21, no. 2, pp. 120–126, 1978.

    [3] C.-C. Chang and C.-Y. Lin, “Reversible steganographic scheme using SMVQ approach based on declustering,”Information Sciences, vol. 177, no. 8, pp. 1796–1805, 2007.

    [4] C.-K. Chan and L.-M. Cheng, “Hiding data in images by simple LSB substitution,”Pattern Recognition, vol. 37, pp.469–474, Mar. 2004.

    [5] C.-C. Chang, C.-Y. Lin, and Y.-H. Fan, “Lossless data hiding for color images based on block truncation coding,”Pattern Recognition,vol. 41, no. 7, pp. 2347–2357, Jul.2008.

    [6] R.-Z. Wang, C.-F. Lin, and J.-C. Lin, “Image hiding by optimal LSB substitution and generic algorithm,”Pattern Recognition,vol. 34, pp. 671–683, Mar. 2001.

    [7] Y.-M. Cheng and C.-M. Wang, “A novel approach to steganography in high-dynamic-range images,”IEEE MultiMedia,vol. 16, no. 3, pp. 70–80, 2009.

    [8] C.-M. Yu, K.-C. Wu, and C.-M. Wang, “A distortion-free data hiding scheme for high dynamic range images,”Displays, vol. 32, no. 5, pp. 225–236, 2011.

    [9] C.-C. Chang and H.-W. Tseng, “A steganographic method for digital images using side match,”Pattern Recognition Letters, vol. 25, no. 14, pp. 1431–1437, 2004.

    [10] X. Zhang and S. Wang, “Steganographic using multiple-base notational system and human vision sensitivity,”IEEE Signal Processing Letters,vol. 12, no. 1,pp. 67–70, 2005.

    [11] G. Ward, “Real pixel,” inGraphic Gem II, A. S. Glassner Ed. New York: Academic Press,1991, pp. 80–83.

    [12] E. Reinhard, S. Pattanaik, G. Ward, and P. Debevec,High Dynamic Range Imaging:Acquisition,Display,and Image-Based Lighting,San Francisco: Morgan Kaufmann,2005.

    [13] F. Durand and J. Dorsey, “Fast bilateral filtering for display of high-dynamic-range images,” inProc. of ACM SIGGRAPH 2002, San Antonio, 2002, pp. 257–266.

    [14] R. Mantiuk, K. Myszkowski, and H. P. Seidel, “A perceptual framework for contrast processing of high dynamic range images,”ACM Trans. on Applied Perception,vol. 3, no. 3, pp. 286–308, 2006.

    色综合亚洲欧美另类图片| 欧美激情久久久久久爽电影| 夜夜夜夜夜久久久久| 最近最新中文字幕大全免费视频| 欧美午夜高清在线| 搡老岳熟女国产| 欧美日本亚洲视频在线播放| 久久婷婷成人综合色麻豆| 两个人看的免费小视频| 午夜精品在线福利| 亚洲中文av在线| 十八禁网站免费在线| 精华霜和精华液先用哪个| 久久久久久免费高清国产稀缺| 国产精品国产高清国产av| 又黄又粗又硬又大视频| 中文字幕高清在线视频| svipshipincom国产片| 女生性感内裤真人,穿戴方法视频| 久久久久久九九精品二区国产 | 国产麻豆成人av免费视频| 在线观看免费日韩欧美大片| 99热只有精品国产| 日本 av在线| 日韩精品青青久久久久久| 热re99久久国产66热| 亚洲欧美激情综合另类| 久久久久九九精品影院| 欧美日韩亚洲综合一区二区三区_| 国产一区二区在线av高清观看| 日韩欧美一区二区三区在线观看| 日韩精品青青久久久久久| 91在线观看av| 成人亚洲精品av一区二区| 免费在线观看亚洲国产| 国产日本99.免费观看| 欧美日韩福利视频一区二区| 国产三级在线视频| 久久国产亚洲av麻豆专区| 日本在线视频免费播放| 夜夜夜夜夜久久久久| 国产欧美日韩一区二区精品| 免费人成视频x8x8入口观看| 免费高清视频大片| 草草在线视频免费看| 夜夜看夜夜爽夜夜摸| 真人做人爱边吃奶动态| 精品欧美一区二区三区在线| 欧美色视频一区免费| 久久久久久久精品吃奶| 老汉色av国产亚洲站长工具| 国产精品久久久av美女十八| 国产午夜福利久久久久久| 老司机深夜福利视频在线观看| xxx96com| 成年免费大片在线观看| 国产成人精品无人区| 变态另类丝袜制服| 亚洲片人在线观看| 老熟妇仑乱视频hdxx| 中文亚洲av片在线观看爽| 1024手机看黄色片| 亚洲熟妇熟女久久| 国产亚洲欧美在线一区二区| 国产精品,欧美在线| 丁香欧美五月| 老汉色∧v一级毛片| 夜夜看夜夜爽夜夜摸| 国产黄片美女视频| 国产精品亚洲一级av第二区| 欧美日韩黄片免| 国产亚洲av高清不卡| 国产精品亚洲美女久久久| 亚洲人成网站高清观看| 久久人妻av系列| 国产成人精品久久二区二区免费| 国产激情欧美一区二区| 日本撒尿小便嘘嘘汇集6| 欧美激情高清一区二区三区| 99精品欧美一区二区三区四区| 男人舔女人下体高潮全视频| 国产一区在线观看成人免费| 在线免费观看的www视频| 中文字幕人成人乱码亚洲影| 亚洲国产高清在线一区二区三 | 久久久久久久久免费视频了| 操出白浆在线播放| 国产成人精品久久二区二区91| 90打野战视频偷拍视频| 国产一区二区在线av高清观看| 日韩视频一区二区在线观看| 亚洲国产精品成人综合色| 黄色视频不卡| 一区二区日韩欧美中文字幕| 国产精品久久久人人做人人爽| 国产精品免费一区二区三区在线| av有码第一页| 90打野战视频偷拍视频| 国产三级在线视频| 妹子高潮喷水视频| 亚洲成人免费电影在线观看| 国产精品99久久99久久久不卡| 日韩国内少妇激情av| 欧美一级a爱片免费观看看 | 成在线人永久免费视频| 最好的美女福利视频网| 每晚都被弄得嗷嗷叫到高潮| 黑人巨大精品欧美一区二区mp4| 777久久人妻少妇嫩草av网站| 国产伦一二天堂av在线观看| 欧美日韩瑟瑟在线播放| 少妇 在线观看| 亚洲午夜精品一区,二区,三区| 成熟少妇高潮喷水视频| 亚洲免费av在线视频| 精品一区二区三区四区五区乱码| 99久久国产精品久久久| 欧美成人免费av一区二区三区| 中出人妻视频一区二区| 少妇的丰满在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产人伦9x9x在线观看| 窝窝影院91人妻| xxx96com| 在线观看免费午夜福利视频| 日日干狠狠操夜夜爽| 国产黄色小视频在线观看| 在线观看午夜福利视频| 午夜激情福利司机影院| 欧美日韩亚洲国产一区二区在线观看| 成人手机av| 最近最新免费中文字幕在线| 免费在线观看黄色视频的| 99久久国产精品久久久| 51午夜福利影视在线观看| 欧美性猛交╳xxx乱大交人| 久久精品国产亚洲av高清一级| 欧美成人性av电影在线观看| 视频在线观看一区二区三区| 可以在线观看的亚洲视频| 91麻豆av在线| 国产成人啪精品午夜网站| 性欧美人与动物交配| 人妻久久中文字幕网| 亚洲人成网站高清观看| 久久精品亚洲精品国产色婷小说| 欧美成人午夜精品| 久久精品夜夜夜夜夜久久蜜豆 | 午夜福利成人在线免费观看| 久久久久国产一级毛片高清牌| 两性夫妻黄色片| 久久久国产成人精品二区| 黄片小视频在线播放| 日本精品一区二区三区蜜桃| 欧美激情高清一区二区三区| 90打野战视频偷拍视频| 亚洲无线在线观看| 午夜福利免费观看在线| av有码第一页| 国产一区二区在线av高清观看| 国产午夜精品久久久久久| 久久精品影院6| 亚洲精品国产精品久久久不卡| 亚洲精品美女久久av网站| 久久久水蜜桃国产精品网| 啦啦啦 在线观看视频| 久久精品影院6| 欧美日韩中文字幕国产精品一区二区三区| 国产黄a三级三级三级人| 亚洲中文av在线| or卡值多少钱| 午夜精品久久久久久毛片777| 欧洲精品卡2卡3卡4卡5卡区| 天堂影院成人在线观看| 精品一区二区三区四区五区乱码| 怎么达到女性高潮| 成人精品一区二区免费| 免费观看精品视频网站| 亚洲色图av天堂| 国产av在哪里看| 美女高潮喷水抽搐中文字幕| 搡老妇女老女人老熟妇| 国产精华一区二区三区| 欧美另类亚洲清纯唯美| 成年版毛片免费区| 免费看a级黄色片| 亚洲精品美女久久av网站| 香蕉丝袜av| 少妇裸体淫交视频免费看高清 | 亚洲天堂国产精品一区在线| 老熟妇乱子伦视频在线观看| 神马国产精品三级电影在线观看 | 免费av毛片视频| 一个人观看的视频www高清免费观看 | 啪啪无遮挡十八禁网站| 99久久精品国产亚洲精品| 精品久久久久久久人妻蜜臀av| 国产高清视频在线播放一区| 一二三四社区在线视频社区8| videosex国产| 久久精品91无色码中文字幕| 精品欧美国产一区二区三| 两人在一起打扑克的视频| 法律面前人人平等表现在哪些方面| 黄色a级毛片大全视频| 久久国产亚洲av麻豆专区| 欧美日韩瑟瑟在线播放| 91字幕亚洲| 欧美激情 高清一区二区三区| 十八禁网站免费在线| 国产精品精品国产色婷婷| 成年人黄色毛片网站| 欧美国产日韩亚洲一区| 国产亚洲精品一区二区www| 亚洲中文字幕日韩| 他把我摸到了高潮在线观看| 国产黄色小视频在线观看| 1024手机看黄色片| 别揉我奶头~嗯~啊~动态视频| 日韩 欧美 亚洲 中文字幕| 啦啦啦免费观看视频1| 日韩欧美一区二区三区在线观看| 日韩欧美三级三区| 精品免费久久久久久久清纯| 桃色一区二区三区在线观看| 一级毛片女人18水好多| 国产熟女xx| 午夜两性在线视频| 美女免费视频网站| 久久久久久国产a免费观看| 一边摸一边抽搐一进一小说| 久久精品国产99精品国产亚洲性色| 啦啦啦观看免费观看视频高清| 99久久99久久久精品蜜桃| 又黄又粗又硬又大视频| 亚洲熟女毛片儿| 精华霜和精华液先用哪个| 国产三级黄色录像| 在线观看午夜福利视频| 亚洲成a人片在线一区二区| 看免费av毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久久国产a免费观看| 男女视频在线观看网站免费 | 在线观看免费日韩欧美大片| 亚洲一卡2卡3卡4卡5卡精品中文| 夜夜夜夜夜久久久久| 国产av一区在线观看免费| 久久青草综合色| 中文字幕精品免费在线观看视频| 国产亚洲av高清不卡| 天天躁狠狠躁夜夜躁狠狠躁| 丰满的人妻完整版| 宅男免费午夜| 久久中文字幕一级| 久久九九热精品免费| 亚洲精品国产区一区二| 久久久久久免费高清国产稀缺| 亚洲专区中文字幕在线| 男女下面进入的视频免费午夜 | 99国产综合亚洲精品| 国产色视频综合| 一卡2卡三卡四卡精品乱码亚洲| 精品国产国语对白av| 亚洲一区二区三区色噜噜| 99re在线观看精品视频| 亚洲久久久国产精品| 天堂动漫精品| 亚洲一码二码三码区别大吗| 黄色片一级片一级黄色片| 国内精品久久久久精免费| 亚洲人成网站在线播放欧美日韩| av天堂在线播放| 丁香欧美五月| 欧美激情 高清一区二区三区| av有码第一页| 一级片免费观看大全| 亚洲欧美激情综合另类| 男女那种视频在线观看| 超碰成人久久| 欧美日韩黄片免| 在线视频色国产色| 免费电影在线观看免费观看| 69av精品久久久久久| 一边摸一边抽搐一进一小说| 亚洲一卡2卡3卡4卡5卡精品中文| 老司机午夜福利在线观看视频| 国产av一区在线观看免费| 亚洲av成人一区二区三| 亚洲精品一卡2卡三卡4卡5卡| ponron亚洲| 久久精品aⅴ一区二区三区四区| 国产黄a三级三级三级人| av视频在线观看入口| 精品无人区乱码1区二区| 欧美中文日本在线观看视频| 久久国产精品人妻蜜桃| 日本黄色视频三级网站网址| 亚洲成人国产一区在线观看| 最近最新免费中文字幕在线| 麻豆成人午夜福利视频| 亚洲国产中文字幕在线视频| 午夜免费鲁丝| 婷婷精品国产亚洲av| 日韩精品免费视频一区二区三区| cao死你这个sao货| 色av中文字幕| 我的亚洲天堂| 欧美激情久久久久久爽电影| 精品电影一区二区在线| 在线天堂中文资源库| 亚洲成av人片免费观看| 成人18禁高潮啪啪吃奶动态图| 热re99久久国产66热| 日日爽夜夜爽网站| av电影中文网址| 黄色 视频免费看| 国产精品二区激情视频| 日韩av在线大香蕉| 狂野欧美激情性xxxx| 国产亚洲精品一区二区www| 欧美日韩黄片免| 国产成人系列免费观看| 国产av不卡久久| av超薄肉色丝袜交足视频| 欧美人与性动交α欧美精品济南到| 老司机午夜福利在线观看视频| 精品国内亚洲2022精品成人| 曰老女人黄片| 亚洲国产毛片av蜜桃av| 国产精品自产拍在线观看55亚洲| 国产日本99.免费观看| 看片在线看免费视频| 男人舔奶头视频| 欧美黑人欧美精品刺激| 国产精品精品国产色婷婷| 久久午夜亚洲精品久久| 午夜久久久在线观看| 一级黄色大片毛片| 黄色女人牲交| 国产精品久久视频播放| 色av中文字幕| 国产伦一二天堂av在线观看| 一区二区三区高清视频在线| 美女高潮喷水抽搐中文字幕| 中亚洲国语对白在线视频| 婷婷丁香在线五月| 国产亚洲精品一区二区www| 97碰自拍视频| 日韩三级视频一区二区三区| 大香蕉久久成人网| 91麻豆av在线| 久久国产亚洲av麻豆专区| 精品人妻1区二区| 亚洲性夜色夜夜综合| 青草久久国产| 中出人妻视频一区二区| 成人欧美大片| 麻豆成人av在线观看| 国产真人三级小视频在线观看| 国产一区二区在线av高清观看| 99riav亚洲国产免费| 丰满人妻熟妇乱又伦精品不卡| 色综合婷婷激情| 黄色成人免费大全| 一区二区日韩欧美中文字幕| 午夜福利在线观看吧| 天堂影院成人在线观看| 亚洲色图av天堂| 久久精品人妻少妇| 欧美激情 高清一区二区三区| videosex国产| 午夜老司机福利片| netflix在线观看网站| 亚洲国产精品sss在线观看| 黄色 视频免费看| 久久亚洲精品不卡| 免费搜索国产男女视频| 国产成人啪精品午夜网站| 又黄又粗又硬又大视频| 村上凉子中文字幕在线| 99国产综合亚洲精品| www国产在线视频色| 欧美不卡视频在线免费观看 | 亚洲午夜精品一区,二区,三区| 亚洲国产高清在线一区二区三 | 国产精品爽爽va在线观看网站 | 国产片内射在线| 国产一区二区三区视频了| 天天添夜夜摸| 亚洲国产中文字幕在线视频| 国产精品乱码一区二三区的特点| 精品国产一区二区三区四区第35| 欧美激情高清一区二区三区| 亚洲国产中文字幕在线视频| 一二三四在线观看免费中文在| 美女免费视频网站| 69av精品久久久久久| 午夜成年电影在线免费观看| 精品不卡国产一区二区三区| 久久久久久久久久黄片| 中国美女看黄片| 免费观看精品视频网站| 午夜福利18| 免费看十八禁软件| 可以在线观看毛片的网站| 精品人妻1区二区| 一个人免费在线观看的高清视频| 99久久国产精品久久久| 亚洲av成人一区二区三| 亚洲美女黄片视频| 一边摸一边抽搐一进一小说| 成人欧美大片| 在线观看一区二区三区| av超薄肉色丝袜交足视频| 法律面前人人平等表现在哪些方面| 亚洲三区欧美一区| 亚洲精品美女久久久久99蜜臀| 久9热在线精品视频| 色综合婷婷激情| 亚洲第一av免费看| 中亚洲国语对白在线视频| 精品第一国产精品| 丝袜在线中文字幕| 亚洲第一青青草原| 最近在线观看免费完整版| 亚洲国产日韩欧美精品在线观看 | 在线观看免费视频日本深夜| 国产欧美日韩一区二区三| www.www免费av| 最新美女视频免费是黄的| 老司机午夜十八禁免费视频| 男人的好看免费观看在线视频 | 淫妇啪啪啪对白视频| 精品人妻1区二区| 午夜福利在线观看吧| 一本综合久久免费| 一进一出好大好爽视频| 国产精华一区二区三区| 欧美久久黑人一区二区| 欧美亚洲日本最大视频资源| АⅤ资源中文在线天堂| 日韩高清综合在线| netflix在线观看网站| 免费av毛片视频| 国产区一区二久久| 又紧又爽又黄一区二区| 国产黄a三级三级三级人| 精品无人区乱码1区二区| netflix在线观看网站| 日韩欧美一区二区三区在线观看| 日韩有码中文字幕| 人人妻人人看人人澡| 婷婷精品国产亚洲av在线| 大型av网站在线播放| 国产精品永久免费网站| ponron亚洲| 精品久久久久久久末码| 精品久久久久久久久久免费视频| 999久久久国产精品视频| 免费人成视频x8x8入口观看| 成人一区二区视频在线观看| 午夜福利欧美成人| 18美女黄网站色大片免费观看| 久久国产亚洲av麻豆专区| 村上凉子中文字幕在线| 99国产精品一区二区蜜桃av| www.精华液| 此物有八面人人有两片| 久久精品91无色码中文字幕| 91九色精品人成在线观看| 亚洲国产看品久久| 在线观看午夜福利视频| 亚洲精品av麻豆狂野| 亚洲国产毛片av蜜桃av| 欧美成人一区二区免费高清观看 | 一进一出好大好爽视频| 精品一区二区三区四区五区乱码| 午夜激情av网站| 露出奶头的视频| 成人18禁在线播放| 日本成人三级电影网站| 日本精品一区二区三区蜜桃| 精品日产1卡2卡| 好男人电影高清在线观看| 黑丝袜美女国产一区| 老司机福利观看| 国产成人欧美| 国产精品 国内视频| 欧美中文日本在线观看视频| 国产成+人综合+亚洲专区| 18禁国产床啪视频网站| 老司机午夜十八禁免费视频| 国产精品1区2区在线观看.| 成人免费观看视频高清| 午夜久久久在线观看| 少妇粗大呻吟视频| 国产成人精品久久二区二区91| 啦啦啦观看免费观看视频高清| 精品国产一区二区三区四区第35| 欧美人与性动交α欧美精品济南到| 亚洲va日本ⅴa欧美va伊人久久| 日本精品一区二区三区蜜桃| 亚洲第一欧美日韩一区二区三区| 身体一侧抽搐| 99国产精品一区二区蜜桃av| 日日摸夜夜添夜夜添小说| 国产又色又爽无遮挡免费看| 在线观看日韩欧美| 白带黄色成豆腐渣| 亚洲av日韩精品久久久久久密| 成人亚洲精品av一区二区| 老汉色∧v一级毛片| 国产成人精品久久二区二区91| 窝窝影院91人妻| 日韩欧美一区二区三区在线观看| e午夜精品久久久久久久| 亚洲精品国产区一区二| 久久亚洲真实| 91在线观看av| 亚洲av电影在线进入| 看免费av毛片| 国产精品久久久久久精品电影 | 精品少妇一区二区三区视频日本电影| 19禁男女啪啪无遮挡网站| 亚洲av电影不卡..在线观看| 亚洲精品国产区一区二| 亚洲五月天丁香| 久久精品亚洲精品国产色婷小说| 国产一区二区激情短视频| 日韩欧美国产在线观看| 欧美黑人精品巨大| 18禁黄网站禁片午夜丰满| 午夜激情av网站| 欧美性猛交黑人性爽| 亚洲在线自拍视频| 国产主播在线观看一区二区| e午夜精品久久久久久久| 999久久久国产精品视频| 国产色视频综合| 亚洲欧美精品综合一区二区三区| 女生性感内裤真人,穿戴方法视频| 亚洲国产中文字幕在线视频| 91字幕亚洲| 国产色视频综合| 曰老女人黄片| 香蕉丝袜av| 波多野结衣巨乳人妻| 一二三四社区在线视频社区8| 亚洲欧洲精品一区二区精品久久久| 美女午夜性视频免费| 成熟少妇高潮喷水视频| 国产野战对白在线观看| 国产色视频综合| 国产伦一二天堂av在线观看| 国产av不卡久久| 国产成人av激情在线播放| 亚洲成人国产一区在线观看| 亚洲精品国产一区二区精华液| 亚洲国产精品sss在线观看| 精品熟女少妇八av免费久了| 国产视频一区二区在线看| 国产精品精品国产色婷婷| 夜夜躁狠狠躁天天躁| 国产精品,欧美在线| 成人18禁在线播放| 国产精品久久久av美女十八| 国产精品亚洲av一区麻豆| 亚洲精品在线观看二区| 国产麻豆成人av免费视频| 日本免费一区二区三区高清不卡| 后天国语完整版免费观看| 又紧又爽又黄一区二区| 麻豆av在线久日| 国产黄片美女视频| 国产亚洲精品久久久久5区| 成人精品一区二区免费| 18禁国产床啪视频网站| www.熟女人妻精品国产| 宅男免费午夜| 久久热在线av| 久久久久久久久久黄片| 男女那种视频在线观看| 午夜免费观看网址| 国产av一区在线观看免费| 男人舔女人下体高潮全视频| 99久久综合精品五月天人人| 午夜福利18| 久久久久久亚洲精品国产蜜桃av| 亚洲真实伦在线观看| 99久久国产精品久久久| 好男人电影高清在线观看| 久久久精品国产亚洲av高清涩受| 日本免费一区二区三区高清不卡| 欧美人与性动交α欧美精品济南到| 动漫黄色视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 精品国产亚洲在线| 香蕉国产在线看| 不卡一级毛片| 国产av又大| 老汉色∧v一级毛片| 99精品久久久久人妻精品| 丝袜在线中文字幕| 午夜精品在线福利| 色哟哟哟哟哟哟| 国产精华一区二区三区| 亚洲中文字幕日韩| 黄片大片在线免费观看| 久久久久久免费高清国产稀缺| 俺也久久电影网| 亚洲成人免费电影在线观看| a在线观看视频网站| 黑人巨大精品欧美一区二区mp4| 日韩高清综合在线|