• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Research on The Nozzle Damping Effect by A Wave Attenuation Method

    2013-07-25 11:26:27WanxingSUNingfeiWANGJunweiLIYandongZHAOMiYAN
    Defence Technology 2013年3期

    Wan-xing SU,Ning-fei WANG,Jun-wei LI*,Yan-dong ZHAO,Mi YAN

    Numerical Research on The Nozzle Damping Effect by A Wave Attenuation Method

    Wan-xing SU,Ning-fei WANG,Jun-wei LI*,Yan-dong ZHAO,Mi YAN

    School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

    Nozzle damping is one of the most important factors in the suppression of combustion instability in solid rocket motors.For an engineering solid rocket motor that experiences combustion instability at the end of burning,a wave attenuation method is proposed to assess the nozzle damping characteristics numerically.In this method,a periodic pressure oscillation signal which frequency equals to the f i rst acoustic mode is superimposed on a steady f l ow at the head end of the chamber.When the pressure oscillation is turned off,the decay rate of the pressure can be used to determine the nozzle attenuation constant.The damping characteristics of three other nozzle geometries are numerically studied with this method under the same operating condition.The results show that the convex nozzle provides more damping than the conical nozzle which in turn provides more damping than the concave nozzle.All the three nozzles have better damping effect than that of basic nozzle geometry.At last, the phase difference in the chamber is analyzed,and the numerical pressure distribution satisf i es well with theoretical distribution.

    Copyright?2013,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Solid rocket motor;Combustion instability;Wave attenuation method;Nozzle damping

    1.Introduction

    Solid rocket motors are often prone to combustion instability that is characterized by the periodic pressure oscillations in the chamber[1].Such oscillations can result in severe thrust oscillations and rocket structure vibrations[2].Combustion instability in solid rocket motors has been a continuing problem since the f i rst rockets were used in World War II[3]. Over the past few decades,a considerable amount of time and money has been spent on suppressing combustion instability in solid rocket motors.The‘rules of thumb’methods include inserting a slab into the hole of the tubular grain,drilling a series of radial holes in the grain[4],changing the geometry of the grain,especially at the head end of the motor,adding aluminum or other inert particles into the propellant[5],and modifying the nozzle geometry[6]and so on.Although the combustion instability can be suppressed to some extent,the low frequency axial combustion instability is a thorny issue that needs to be considered in the design of large solid rocket motors till now.

    In recent years,the fundamental acoustic instability has been occurred in several rocket motors at the end of burning, as shown in Fig.1.This low amplitude but sustained pressure oscillation greatly affects the performance of the motor.The low axial combustion instability cannot be suppressed by using metal powders or metallic oxide particles.In contrast, the particles can increase the pressure oscillation by interacting with the parietal vortex shedding[7].As for a structure fi xed solid rocket motor,the increase in nozzle damping effect is a most effective way to suppress the combustion instability because the nozzle damping is one of the principal damping mechanisms.The nozzle damping accounts for about 50%ofthe total damping effect,small changes in aft geometry and nozzle type can lead to big changes in motor stability.The acoustic pressure waves can be transmitted through the nozzle throat and radiated to the environment.The theoretical determination of the nozzle damping is a diff i cult gas dynamical problem.Crocco and Sirignano[8]did a fundamental investigation on the treatment of nozzle admittance.He considered that the motion of wave in the nozzle is three dimensional and the mean f l ow is one dimensional.Janardan and Zinn[9,10] experimentally studied the damping of axial instabilities of small scale nozzles under cold-f l ow condition.They concluded that the conical nozzle provides more damping than the equalradii-of curvature nozzle.Anthoine et al.[11]numerically studied the effect of nozzle cavity on solid rocket motor with a submerged nozzle.He concluded that the evolution of the maximum sound pressure level is approximately linear with the nozzle cavity volume.Therefore,in order to increase the nozzle damping,the nozzle geometry should be fully considered at the beginning of motor design.

    In this paper,a wave attenuation method is provided numerically to assess the nozzle damping characteristics based on an engineering solid rocket motor that experiences combustion instabilityattheendofburning.Thenumericalworkiscarriedout onthreeotherdifferenttypicalnozzlegeometries(convexnozzle, conicalnozzle,andconcavenozzle).Boththepressureoscillation characteristics and the damping effects are obtained.The numericalresultscanbeforreferenceinthedesignandmodif i cation of solid rocket motor to improve the stability.

    Fig.1.Example of combustion instability.

    2.Wave-attenuation method

    Up to date,the nozzle damping characteristics have been measured using several methods,such as frequency-response method,standing-wave method and wave-attenuation method [12].In this paper,the wave-attenuation method[13]is utilized and is implemented in a numerical way.A periodic pressure oscillation which frequency equals to the f i rst acoustic mode is superimposed on a steady f l ow at the head end of the chamber.When the pressure oscillation signal is turned off,the decay rate of the pressure can be used to determine the nozzle damping effect.It is supposed that there is no other source of acoustic energy exists in the chamber, and the acoustic energy consumption of energy due to viscosity is ignored.Therefore,the acoustic energy is not affected by other factors than the nozzle itself.The time history of the pressure can be expressed as follows after turning off the pressure oscillation

    The RNG k-ε turbulence model is included to close the N-S equations.The second-order implicit formulation is used in an unsteady solver.A Courant-Friedrich-Lewy (CFL)number of 1 is imposed,and a time step is 5×10-5s.

    The simplif i ed 2-D axisymmetric model of the engineering solid rocket motor that experiences combustion instability at theendofburningisshowninFig.2.Thewholecomputational domain contains nearly 240,000 cells with the mesh ref i ned near the wall and the mass f l ow inlet.The smallest grid spacing at the propellant surface is about 1 mm. The boundary condition is also illustrated in Fig.2.For the purpose of keeping the actual working conditions,a constant mass f l ow inlet is chosen to simulate the burning of propellant. Without the consideration of combustion kinetics,the thermodynamic properties are assumed as the constants for the present study.The temperature at the inlet is kept at 3500 K. The f l ow variables at the exit are extrapolated from the f l ow variables within the computational domain.

    In order to employ the wave-attenuation method in the numerical work,a periodic pressure oscillation signal which frequency equals to the f i rst acoustic mode(-177 Hz)is superimposed on a steady f l ow at the head end of the chamber via UDF(user def i ned function)for 0-0.3 s,and then the pressure oscillation is turned off to determine the decay rate of the pressure.Five virtual pressure monitors are set along the mass f l ow inlet to record the pressure changing history.The detailed locations of monitors are listed in Table 1.

    Three other different typical nozzle geometries(convex nozzle,conical nozzle,and concave nozzle)are used in the numerical work to compare with the basic design nozzle.The four nozzles are shown in Fig.3.The operating conditions of the four cases are the same so as to facilitate comparison.The pressure oscillation characteristics,nozzle decaying coeff i cient and pressure phase distribution are analyzed in the following section.

    4.Results and discussion

    4.1.Pressure oscillation characteristics

    The simulation f i rstly carries out about 2000 steady iterations with a good convergence of the solution.Then the periodic pressure oscillation is added at the head of the chamber to simulate a combustion instability phenomenon,and the unsteady simulation is restarted for a physical time of 1 s.The pressure oscillation is turned on for 0-0.3 s,and then is turned off.The variations of the pressure at 5 virtual monitors are saved.Fig.4(a)is a typical example that shows the pressure oscillation characteristics when the pressure oscillation is on. The pressure spectrum after FFT(fast Fourier transform)of the pressure signal is shown in Fig.4(b).It is apparent that the oscillation is dominated by the f i rst axial acoustic mode.

    Both pressure oscillation characteristics at the head(Point 1)and the end(Point 5)are calculated in the same way.For comparison,Case 0(basic design)is set as a reference.The pressure amplitudes of all cases are divided by the amplitude of Case 0.Accordingly,the relative pressure amplitude of Case 0 is 1.The relative pressure amplitude under different nozzle geometries is shown in Fig.5.It clearly shows that the convex nozzle has the lowest relative pressure amplitude of 0.91 at Point 1,and the relative pressure amplitudes of conical nozzle and concave nozzle are 0.93 and 0.96,respectively. Both the head and end signals have the same tendency.

    In Anthoine’s research work[11],he concluded that the evolution of the maximum acoustic pressure level is approximately linear with the nozzle cavity volume.In fact,the volume of aft end cavity is indeed increased from Case 3 to Case 0,as shown in Fig.3.Thus,the relative pressure amplitude is gradually increased in the previous order. Blomshield[3]emphasized that the nozzle damping is decreased if there is an abundant burning area in the aft end. Generally speaking,the acoustic energy attenuation effect of the convex nozzle is greater than that of a concave nozzle[6]. Furthermore,Zhao and Kang[14]experimentally concluded that the acoustic scattering effect of the convex nozzle is better than that of conical nozzle.The present result conf i rms the above-mentioned conclusions.

    Fig.2.Computational model and boundary conditions.

    Table 1Monitor coordinate.

    Fig.3.Different nozzle geometries.

    4.2.Nozzle decay coeff i cient

    The periodic pressure oscillation is turned off at 0.3 s after it is turned on.The data of Monitor 1 is utilized in this section. The pressure decaying process is demonstrated in Fig.6. According to Eq.(1),the amplitude of the pressure oscillation decays in an exponential way.Therefore,the attenuation constant after pressure oscillation off can be obtained by plottingthepeak-to-peakamplitude-timecurveina logarithmic-time coordinate system,as shown in Fig.7.

    The scattered points can be linear f i tted in a line,and the slope of the line is the attenuation constant according to Eq. (2).The slope in Fig.7 is the attenuation constant αNof Case 0.The comprehensive comparison of the attenuation constants of the four different nozzle geometries is shown in Fig.8. From Case 0 to Case 3,the attenuation constants are -10.7 s-1,-11.03 s-1,-11.06 s-1and-11.13 s-1,separately.The conclusion drawn in Section 3.2 is the same with that in Section 3.1.The damping effect of the convex nozzle is better than that of conical nozzle,which in turn is better than that of concave nozzle.The basic nozzle has the worst damping effect because of aft end cavity bigger than the other three geometries.Generally,the damping effect of the non-submerged nozzle is better than that of submerged nozzle.The basic nozzle(Case 0)is a typical submerged nozzle while the others are no-submerged nozzle.Fig.8 clearly shows the above conclusion.

    The pressure oscillation characteristics and nozzle decay coeff i cients for the different nozzle geometries show the same conclusion.It conf i rms that the numerical method is reasonable and effective.Though the calculated nozzle attenuation constants are signif i cantly smaller than the actual ones,the numerical method provides an easier and cheaper way to evaluate the nozzle damping effect before the design of a new solid rocket motor.

    Fig.4.Pressure oscillation characteristics at Point 1 of Case 0.

    Fig.5.Relative pressure amplitude under different nozzle geometries.

    Fig.6.Pressure decaying process after pressure oscillation off.

    Fig.7.Ln(P')-t curve after pressure oscillation off.

    4.3.Pressure phase distribution

    The acoustic pressure distribution along the chamber length is also concerned in the research on combustion instability. The rocket chamber is closed at the forward end.On the opposite,the sound at the nozzle throat can prevent the acoustic perturbations from propagating through it.Therefore, the chamber can be simplif i ed as a closed-closed tube from an acoustical point of view.And the acoustics is presented in the form of standing wave.Ideally,the two ends of chamber are the pressure anti-nodes of f i rst acoustic pressure,where the pressure oscillation can reach to maximum but has a phase difference of 180°.Monitor 1(head)and Monitor 5(end)of Case 0 are taken for example.The phase difference is illustrated in Fig.9.In one pressure oscillation period of T,the f i rst pressure peak of Point 1 is ahead of T/2 compared with Point 5.It indicates that the pressure signals of Point 1 and Point 5 have an opposite phase.The intermediate position(Point 3)of the nozzle is the pressure node where the pressure oscillation is zero.Theoretical and numerical f i rst acoustic distributionsare plotted on a double Y-axis in Fig.10.It can be shown from Fig.10 that the numerical distribution satisf i es with theoretical distribution.Both Point 1 and Point 5 have the maximum amplitude because they locate at the pressure anti-node,while Point 3 nearly has no oscillation.The amplitudes of Point 2 and Point 4 are between the maximum and minimum.

    Fig.8.Attenuation constants of different nozzle geometries.

    From an engineering point of view,it is more effective to modify the grain structure at the place of pressure antinodes. However,the grain design should not have an abundance of burning area in the aft end,because the nozzle damping may be decreased according to the present numerical results.Zhang et al.[15]summarized that a head end cavity can effectively suppressthe pressure oscillation.Inorder toreducethepressure oscillation to a maximal extent,both the grain modif i cation and nozzle geometry optimization should be comprehensively considered before the design of new large solid rocket motors.

    5.Conclusions

    (1)A wave attenuation method was provided numerically to calculate the nozzle attenuation constant.It is an easier and cheaper way to evaluate the nozzle damping effect.

    (2)Both the relative pressure amplitude and nozzle attenuation constant verify that the convex nozzle provides more damping than the conical nozzle,which in turn provides moredampingthantheconcavenozzle.Allthethreenozzles have better damping effect than the basic nozzle geometry.

    (3)Pressure phase distribution analysis shows that the numerical pressure distribution satisf i es well with theoretical distribution.The pressure oscillations at the head end of the chamber are equal and are 180°out of phase from those in the aft end of the chamber.

    Fig.9.Phase difference between pressure sensor 0#and 4#.

    Fig.10.Theoretical and numerical acoustic pressure distributions.

    [1]Sun WS.Combustion instabilities in solid rocket motors.Beijing:Beijing Institute of Technology Press;1987[in Chinese].

    [2]Zhang Q,Wei ZJ,Su WX,Li JW,Wang NF.Theoretical modeling and numerical study for thrust-oscillation characteristics in solid rocket motors.J Propuls Power 2012;28(2):312-22.

    [3]Blomshield FS.Lessons learned in solid rocket combustion instability. AIAA;2007.p.5803.

    [4]Xie WM.Solid rocket motor combustion instability,aerospace engineering textbook.Xi’an:Northwestern Polytechnical University Press; 1984[in Chinese].

    [5]Blomshield FS,Stalnaker RA,Beckstead MW.Combustion instability additive investigation.AIAA;1999.p.2226.

    [6]Hu DN,He GQ,Liu PJ.Study on instable combustion of solid rocket motor with f i nocyl grain.J China Ordnance 2011;7(1):24-8[in Chinese].

    [7]Guery JF,Ballereau S,Godfroy F,Gallier S,Orlandi O,Pieta PD,et al. Thrust oscillations in solid rocket motors.AIAA;2008.p.4979.

    [8]Crocco L,Sirignano WA.Behavior of supercritical nozzles under threedimensional oscillatory conditions.AGARD-OGRAPH-117;1967.

    [9]Janardan BA,Daniel BR,Zinn BT.Scaling of rocket nozzle admittances. AIAA J 1975;13(7):918-23.

    [10]Zinn BT.Nozzle damping in solid rocket instabilities.AIAA J 1973;11(11):1492-7.

    [11]Anthoine J,Buchlin JM,Guery JF.Effect of nozzle cavity on resonance in large SRM:numerical simulations.J Propuls Power 2003;19(3):374-84.

    [12]Janardan BA,Zinn BT.Rocket nozzle damping characteristics measured using different experimental techniques.AIAA J 1977;15(3):442-4.

    [13]Buffum RG,Dehority GL,Slates RO,Price EW.Acoustic attenuation experimentsonsubscalecold-f l owrocketmotors.AIAAJ 1967;5(2):272-80.

    [14]Zhao BH,Kang SZ.Design of solid propellant rocket engine aiming at a damping of the mid-frequency instability.J Beijing Inst Technol 1982;02:76-86[in Chinese].

    [15]Zhang Q,Li JW,Su WX,Zhang Y,Wang NF.Studies on effect of head cavity on resonance damping characteristics in solid rocket motors. AIAA;2012.p.3729.

    10 July 2013;revised 21 August 2013;accepted 25 August 2013 Available online 3 October 2013

    *Corresponding author.

    E-mail address:david78lee@gmail.com(J.W.LI).

    Peer review under responsibility of China Ordnance Society

    Production and hosting by Elsevier

    2214-9147/$-see front matter Copyright?2013,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.dt.2013.09.016

    国产毛片在线视频| 国产成人aa在线观看| 水蜜桃什么品种好| 欧美成人午夜免费资源| 亚洲精品日本国产第一区| 性色av一级| 欧美 日韩 精品 国产| 99热这里只有是精品50| 中国美白少妇内射xxxbb| 精品人妻一区二区三区麻豆| 欧美97在线视频| 人人妻人人澡人人爽人人夜夜| 亚洲av中文av极速乱| 草草在线视频免费看| 只有这里有精品99| 日本猛色少妇xxxxx猛交久久| 国产精品女同一区二区软件| 日本av手机在线免费观看| 色哟哟·www| 91久久精品国产一区二区三区| 王馨瑶露胸无遮挡在线观看| 中文乱码字字幕精品一区二区三区| 国产精品久久久久久精品电影小说 | 国产男人的电影天堂91| 2018国产大陆天天弄谢| 成人影院久久| 国语对白做爰xxxⅹ性视频网站| 秋霞在线观看毛片| 国产 一区 欧美 日韩| 尾随美女入室| 午夜视频国产福利| 国产欧美亚洲国产| 身体一侧抽搐| 精品久久久久久电影网| 激情 狠狠 欧美| 国产淫片久久久久久久久| 国产亚洲一区二区精品| 亚洲美女搞黄在线观看| 欧美高清成人免费视频www| www.av在线官网国产| 欧美xxⅹ黑人| 免费播放大片免费观看视频在线观看| 久久99蜜桃精品久久| 一本色道久久久久久精品综合| 搡老乐熟女国产| 国产老妇伦熟女老妇高清| 狠狠精品人妻久久久久久综合| 久久久欧美国产精品| 日韩欧美一区视频在线观看 | 久久久精品免费免费高清| 国产伦理片在线播放av一区| 亚洲电影在线观看av| 另类亚洲欧美激情| 伦理电影大哥的女人| 蜜臀久久99精品久久宅男| 五月玫瑰六月丁香| 嫩草影院新地址| 国产精品久久久久久精品电影小说 | 免费看不卡的av| 亚洲无线观看免费| 我的老师免费观看完整版| 亚洲欧美日韩无卡精品| 99久久精品热视频| 黑人猛操日本美女一级片| 亚洲精品久久午夜乱码| 婷婷色综合www| 日韩 亚洲 欧美在线| 嘟嘟电影网在线观看| 新久久久久国产一级毛片| 99久久精品一区二区三区| 亚洲欧美日韩东京热| 人体艺术视频欧美日本| 22中文网久久字幕| 黄片无遮挡物在线观看| 国产成人精品婷婷| 亚洲高清免费不卡视频| 亚洲成人一二三区av| 免费人成在线观看视频色| 国产高清不卡午夜福利| 男人舔奶头视频| 久久久久久久久大av| 成人国产av品久久久| 高清午夜精品一区二区三区| 午夜福利高清视频| 久久精品久久久久久噜噜老黄| 亚洲内射少妇av| 久久6这里有精品| av女优亚洲男人天堂| 特大巨黑吊av在线直播| 久久国产精品男人的天堂亚洲 | 亚洲精品日韩av片在线观看| 啦啦啦在线观看免费高清www| 91在线精品国自产拍蜜月| 亚洲欧美中文字幕日韩二区| 日本欧美视频一区| 国产黄片美女视频| 午夜日本视频在线| 丰满人妻一区二区三区视频av| 在线看a的网站| 80岁老熟妇乱子伦牲交| 亚洲,欧美,日韩| 高清午夜精品一区二区三区| 少妇人妻一区二区三区视频| 又粗又硬又长又爽又黄的视频| 国产高清有码在线观看视频| 亚洲欧美一区二区三区国产| 涩涩av久久男人的天堂| 内射极品少妇av片p| 永久网站在线| 看非洲黑人一级黄片| 啦啦啦在线观看免费高清www| 99久久综合免费| 成人二区视频| 成年女人在线观看亚洲视频| 精品国产露脸久久av麻豆| av国产免费在线观看| 色哟哟·www| 国内精品宾馆在线| 精品人妻一区二区三区麻豆| 一个人看的www免费观看视频| av免费观看日本| 高清av免费在线| 久久精品国产亚洲网站| 九草在线视频观看| 日日撸夜夜添| av女优亚洲男人天堂| 在线播放无遮挡| 哪个播放器可以免费观看大片| 91久久精品国产一区二区成人| 久久精品国产鲁丝片午夜精品| 全区人妻精品视频| 免费久久久久久久精品成人欧美视频 | 男人狂女人下面高潮的视频| 夫妻性生交免费视频一级片| 亚洲av福利一区| 久久精品夜色国产| 国产在线视频一区二区| 99热国产这里只有精品6| 爱豆传媒免费全集在线观看| 国产精品99久久久久久久久| av天堂中文字幕网| 欧美区成人在线视频| 日日啪夜夜撸| 中国三级夫妇交换| 卡戴珊不雅视频在线播放| 亚洲欧美一区二区三区国产| 又黄又爽又刺激的免费视频.| 日韩,欧美,国产一区二区三区| 午夜福利在线在线| 高清av免费在线| 久久午夜福利片| 亚洲成人一二三区av| kizo精华| 在线观看av片永久免费下载| 最近最新中文字幕免费大全7| 亚洲色图综合在线观看| 国产黄色视频一区二区在线观看| 国产精品麻豆人妻色哟哟久久| 成人亚洲精品一区在线观看 | 99热国产这里只有精品6| 成人美女网站在线观看视频| 中文资源天堂在线| 男女免费视频国产| 精品久久久久久电影网| 91在线精品国自产拍蜜月| 国产视频内射| 日本欧美视频一区| 久久久久久久久久人人人人人人| 黄片wwwwww| 亚洲四区av| 亚洲国产精品999| 亚洲欧美成人综合另类久久久| 大香蕉97超碰在线| 日韩在线高清观看一区二区三区| 最新中文字幕久久久久| 久久久久网色| 一个人看视频在线观看www免费| 亚洲怡红院男人天堂| 亚洲精品日本国产第一区| 欧美+日韩+精品| 成人国产av品久久久| 九色成人免费人妻av| 三级国产精品片| 五月开心婷婷网| 亚洲av福利一区| 妹子高潮喷水视频| 免费观看av网站的网址| 成人漫画全彩无遮挡| 久久精品国产亚洲av天美| 日韩欧美 国产精品| av国产精品久久久久影院| 亚洲人成网站高清观看| 精品人妻偷拍中文字幕| 免费观看无遮挡的男女| 成人综合一区亚洲| av免费观看日本| 一本一本综合久久| 日本黄色日本黄色录像| 亚洲自偷自拍三级| 嘟嘟电影网在线观看| 久久人妻熟女aⅴ| 青青草视频在线视频观看| av在线app专区| 婷婷色麻豆天堂久久| 欧美xxxx黑人xx丫x性爽| 国产av一区二区精品久久 | 最近的中文字幕免费完整| 色综合色国产| 多毛熟女@视频| 在线亚洲精品国产二区图片欧美 | 老司机影院毛片| 男女国产视频网站| 久久精品国产a三级三级三级| 久久久亚洲精品成人影院| 免费观看无遮挡的男女| 亚洲av中文字字幕乱码综合| 久久久成人免费电影| 精品人妻熟女av久视频| 伦理电影大哥的女人| 欧美国产精品一级二级三级 | av福利片在线观看| 我要看日韩黄色一级片| av在线app专区| 自拍偷自拍亚洲精品老妇| 夜夜骑夜夜射夜夜干| 国产成人一区二区在线| 国产欧美另类精品又又久久亚洲欧美| 免费看日本二区| 身体一侧抽搐| 卡戴珊不雅视频在线播放| 亚洲人成网站在线观看播放| 久久久成人免费电影| 人妻系列 视频| 精品国产露脸久久av麻豆| 超碰av人人做人人爽久久| 最近最新中文字幕大全电影3| 国产亚洲5aaaaa淫片| 日韩免费高清中文字幕av| 高清视频免费观看一区二区| 久久人人爽人人爽人人片va| 国产v大片淫在线免费观看| 国产免费一级a男人的天堂| 一二三四中文在线观看免费高清| 小蜜桃在线观看免费完整版高清| www.色视频.com| 麻豆精品久久久久久蜜桃| av.在线天堂| 国产高清有码在线观看视频| 小蜜桃在线观看免费完整版高清| 18禁裸乳无遮挡动漫免费视频| 91精品国产九色| 天天躁夜夜躁狠狠久久av| 男男h啪啪无遮挡| 中文资源天堂在线| 一边亲一边摸免费视频| av线在线观看网站| 国产真实伦视频高清在线观看| 国产淫片久久久久久久久| 一个人看的www免费观看视频| 中国国产av一级| 国产一区有黄有色的免费视频| 少妇人妻一区二区三区视频| 国产老妇伦熟女老妇高清| 91精品一卡2卡3卡4卡| 欧美精品一区二区大全| 天堂8中文在线网| 熟妇人妻不卡中文字幕| 边亲边吃奶的免费视频| 丰满少妇做爰视频| 伊人久久精品亚洲午夜| 亚洲精品国产成人久久av| 丝袜喷水一区| 黄片wwwwww| 日韩一区二区三区影片| 亚洲欧美一区二区三区黑人 | 欧美成人午夜免费资源| 黄片无遮挡物在线观看| 最近的中文字幕免费完整| 免费观看av网站的网址| 国产精品久久久久久av不卡| 久久精品国产亚洲av涩爱| 精品久久久久久久久av| av在线老鸭窝| 成人国产麻豆网| 啦啦啦啦在线视频资源| 中文字幕av成人在线电影| 丰满少妇做爰视频| 伦理电影大哥的女人| 偷拍熟女少妇极品色| 久热这里只有精品99| 99久久中文字幕三级久久日本| 如何舔出高潮| 自拍偷自拍亚洲精品老妇| 人妻少妇偷人精品九色| 在线天堂最新版资源| 国产免费视频播放在线视频| 内射极品少妇av片p| 国产视频首页在线观看| 大又大粗又爽又黄少妇毛片口| 黄片wwwwww| 天堂俺去俺来也www色官网| 久久热精品热| 国产片特级美女逼逼视频| 久久国产精品大桥未久av | 中文资源天堂在线| 男女啪啪激烈高潮av片| 欧美性感艳星| 特大巨黑吊av在线直播| 九九在线视频观看精品| 国产亚洲91精品色在线| 女性被躁到高潮视频| 色5月婷婷丁香| 99热国产这里只有精品6| 中文字幕精品免费在线观看视频 | 肉色欧美久久久久久久蜜桃| 欧美另类一区| 亚洲精品国产av蜜桃| 久久人妻熟女aⅴ| 激情 狠狠 欧美| 国产欧美日韩精品一区二区| 国产一区亚洲一区在线观看| 乱码一卡2卡4卡精品| 视频区图区小说| 嘟嘟电影网在线观看| 在线观看免费日韩欧美大片 | av不卡在线播放| 人人妻人人澡人人爽人人夜夜| av在线播放精品| 伦精品一区二区三区| 狂野欧美激情性xxxx在线观看| 成年女人在线观看亚洲视频| 欧美精品国产亚洲| 日本欧美视频一区| 国产欧美另类精品又又久久亚洲欧美| 精品亚洲成国产av| 精品久久久久久电影网| 久久精品国产亚洲av天美| 看非洲黑人一级黄片| 美女视频免费永久观看网站| 自拍偷自拍亚洲精品老妇| 免费黄色在线免费观看| 日韩一本色道免费dvd| 亚洲国产精品成人久久小说| 1000部很黄的大片| 日韩亚洲欧美综合| 欧美三级亚洲精品| 久久国内精品自在自线图片| 人体艺术视频欧美日本| 一级毛片我不卡| 色网站视频免费| 久久韩国三级中文字幕| 国产黄片美女视频| 毛片一级片免费看久久久久| h日本视频在线播放| 久久精品久久精品一区二区三区| 亚洲,欧美,日韩| 天堂8中文在线网| 国产伦在线观看视频一区| 国产精品一区二区在线不卡| 熟女av电影| 激情 狠狠 欧美| 亚洲欧美成人精品一区二区| 成人影院久久| 国产伦理片在线播放av一区| 美女xxoo啪啪120秒动态图| 国产精品不卡视频一区二区| 久久影院123| 久久久欧美国产精品| 国产视频首页在线观看| 日韩成人伦理影院| 国产精品女同一区二区软件| 99国产精品免费福利视频| 青青草视频在线视频观看| 国产成人一区二区在线| 精品少妇久久久久久888优播| 一个人看视频在线观看www免费| 在线观看美女被高潮喷水网站| 97超碰精品成人国产| 我要看日韩黄色一级片| 亚洲,欧美,日韩| 校园人妻丝袜中文字幕| 国产一区二区三区综合在线观看 | 亚洲第一区二区三区不卡| 最近手机中文字幕大全| 欧美xxⅹ黑人| 国产人妻一区二区三区在| av网站免费在线观看视频| 国产淫片久久久久久久久| 欧美精品一区二区大全| 午夜激情福利司机影院| 2022亚洲国产成人精品| 国产亚洲一区二区精品| 日本午夜av视频| 中文字幕免费在线视频6| 国产精品无大码| 国产精品久久久久久久久免| 99热国产这里只有精品6| 高清毛片免费看| 日韩制服骚丝袜av| 极品少妇高潮喷水抽搐| 日韩三级伦理在线观看| 国产欧美日韩精品一区二区| 舔av片在线| 99re6热这里在线精品视频| 国产高清有码在线观看视频| 久久久久久久久久久免费av| 国模一区二区三区四区视频| 欧美xxⅹ黑人| 狂野欧美白嫩少妇大欣赏| 亚洲精品日韩在线中文字幕| 美女高潮的动态| 成人黄色视频免费在线看| 亚洲av不卡在线观看| 99热国产这里只有精品6| 直男gayav资源| 色吧在线观看| h视频一区二区三区| 噜噜噜噜噜久久久久久91| 欧美+日韩+精品| 啦啦啦视频在线资源免费观看| 久久女婷五月综合色啪小说| 2021少妇久久久久久久久久久| 亚洲精品aⅴ在线观看| 国产黄色视频一区二区在线观看| 日本与韩国留学比较| 久热久热在线精品观看| 国产精品秋霞免费鲁丝片| 极品少妇高潮喷水抽搐| 国产亚洲91精品色在线| kizo精华| 免费观看无遮挡的男女| 高清午夜精品一区二区三区| 乱系列少妇在线播放| 亚洲av国产av综合av卡| 美女视频免费永久观看网站| 久久99热这里只有精品18| 中文在线观看免费www的网站| 又粗又硬又长又爽又黄的视频| 成人午夜精彩视频在线观看| 黄色怎么调成土黄色| 国产黄片美女视频| 在现免费观看毛片| 国产亚洲5aaaaa淫片| 久久久久久久大尺度免费视频| 精品一区二区免费观看| 免费人成在线观看视频色| 我要看日韩黄色一级片| 五月开心婷婷网| 美女cb高潮喷水在线观看| 欧美精品一区二区大全| 热re99久久精品国产66热6| 又大又黄又爽视频免费| 久久久a久久爽久久v久久| 精品久久国产蜜桃| 国产成人一区二区在线| 亚洲婷婷狠狠爱综合网| 亚洲精品aⅴ在线观看| 青春草国产在线视频| 精华霜和精华液先用哪个| 国产精品成人在线| 超碰97精品在线观看| 国产精品秋霞免费鲁丝片| 在线观看一区二区三区激情| 成人18禁高潮啪啪吃奶动态图 | 久久精品国产鲁丝片午夜精品| 五月玫瑰六月丁香| 久久av网站| 久久国产亚洲av麻豆专区| 欧美日韩综合久久久久久| 五月天丁香电影| 一区二区三区精品91| 欧美高清性xxxxhd video| 亚洲国产欧美在线一区| 中国美白少妇内射xxxbb| 男男h啪啪无遮挡| 在线看a的网站| 天堂俺去俺来也www色官网| 少妇人妻 视频| 中文字幕久久专区| 精品少妇久久久久久888优播| 欧美日韩综合久久久久久| 水蜜桃什么品种好| 26uuu在线亚洲综合色| 国产美女午夜福利| 亚洲av二区三区四区| 日韩成人av中文字幕在线观看| 少妇的逼水好多| 国产亚洲欧美精品永久| 丝袜喷水一区| 少妇人妻久久综合中文| 亚洲美女搞黄在线观看| 婷婷色综合大香蕉| 久久久久久久大尺度免费视频| av国产免费在线观看| 亚洲av综合色区一区| 永久网站在线| av不卡在线播放| 欧美日韩一区二区视频在线观看视频在线| 卡戴珊不雅视频在线播放| 国产白丝娇喘喷水9色精品| 国产精品久久久久久av不卡| 夫妻性生交免费视频一级片| 成人无遮挡网站| 久久国产精品男人的天堂亚洲 | 国产 一区精品| 麻豆乱淫一区二区| 婷婷色麻豆天堂久久| 狂野欧美白嫩少妇大欣赏| 人人妻人人澡人人爽人人夜夜| 99九九线精品视频在线观看视频| 一级毛片aaaaaa免费看小| 日本vs欧美在线观看视频 | videossex国产| 国产伦在线观看视频一区| 97超视频在线观看视频| 久热久热在线精品观看| 久久99精品国语久久久| 久久久久国产精品人妻一区二区| 大陆偷拍与自拍| 97热精品久久久久久| 国产黄片美女视频| 国产黄片视频在线免费观看| 免费看不卡的av| 国产亚洲欧美精品永久| 亚洲国产毛片av蜜桃av| 亚洲一级一片aⅴ在线观看| 国产久久久一区二区三区| 成人黄色视频免费在线看| 国产成人aa在线观看| 国产免费福利视频在线观看| 日本一二三区视频观看| 人人妻人人澡人人爽人人夜夜| 免费观看性生交大片5| 欧美人与善性xxx| 视频中文字幕在线观看| 观看免费一级毛片| 国产伦精品一区二区三区视频9| 狠狠精品人妻久久久久久综合| 中文欧美无线码| 极品教师在线视频| 99热国产这里只有精品6| 99热这里只有精品一区| 亚洲美女视频黄频| 日日啪夜夜爽| 爱豆传媒免费全集在线观看| 日本欧美视频一区| 国产精品免费大片| tube8黄色片| 国产男人的电影天堂91| 成年女人在线观看亚洲视频| 欧美国产精品一级二级三级 | 亚洲精华国产精华液的使用体验| 91久久精品国产一区二区三区| 日韩在线高清观看一区二区三区| 国产精品爽爽va在线观看网站| 亚洲精品一二三| 久久人人爽av亚洲精品天堂 | 少妇裸体淫交视频免费看高清| 不卡视频在线观看欧美| 久久6这里有精品| .国产精品久久| 高清欧美精品videossex| 天堂中文最新版在线下载| 男人爽女人下面视频在线观看| 这个男人来自地球电影免费观看 | 夫妻性生交免费视频一级片| 性色avwww在线观看| 三级国产精品欧美在线观看| 国产 精品1| 这个男人来自地球电影免费观看 | 1000部很黄的大片| 狂野欧美激情性bbbbbb| 亚洲美女黄色视频免费看| 亚洲国产成人一精品久久久| 日本vs欧美在线观看视频 | 国产毛片在线视频| 欧美zozozo另类| 久久久久久久久久人人人人人人| 亚洲va在线va天堂va国产| 在线看a的网站| 免费在线观看成人毛片| 欧美日韩视频精品一区| 欧美日韩亚洲高清精品| 少妇人妻 视频| 国产成人精品一,二区| 夫妻午夜视频| 欧美+日韩+精品| 一二三四中文在线观看免费高清| 久久女婷五月综合色啪小说| av不卡在线播放| 男人舔奶头视频| 久热久热在线精品观看| 精品久久久久久电影网| 国产色婷婷99| 我要看日韩黄色一级片| 岛国毛片在线播放| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美一区二区三区黑人 | 亚洲,一卡二卡三卡| 成人亚洲欧美一区二区av| 亚洲精品国产av成人精品| 22中文网久久字幕| 天堂俺去俺来也www色官网| 黄片wwwwww| 一个人免费看片子| 久久久精品94久久精品| 免费看光身美女| videossex国产| 成人毛片a级毛片在线播放| 性色av一级| 亚洲怡红院男人天堂| 大又大粗又爽又黄少妇毛片口| 国产精品爽爽va在线观看网站| 日本黄色日本黄色录像| 亚洲国产毛片av蜜桃av|