• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles Study of Electronic Structures,Elastic Properties and Thermodynamics of the Binary Intermetallics in Mg-Zn-Re-Zr Alloy

    2013-07-25 11:26:28GangCHENPengZHANG
    Defence Technology 2013年3期

    Gang CHEN*,Peng ZHANG

    First-principles Study of Electronic Structures,Elastic Properties and Thermodynamics of the Binary Intermetallics in Mg-Zn-Re-Zr Alloy

    Gang CHENa,b,*,Peng ZHANGb

    aDepartment of Engineering,University of Leicester,University Road,Leicester LE1 7RH,UKbSchool of Materials Science and Engineering,Harbin Institute of Technology at Weihai,Weihai 264209,China

    The electronic structures,elastic properties and thermodynamics of MgZn2,Mg2Yand Mg2La have been determined from the f i rst-principle calculations.The calculated heats of formation and cohesive energies show that Mg2La has the strongest alloying ability and structural stability. The structural stability mechanism is also explained through the electronic structures of these phases.The ionicity and metallicity of the phases are estimated.The elastic constants are calculated;the bulk moduli,shear moduli,Young’s moduli,Poisson’s ratio value and elastic anisotropy are derived;and the brittleness,plasticity and anisotropy of these phases are discussed.Gibbs free energy,Debye temperature and heat capacity are calculated and discussed.

    Copyright?2013,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Magnesium alloy;Electronic structure;Elastic property;Thermodynamic property;First-principles

    1.Introduction

    Mg-Zn-Re-Zr alloy is a commonly used deformation magnesium alloy in aerospace industry because of its excellent properties,suchashigh-temperaturestrength,excellent corrosion resistance and anti-oxidation properties[1-6]. MgZn2,Mg2Y and Mg2La phases,as strengthening phase,are believed to be the key components affecting the properties of Mg-Zn-Re-Zr alloy.They belong to the typical AB2type Laves phase and play an important role in ref i ning the grains and improving the mechanical properties and creep resistance [7].Therefore,it is important to study the electronic structures, elastic properties and thermodynamics of MgZn2,Mg2Y and Mg2La.

    The f i rst-principles techniques have been widely applied to study the physical properties of intermetallic compound.There are many reports on the properties of MgZn2,Mg2Y and Mg2La.Zhou et al.[8]researched the structure stabilities and elastic properties of MgZn2phase.Wang et al.[9]studied the structural stabilities and electronic characteristics of Mg2La phase.Zhang et al.[10]calculated the enthalpies of formation of Mg2Y and Mg2La.Ganeshan et al.[11]calculated the elastic constants of Mg2La.Wrobel et al.studied the thermodynamic and mechanical properties of Mg2La[12].Almost all of the above research focused on the enthalpies of formation,electronic structures and the physical properties such as elastic constants,elastic modulus and Poisson’s ratio.However,minimal focus has been placed on the thermodynamics properties of MgZn2,Mg2Y and Mg2La.In general,the thermodynamicpropertiesofintermetalliccompoundsare important because some thermodynamic properties,such as Gibbs free energy,Debye temperature and heat capacity,can determinethethermodynamicstabilityofsystem.Themeasurement of thermodynamic property of intermetallic compounds is often challenging.Recently,the f i rst-principles based on the density functional theory investigations of thermodynamic properties of metals have given some quite satisfactory results for Gibbs free energy and heat capacity [13-19].Therefore,it seems to be interesting to investigate the thermodynamic properties of MgZn2,Mg2Y and Mg2La phases by using the f i rst-principles.

    In this paper,the electronic structures,elastic properties and thermodynamics of MgZn2,Mg2Y and Mg2La will be analyzed with f i rst-principles method.The results are discussed in comparison with the available experimental values. The structures are optimized by full relaxation,and the lattice parameters are obtained.The heat of formation and the cohesive energy are calculated and discussed.The structural stability mechanism is also explained through the electronic structures of these phases.The elastic constants are calculated, the bulk modulus,shear modulus,Young’s modulus,Poisson’s ratio value and elastic anisotropy are derived,and the brittleness and plasticity of these phases are researched by empirical criterion.Gibbs free energy,Debye temperature and heat capacity from phonon calculations are discussed.This study will provide useful data for analysis and design of Mg-Zn-Re-Zr alloy,and also for future measurements of MgZn2,Mg2Y and Mg2La.

    2.Computational methods

    The total energy,elastic properties and electronic structure are calculated by using Cambridge sequential total energy package(CASTEP),in which the f i rst-principles plane-wave pseudo-potentials method based on density functional theory (DFT)is adopted[20].The ultrasoft pseudo potentials[21]are employed to represent the interactions between ionic core and valence electrons.For Mg,Zn,Yand La,the valence electrons consideredare2p63s2,3d104s2,4s24p64d15s2and 5s25p65d16s2,respectively.A special k-point sampling method was used for the integration by setting 6×6×4 for MgZn2, 5×5×4 for Mg2Y and 5×5×5 for Mg2La,respectively. Perdew-Wang(PW91)[22]version of the generalized gradient approximation(GGA)[23]is used for calculating the exchange-correlation energy.A kinetic energy cut-off value of 340 eV[24]is used for plane wave expansion.The total energy changes during the optimization f i nally converging to less than 1×10-6eV and the forces per atom are reduced to 0.02eV/°A.TheBroyden-Fletcher-Goldfarb-Shannon (BFGS)algorithm is applied to relax the whole structure to reach the ground state where both cell parameters and fractional coordinates of atoms are optimized simultaneously.All calculations are performed with the non-spin polarized density functional theory.The DMol program is used for the calculation of thermodynamic properties of phases[25-27].As for as the calculation of Gibbs free energy is concerned,at f i rst, the simulation of molecular dynamics is done,the motion direction and strength of each atom and other information are obtained based on the frequency analysis by the use of cell optimizationconf i guration,someenergiesofvibration, rotation and translation at different temperatures are given by the integrated treatment of the movement information of all the atoms in order to calculate the entropy and enthalpy of the unit cell,and f i nally,the Gibbs free energy is calculated by using the standard statistical thermodynamic formulas.In the calculation of Gibbs free energy,each compound is relaxed for 0.01 ps with a time step of 1.0 fs through NVT molecular dynamics.The BLYP exchange-correlation function is adopted for GGA correction.All-electron Kohn-Sham wave functions are expanded in a double numerical basis with polarized orbit(DNP).

    3.Results and discussion

    3.1.Crystal structures and lattice constants

    The crystal structures of MgZn2,Mg2Y and Mg2La phases are shown in Fig.1.The crystal structural parameters and lattice constants are listed in Tables 1 and 2.The structures are optimized by full relaxation,and the equilibrium lattice parameters of MgZn2,Mg2Y and Mg2La phases are derived and listed in Table 2.The calculated results are compared with others experimental and analytical results[8,10,12,28,29].It can be found that the calculated lattice parameters are in good agreement with the experimental values and other theoretical values,with the difference between them being less than 0.5%, especially,our calculated lattice parameters are closer to the experimental values compared with other theoretical values,so the present calculations are highly reliable.

    3.2.Heat of formation and cohesive energy

    Negative heat of formation usually means an exothermic process,the lower the heat of formation is,the stronger the alloying ability is.To analyze the alloying abilities of MgZn2, Mg2Y and Mg2La phases,their heats of formation(ΔH)are calculated by the following expression[30]

    where Etotis the total energy of the unit cell,x and y are the numbers of Mg,Zn,Y and La atoms,respectively,EAsolidand are the energies of each Mg,Zn,Y and La atoms in the solid states.The calculated energies of Mg,Zn,Y and La atomsforourconsideredsystemsare-978.4696, -1711.1724,-1053.1388and-863.0929eV/atom, respectively.

    The obtained heats of formation of MgZn2,Mg2Y and Mg2La calculated by Eq.(1)are listed in Table 2.The calculated heats of formation of Mg2Y are in good agreement with the experimental result and other theoretical value,but the calculated heats of formation of MgZn2and Mg2La are quite different from the experimental results.This difference may be attributed to that our calculation method is different from others and the temperature calculated here is 0 K.Further analysis found that the heats of formation of MgZn2,Mg2Yand Mg2La were all negative,conf i rming that the structures of these phases can exist stably.The values of heats of formation decrease in the sequence of Mg2Y>MgZn2>Mg2La.It can be seen that Mg2La phase has the strongest alloying ability among them.

    Cohesive energy is def i ned as the energy which releases when the crystal is decomposed into single atoms.The lower the cohesive energy is,the higher the structure stability is.To estimate their phase stabilities,their cohesive energies(Ecoh) are calculated by the following expression

    Fig.1.The crystal structures.

    where Ecohis the total energy of the unit cell used in the present calculation,x and y are the numbers of Mg,Zn,Yand La atoms in unit cell,respectively,and EAatomand EBatomare the energies of isolated Mg,Zn,Y and La atoms in the free state, respectively.The calculated energies of Mg,Zn,Y and La isolated atoms are-976.0772,-1708.0388,-1047.8932 and -857.8028 eV/atom,respectively.

    The calculated results of the cohesive energies of MgZn2, Mg2Y and Mg2La are shown in Fig.2.The negative cohesive energies of MgZn2,Mg2Y and Mg2La show their energetic stabilization.From the calculated values,it can be further found that the cohesive energy decreases in the sequence of MgZn2>Mg2Y>Mg2La.Hence,Mg2La phase has the strongest structural stability among them.

    3.3.Electronic structures

    In the present work,the total and partial densities of states (DOS)are calculated to have a further insight into the bonding of MgZn2,Mg2Y and Mg2La phases and then to reveal the structural stability mechanism of these phases.The total and partial densities of states of MgZn2,Mg2Y and Mg2La phases are shown in Fig.3.It can be seen from Fig.3 that the main bonding peaks of all phases basically fall within-10 eV to 0 eV,and originate from the contribution of valence electron numbers of Zn(s),Zn(d),Mg(s)and Mg(p)orbits for MgZn2(Fig.3(a));but for Mg2Y,those are the result of the bonding orbits of Y(s),Y(p),Y(d),Mg(s)and Mg(p)orbits (Fig.3(b));for Mg2La,those mainly originate from the contribution of valence electron numbers of La(s),La(p), La(d),Mg(s)and Mg(p)orbits(Fig.3(c)).From Fig.3(d),it is found that the number of bonding electrons(per atom)of MgZn2is 1.5445 between the Fermi level and-10 eV,which is smaller than 2.2197 of Mg2Y and 2.3002 of Mg2La.The smaller the number of bonding electrons is,the weaker the interaction of charges is[31].Hence,Mg2La has the strongest structural stability among them.The same result can be obtained through cohesive energy analysis,conf i rming the conclusion from the electronic structure point of view.

    Thepopulationanalyticalresultscanprovidemore insightful information on chemical bonding.The calculated results are listed in Table 3.It is seen from Fig.3 that the charges of Mg are transferred to Zn in MgZn2,and thetransferred charges(1.05×4)are 4.2;for Mg2Y,the charges (0.06×4)of Mg(I)transferred to Mg(II)and Y are 0.24;but for Mg2La,the charges(0.18×4)of La transferred to Mg are 0.72.The calculated results indicate that the ionicity of these compounds gradually increases in the order of Mg2Y<Mg2La<MgZn2.

    The metallicity of the compound is estimated by Li[32]

    Table 1Crystal structural parameters of MgZn2,Mg2Y and Mg2La phases.

    where Dfis the DOS value at the Fermi level in unit state/ eV cell,T is the temperature,nmand neare the thermally excited electrons and the valence electron density of cell, respectively,kBis the Boltzmann constant,neis calculated by ne=N/Vcell,N is the total number of valence electrons,and Vcellis the cell volume.From the related parameters and calculated results listed in Table 4,we can observe that fmincreases in the following sequence:MgZn2<Mg2La<Mg2Y.Thus,the maximal and minimal“metallicities”correspond to Mg2Y and MgZn2,respectively.

    The electron density difference,which is def i ned as the electron density difference between the isolated atoms and their bonding states,ref l ects directly their bonding nature,as shown in Fig.3.The contour lines are plotted from -0.02833e/°A3to0.08057e/°A3withtheintervalof 0.01729 e/°A3.The red(in web version)lines correspond to higher density region,and the blue(in web version)lines correspond to lower density region.From Fig.4(a),it is found that the metallic Mg-Mg bonds,the covalent Zn-Zn bonds and the ionic Mg-Zn bonds exist in MgZn2.In Fig.4(b),the metallic Y-Y bonds,the covalent Mg-Mg bonds and the ionic Mg-Y bonds are found in Mg2Y.Fig.4(c)also shows the metallic La-La bonds,the covalent Mg-Mg bonds and the ionic Mg-La bonds.Generally,the charge density distributions show that,for the AB2-type phase,there are mostly metallic bonding between A and A,the covalent bonding between B and B and the ionic bonding between A and B, which is a common feature for the electronic structure in AB2type binary phase[33].

    3.4.Elastic properties

    The elastic properties of Mg,MgZn2,Mg2Y and Mg2La will be discussed in this section.Mg,MgZn2,Mg2Y and Mg2La belong to the hexagonal and cubic structures,respectively.The hexagonal structure has 5 independent elastic constants:C11,C12,C13,C33and C44,and the cubic structure has 3 elastic constants:C11,C12and C44.The corresponding mechanical stability conditions are C11>0,C11-C12>0, C44>0,(C11+C12)C33-2C213>0 for the hexagonal structure,and are C44>0,C11>|C12|,C11+2C12>0 for the cubic structure.The calculated elastic constants of Mg, MgZn2,Mg2Yand Mg2La are listed in Table 5.As can be seen in Table 5,these conditions are easily satis fi ed,and the obtained elastic constants are close to the available theoretical and experimental values.Therefore,the calculated elastic constants are credible,and the calculated conditions selected in this paper should be suitable.

    Mg2La phase is cubic structure.The bulk modulus B and shear modulus G are calculated as follows[34]

    Table 2Lattice constants and heats of formation of MgZn2,Mg2Y and Mg2La phases.

    Fig.2.Cohesive energies(Ecoh)of MgZn2,Mg2Y and Mg2La phases.

    The structures of Mg,MgZn2and Mg2Y phases are hexagonal.The bulk modulus B and shear modulus G are calculated as follows[35]

    The Poisson’s ratio ν and Young’s modulus E of Mg, MgZn2,Mg2Y and Mg2La are deduced according to the following formula

    Fig.3.Densities of states of MgZn2,Mg2Y and Mg2La phases.

    Table 6 lists the calculated elastic moduli Poisson’s ratios and universal elastic anisotropy indexes.The bulk modulus is usually assumed to be a measure of resistance to volume change by applied pressure,so the larger bulk moduli of MgZn2and Mg2Y show that they have stronger resistance to volume change by applied pressure.Besides,the shear modulus is a measure of resistance to reversible deformation upon shear stress.If the value of shear modulus is larger,the directional bonding between atoms is more pronounced.The calculated results demonstrate that Mg2Y has the largest shear modulus,and then followed by Mg2La and MgZn2.Hence,the directional bonding in Mg2Y would be much stronger those that in Mg2La and MgZn2.Furthermore,Young’s modulus provides a measure of stiffness of the solid.The larger the Young’s modulus is,the stiffer the material is.From the calculated values we found that Young’s modulus of Mg2Y is 59.48 GPa larger than those of Mg2La and MgZn2,indicating that Mg2Y is much stiffer than Mg2La and MgZn2.As indicated above,the elastic moduli of the three phases are larger than that of pure Mg.Hence,it is obvious that their mechanical properties are improved after alloying.

    The ratio of shear modulus to bulk modulus of phase can be used to predict the brittle and ductile behaviors of materials.A high(low)G/B value is associated with brittleness(ductility). The critical value separating ductility from brittleness is about 0.57.In the present work,the values of Mg,MgZn2,Mg2Yand Mg2La are 0.539,0.328,0.569 and 0.613,respectively, implying that Mg2La is brittle,while Mg,MgZn2and Mg2Y are ductile.On the other hand,the Poisson’s ratio is used to quantify the stability of the crystal against shear,which usually ranges from-1 to 0.5.The bigger the Poisson’s ratio is, the better the plasticity is.Most of the calculated Poisson’s ratios are very close to 0.25,which means that most of thematerials are with predominantly central interatomic forces [36].MgZn2has the biggest Poisson’s ratio among the three materials considered in this paper.

    All single crystals in practice are anisotropic,so an appropriate parameter is needed to characterize the extent of anisotropy.Recently,Ranganathan and Ostoja-Starzewski[37] summarized the existing anisotropy theories,and concluded that most of them are lack of universality because of their nonuniqueness and ignoring a large part of the elastic stiffness tensor.Then they developed a new universal anisotropy index, AU,which can be calculated by the following equation

    Table 3Mulliken electron populations of MgZn2,Mg2Y and Mg2La phases.

    where GV,BV,GRand BRare the shear moduli and bulk moduli estimated using Voigt and Reuss methods,respectively. The anisotropy indexes of Mg,MgZn2,Mg2Y and Mg2La are listed in Table 6,from which,we can conclude that the bulk and shear moduli values calculated by Voigt method are close to those calculated by Reuss method,and the difference between shear moduli calculated with Voigt and Reuss methods has a signif i cant effect on AU.The anisotropy decreases in the following sequence:Mg>MgZn2>Mg2La>Mg2Y.Besides pure Mg,MgZn2behaves more anisotropy than Mg2Y and Mg2La.

    Table 4Df,N,Vcelland fmof MgZn2,Mg2Y and Mg2La phases.

    Fig.4.The contour plots of density difference of electronic charges on(001) plane.

    3.5.Thermodynamic stability

    Here,the thermodynamic property is used to describe the structural stabilities of these compounds with the elevated temperature,especially their Gibbs free energy(G).The Gibbs free energy G of the calculated Mg,MgZn2,Mg2Yand Mg2La phases as a function of temperature from 297 to 573 K is depicted in Fig.5.It can be seen from Fig.5 that the values of the Gibbs free energy at the same temperature gradually decreaseinthefollowingsequence:Mg>Mg2Y>MgZn2>Mg2La.The smaller the Gibbs free energy is,the better the thermal stability of compound is[34].Hence,the calculated results of the Gibbs free energy show that the thermal stabilities of these compounds gradually increase in the following sequence:Mg<Mg2Y<MgZn2<Mg2La.The thermal stabilities of MgZn2,Mg2Y and Mg2La phases arebetter than that of pure Mg and do not change with the elevated temperature,that is to say,the addition of Zn,Y,La addition to the magnesium alloy can improve the heat resistance by forming MgZn2,Mg2Y and Mg2La phases.

    Table 5The calculated and experimental elastic constants of MgZn2,Mg2Y and Mg2La phases.

    Once the elastic constants and electronic structures of the compound are known,one can calculate the Debye temperature and heat capacity at the low-temperature.Debye temperature can be used to predict the thermodynamics of material from the elastic properties;it can be also used to distinguish between high-and low-temperature regions for a solid.For T>ΘD,all modes have energy of kBT,and for T<ΘD,one expects the high-frequency modes to be frozen [38].ΘDcan be estimated from the average sound velocity by the following equations[39]

    Table 6The calculated and experimental elastic moduli,Poisson’s ratios and universal elastic anisotropy indexes of MgZn2,Mg2Y and Mg2La phases.

    Fig.5.The Gibbs free energies of Mg,MgZn2,Mg2Y and Mg2La phases as functions of temperature.

    where ΘDis the Debye temperature,h and kBare the Planck and Boltzmann constants,respectively,n is the total number of atoms per formula,NAis the Avogadro number,M is the molecular weight per formula,vmis the average sound velocity,vlis the longitudinal sound velocity,and vsthe shear sound velocity.The calculated results of ΘD,vland vsare listed in Table 7.The largest ΘDis 317.02 K for Mg2Y.It is known that ΘDcan be used to characterize the strength of covalent bonds in solids.From Table 7,we can conclude that the covalent bond in Mg2Y is stronger than those in other phases.Besides,the sequence of ΘDfor these phases is Mg2Y>Mg2La>MgZn2,which is consistent with the observed trend of Young’s modulus and shear modulus,as shown in Table 6.From the values of ΘD,Young’s modulus and shear modulus,we may conclude that the mechanical stability of Mg2Y is the best among three phases.

    Besides,since MgZn2,Mg2Y and Mg2La phases studied in the present paper have the metallic feature at the Fermi level, the calculations of the electronic structures and elastic constants enable us to estimate the heat capacity(cp)at the lowtemperature,which is given as

    Table 7Theoretically calculated thermal properties of MgZn2,Mg2Y and Mg2La phases.

    Fig.6.Heat capacities of MgZn2,Mg2Y and Mg2La phases in the range of 0-25 K.

    where γ and β are the coeff i cients of electronic and lattice heat capacities,respectively;n is the total number of atoms per formula unit;R is the molar gas constant.Heat capacity is an invaluable tool to explore the fundamental properties of materials.Note that ΘD,as a rule,only describes the temperature dependence of cpfor T<ΘD/10[40].Fig.6 shows cpvs T in the range of 0-25 K for three phases.As can be seen from Fig.6,the main contribution to cpis the excitation of electrons at 13 K,the values of cpchange in the sequence of Mg2Y>Mg2La>MgZn2,and the change of cpis consistent with the change of γ,indicating the heat capacities are determined by the electrons at f i rst;besides,in Table 7,the smallest value of γ=10.1431×10-3J/(K2mol)is attributed to MgZn2,and because it has the smallest DOS value at the Fermi level(Df),MgZn2has the weakest metallic nature among three phases.In the range of 13-25 K,the contribution from phonon excitation must be taken into account.As a result,the growth trend of cpis MgZn2>Mg2La>Mg2Y, which is the same as the sequence of β.Thus,it can conclude that the heat capacity is determined by the electron excitation at very low temperatures(near 0 K),and the contribution from phonon excitation is signif i cant at high temperature.

    4.Conclusions

    The electronic structures,elastic properties and thermodynamics of MgZn2,Mg2Y and Mg2La were determined from fi rst-principles calculation.The calculated heats of formation and cohesive energies show that Mg2La has the strongest alloying ability and structural stability.The calculations of bonding electron numbers show that Mg2La has the strongest structural stability.The calculated elastic constants show that three phases are mechanically stable.The calculated bulk moduli B,shear moduli GU,Young’s moduli E,Poisson ratio ν and elastic anisotropy Ashow that Mg2La is brittle,while MgZn2and Mg2Y are ductile;the stiffness of Mg2Y is the highest;MgZn2has the best plasticity and anisotropy among three phases.The calculations of thermodynamic properties show that the Gibbs free energies of MgZn2,Mg2Yand Mg2La decrease,while the heat capacity Cvincreases with the elevated temperature.The calculated results of the Gibbs free energy show that the thermal stability of these compounds gradually increases in the order of Mg2Y<MgZn2<Mg2La. The calculated Debye temperature,Young’s modulus and shear modulus show that the mechanical stability of Mg2Y is the best among three phases.

    Acknowledgments

    We are grateful for the support of the National Natural Science Foundation of China(NSFC)for support under Grant No.51005217.Dr.Chen is grateful for the support from China Postdoctoral Science Foundation Grant No.20100480677.

    [1]Li YG,Liu SR,Liu HL.Mechanical properties and microstructure of MB26 alloy under different condition of hot working process.Chin J Rare Met 2004;28:942-6[in Chinese].

    [2]Chen Q,Shu DY,Zhao ZD,Zhao ZX,Wang YB,Yuan BG.Microstructuredevelopmentandtensilemechanicalpropertiesof Mg-Zn-RE-Zr magnesium alloy.Mater Des 2012;40:488-96.

    [3]Chen Q,Yuan BG,Zhao GZ,Shu DY,Hu CK,Zhao ZD,et al.Microstructural evolution during reheating and tensile mechanical properties of thixoforged AZ91D-RE magnesium alloy prepared by squeeze castingsolid extrusion.Mater Sci Eng A 2012;537:25-38.

    [4]Chen Q,Zhao ZD,Zhao ZX,Hu CK,Shu DY.Microstructure development and thixoextrusion of magnesium alloy prepared by repetitive upsetting-extrusion.J Alloy Compd 2011;509:7303-15.

    [5]Chen Q,Lin J,Shu DY,Hu CK,Zhao ZD,Kang F,et al.Microstructure development,mechanical properties and formability of Mg-Zn-Y-Zr magnesium alloy.Mater Sci Eng A 2012;554:129-41.

    [6]Bettles CJ,Gibson MA.Microstructural design for enhanced elevated temperature properties in sand-castable magnesium alloys.Adv Eng Mater 2003;12:859-65.

    [7]Mordike BL.Creep-resistant magnesium alloys.Mater Sci Eng A 2002;324:103-12.

    [8]Zhou DW,Xu SH,Zhang FQ.First-principles calculations of structural stabilities and elastic properties of AB(2)type intermetallics in ZA62 magnesium alloy.Acta Metall Sin 2010;46:97-103.

    [9]Wang YF,Zhang WB,Wang ZZ.First-principles study of structural stabilities and electronic characteristics of Mg-La intermetallic compounds.Comput Mater Sci 2007;41:78-85.

    [10]Zhang H,Shang SL,Saal JE.Enthalpies of formation of magnesium compoundsfromf i rst-principlescalculations.Intermetallics 2009;17:878-85.

    [11]Ganeshan S,Shang SL,Zhang H.Elastic constants of binary Mg compoundsfromf i rst-principlescalculations.Intermetallics 2009;17:313-8.

    [12]Wrobel J,Hector LG,Wolf W.Thermodynamic and mechanical properties of lanthanum-magnesium phases from density functional theory.J Alloy Compd 2012;512:296-310.

    [13]Shang SL,Wang Y,Kim DE.First-principles thermodynamics from phonon and Debye model:application to Ni and Ni3Al.Comput Mater Sci 2010;47:1040-8.

    [14]Zhao KM,Jiang G,Wang LL.Electronic and thermodynamic properties ofB2-FeSifromf i rstprinciples.PhysicaBCondensMatter 2011;406:363-7.

    [15]Pang MJ,Zhan YZ,Wang HZ.Structural,electronic,elastic and thermodynamic properties of AlSi2RE(RE=La,Ce,Pr and Nd)from f i rstprinciple calculations.Comput Mater Sci 2011;50:3303-10.

    [16]Xiao B,Feng J,Zhou CT,Xing JD,Xie XJ,Cheng YH,et al.The elasticity,bond hardness and thermodynamic properties of X2B(X=Cr, Mn,Fe,Co,Ni,Mo,W)investigated by DFT theory.Physica B Condens Matter 2010;405:1274-8.

    [17]Hector LG,Herbst JF,Wolf W.Ab initio thermodynamic and elastic properties of alkaline-earth metals and their hydrides.Phys Rev B 2007;76:014121.1-18.

    [18]Herbst JF,Hector LG.Structural discrimination via density functional theory and lattice dynamics:monoclinic Mg2NiH4.Phys Rev B 2009;79. 155113-1,7.

    [19]Herbst JF,Hector LG.Energetics of the Li amide/Li imide hydrogen storage reaction.Phys Rev B 2005;72.125120-1,8.

    [20]Shi DM,Wen B,Melnik R.First-principles studies of Al-Ni intermetallic compounds.J Solid State Chem 2009;182:2664-9.

    [21]FaganSB,MotaR,BaierleRJ.Stabilityinvestigationandthermalbehavior of a hypothetical silicon nanotube.J Mol Struct 2001;539:101-6.

    [22]Pack JD,Monkhors HJ.Special points for Brillouin zone integrations’-a reply.Phys Rev B 1977;16:1748-9.

    [23]Perdew JP,Burke K,Ernzerh M.Generalized gradient approximation made simple.Phys Rev Lett 1996;77:3865-8.

    [24]NykenJ,GarciaFJ,MoselBD.Structuralrelationships,phasestabilityand bondingofcompoundsPdSnn(n=2,3,4).SolidStateSci2004;6:147-55. [25]Hector LG,Herbst JF.Electronic structure calculations for LaNi5and LaNi5H7:energeticsandelasticproperties.JAlloyCompd 2003;353:74-85.

    [26]Shang SL,Hector LG.First-principles study of elastic and phonon properties of the heavy fermion compound CeMg.J Phys Condens Matter 2009;21(24):246001-12.

    [27]Hector LG,Herbst JF.Density functional theory for hydrogen storage materials:successesandopportunities.JPhysCondensMatter 2008;20(6):64229-39.

    [28]Li CH,Hoe JL,Wu P.Empirical correlation between melting temperature and cohesive energy of binary Laves phases.J Phys Chem Solids 2003;64:201-12.

    [29]Miedema AR,Dechatel PF,Deboer FR.Cohesion in alloys-fundamentals of a semi-empirical model.Physica B+C 1980;100:1-28.

    [30]Chen L,Peng P,Li GF.First-principle calculation of point defective structures of B2-RuAl intermetallic compound.Rare Metal Mater Eng 2006;35:1065-70.

    [31]Zhou DW,Liu JS,Xu SH.Thermal stability and elastic properties of Mg3Sb2and Mg3Bi2phases from f i rst-principles calculations.Physica B Conden Matter 2010;405:2863-8.

    [32]Li YF,Gao YM,Xiao B.Theoretical study on the stability,elasticity, hardness and electronic structures of W-C binary compounds.J Alloy Compd 2010;502:28-37.

    [33]Yu WY,Wang N,Xiao XB,Tang BY,Peng LM,Ding WJ.First-principles investigation of the binary AB2 type Laves phase in Mg-Al-Ca alloy: electronicstructureandelasticproperties.SolidStateSci2009;11:1400-7. [34]Anderson OL.A simplif i ed method for calculating the Debye temperature from elastic constants.J Phys Chem Solids 1963;24:909-17.

    [35]Kanoun MB,Goumri-Said S,Reshak AH.Theoretical study of mechanical,electronic,chemical bonding and optical properties of Ti2SnC, Zr2SnC,Hf2SnC and Nb2SnC.Comput Mater Sci 2009;47:491-500.

    [36]Mattesini M,Ahuja R,Johansson B.Cubic Hf3N4and Zr3N4:a class of hard materials.Phys Rev B 2003;68.184108.

    [37]Ranganathan SI,Ostoja-Starzewski M.Universal elastic anisotropy index.Phys Rev Lett 2008;101(5).055504.

    [38]Mayer B,Anton H,Bolt E.Ab-initio calculation of the elastic constants and thermal expansion coeff i cients of Laves phases.Intermetallics 2003;11:23-32.

    [39]Deligoz E,Ciftci YO,Jochym PT.The f i rst principles study on PtC compound.Mater Chem Phys 2008;111:29-33.

    [40]Drulis MK,Czopnik A,Drulis H.On the heat capacity of Ti3GeC2.Mater Sci Eng B 2005;119:159-63.

    25 April 2012;revised 20 August 2013;accepted 27 August 2013 Available online 3 October 2013

    *Corresponding author.School of Materials Science and Engineering, Harbin Institute of Technology at Weihai,Weihai 264209,China.

    E-mail address:chengang2003@126.com(G.Chen).

    Peer review under responsibility of China Ordnance Society

    Production and hosting by Elsevier

    2214-9147/$-see front matter Copyright?2013,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.dt.2013.09.011

    又紧又爽又黄一区二区| 亚洲精品国产区一区二| 久久久久国产精品人妻一区二区| 美女国产高潮福利片在线看| videos熟女内射| 19禁男女啪啪无遮挡网站| 国产黄色免费在线视频| svipshipincom国产片| 欧美 亚洲 国产 日韩一| 久久精品国产a三级三级三级| 亚洲成av片中文字幕在线观看| 日韩人妻精品一区2区三区| 大码成人一级视频| 婷婷色综合www| 晚上一个人看的免费电影| 熟女av电影| 久久久久久久久久久久大奶| 国产精品三级大全| 亚洲欧美日韩另类电影网站| 黄片小视频在线播放| 亚洲国产欧美一区二区综合| 中文字幕最新亚洲高清| 丰满饥渴人妻一区二区三| 国产午夜精品一二区理论片| 国产精品 国内视频| 又粗又硬又长又爽又黄的视频| 国产成人a∨麻豆精品| 每晚都被弄得嗷嗷叫到高潮| 五月开心婷婷网| 亚洲一区二区三区欧美精品| 中文字幕人妻熟女乱码| 桃花免费在线播放| 大片电影免费在线观看免费| 男女边吃奶边做爰视频| 午夜老司机福利片| 精品久久久久久电影网| 亚洲伊人久久精品综合| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧洲日产国产| 黑人欧美特级aaaaaa片| 人人妻人人添人人爽欧美一区卜| 精品一区二区三区av网在线观看 | 女人被躁到高潮嗷嗷叫费观| 人人妻,人人澡人人爽秒播 | 亚洲人成77777在线视频| 麻豆乱淫一区二区| 亚洲国产欧美日韩在线播放| 亚洲av成人不卡在线观看播放网 | 成人午夜精彩视频在线观看| 亚洲激情五月婷婷啪啪| 色视频在线一区二区三区| 国产精品一二三区在线看| 久久久欧美国产精品| 亚洲av欧美aⅴ国产| 一级片'在线观看视频| 日韩免费高清中文字幕av| 亚洲精品国产区一区二| 精品国产超薄肉色丝袜足j| 另类精品久久| 欧美成人精品欧美一级黄| videos熟女内射| 男女无遮挡免费网站观看| 国产精品久久久人人做人人爽| 免费在线观看完整版高清| 成人亚洲欧美一区二区av| 大型av网站在线播放| 欧美亚洲 丝袜 人妻 在线| 美女主播在线视频| 菩萨蛮人人尽说江南好唐韦庄| 一级毛片电影观看| 这个男人来自地球电影免费观看| 中文字幕亚洲精品专区| 丁香六月天网| 欧美老熟妇乱子伦牲交| 日韩一本色道免费dvd| 亚洲成国产人片在线观看| 777米奇影视久久| 久久精品久久精品一区二区三区| 久久久久久久久免费视频了| 女人爽到高潮嗷嗷叫在线视频| 欧美成人精品欧美一级黄| 亚洲成av片中文字幕在线观看| 亚洲一码二码三码区别大吗| 亚洲人成电影免费在线| 两个人看的免费小视频| 一二三四在线观看免费中文在| 国产精品久久久久久精品古装| 国产精品国产av在线观看| 久久人妻熟女aⅴ| 观看av在线不卡| av天堂久久9| 91精品国产国语对白视频| 午夜91福利影院| 久久久久久免费高清国产稀缺| 青春草视频在线免费观看| 日韩熟女老妇一区二区性免费视频| 只有这里有精品99| 成人三级做爰电影| 啦啦啦视频在线资源免费观看| 亚洲精品成人av观看孕妇| 女人高潮潮喷娇喘18禁视频| 捣出白浆h1v1| 亚洲黑人精品在线| 免费观看a级毛片全部| 777米奇影视久久| 免费日韩欧美在线观看| av线在线观看网站| 亚洲人成网站在线观看播放| 大话2 男鬼变身卡| 观看av在线不卡| 99热网站在线观看| 欧美国产精品一级二级三级| 欧美成狂野欧美在线观看| 精品人妻1区二区| 韩国精品一区二区三区| 18禁观看日本| 男男h啪啪无遮挡| 日本午夜av视频| 亚洲国产中文字幕在线视频| 人妻人人澡人人爽人人| 亚洲 国产 在线| 蜜桃在线观看..| 欧美激情高清一区二区三区| 国产黄色免费在线视频| 久久久精品国产亚洲av高清涩受| 搡老乐熟女国产| 国产片特级美女逼逼视频| 欧美亚洲日本最大视频资源| 午夜福利乱码中文字幕| 美女大奶头黄色视频| 777米奇影视久久| 大片免费播放器 马上看| 欧美乱码精品一区二区三区| 无限看片的www在线观看| 久久精品久久久久久久性| 精品亚洲成国产av| 欧美人与善性xxx| 亚洲欧美一区二区三区黑人| 亚洲人成电影观看| 国产成人91sexporn| 亚洲av电影在线观看一区二区三区| 9191精品国产免费久久| 手机成人av网站| 丝瓜视频免费看黄片| 99国产精品免费福利视频| 久久精品亚洲av国产电影网| 一本久久精品| 亚洲,欧美精品.| 日本一区二区免费在线视频| 老司机在亚洲福利影院| 日韩熟女老妇一区二区性免费视频| 18禁裸乳无遮挡动漫免费视频| a 毛片基地| 一二三四社区在线视频社区8| 日韩一卡2卡3卡4卡2021年| a级毛片黄视频| 熟女av电影| 亚洲欧洲国产日韩| 欧美成人午夜精品| 叶爱在线成人免费视频播放| 亚洲精品在线美女| 久久女婷五月综合色啪小说| 精品欧美一区二区三区在线| 免费在线观看影片大全网站 | 色婷婷av一区二区三区视频| 国产精品一二三区在线看| 久久久国产精品麻豆| 一本—道久久a久久精品蜜桃钙片| 下体分泌物呈黄色| 波野结衣二区三区在线| 婷婷丁香在线五月| 美女视频免费永久观看网站| 亚洲国产精品一区二区三区在线| 脱女人内裤的视频| 久久精品熟女亚洲av麻豆精品| 久久精品亚洲av国产电影网| 中文字幕精品免费在线观看视频| 99re6热这里在线精品视频| 极品人妻少妇av视频| 手机成人av网站| 捣出白浆h1v1| 一级片'在线观看视频| 激情视频va一区二区三区| 成人亚洲精品一区在线观看| 国产高清videossex| 中文字幕制服av| 男女免费视频国产| 国产成人免费无遮挡视频| 国产xxxxx性猛交| 亚洲人成电影观看| 日韩免费高清中文字幕av| 国产欧美日韩一区二区三 | 丝袜在线中文字幕| 亚洲精品久久成人aⅴ小说| 人体艺术视频欧美日本| 日本午夜av视频| 国产精品一区二区免费欧美 | 亚洲精品国产区一区二| 精品人妻在线不人妻| 人成视频在线观看免费观看| 极品人妻少妇av视频| 国产1区2区3区精品| av天堂在线播放| 国产成人精品久久久久久| 午夜久久久在线观看| 国产高清视频在线播放一区 | 亚洲精品国产一区二区精华液| 欧美成人精品欧美一级黄| 亚洲七黄色美女视频| 亚洲欧美日韩高清在线视频 | 国产在线一区二区三区精| 久久免费观看电影| 亚洲自偷自拍图片 自拍| 午夜免费观看性视频| 亚洲人成电影免费在线| 亚洲三区欧美一区| 欧美在线一区亚洲| 一本综合久久免费| 黄色视频不卡| 在线观看国产h片| 涩涩av久久男人的天堂| 麻豆国产av国片精品| 国产精品熟女久久久久浪| 男女床上黄色一级片免费看| 欧美另类一区| 亚洲国产精品国产精品| 丝袜人妻中文字幕| 婷婷色综合www| www.999成人在线观看| 91麻豆av在线| 午夜免费成人在线视频| 成人黄色视频免费在线看| 在线 av 中文字幕| 国产av精品麻豆| 久久国产精品人妻蜜桃| 国产精品久久久av美女十八| av福利片在线| 水蜜桃什么品种好| 男女免费视频国产| 女人爽到高潮嗷嗷叫在线视频| 免费在线观看完整版高清| 成年女人毛片免费观看观看9 | 亚洲一区二区三区欧美精品| 久久久久网色| 你懂的网址亚洲精品在线观看| 欧美日韩视频高清一区二区三区二| 巨乳人妻的诱惑在线观看| 精品国产乱码久久久久久小说| 午夜激情av网站| 天天添夜夜摸| 国产免费视频播放在线视频| 久久精品国产亚洲av涩爱| 一级片'在线观看视频| 亚洲av成人不卡在线观看播放网 | 黄片播放在线免费| 赤兔流量卡办理| 七月丁香在线播放| 成人国产一区最新在线观看 | 乱人伦中国视频| 国产精品偷伦视频观看了| 国产精品熟女久久久久浪| 国产精品.久久久| 欧美大码av| 欧美在线黄色| 成人国产av品久久久| 天堂8中文在线网| 精品国产一区二区三区四区第35| 最黄视频免费看| 亚洲专区国产一区二区| 久久中文字幕一级| 亚洲av片天天在线观看| 成人免费观看视频高清| 久久久久久久精品精品| 国产午夜精品一二区理论片| √禁漫天堂资源中文www| 老熟女久久久| 欧美日韩福利视频一区二区| 激情视频va一区二区三区| 欧美精品一区二区大全| 在线 av 中文字幕| 久久精品国产亚洲av高清一级| 精品少妇内射三级| 国产在线免费精品| 久久国产精品人妻蜜桃| 国产91精品成人一区二区三区 | 国产精品久久久久久人妻精品电影 | 国产一区二区三区综合在线观看| 欧美国产精品一级二级三级| 午夜免费观看性视频| 十分钟在线观看高清视频www| 国产欧美日韩一区二区三区在线| 亚洲五月婷婷丁香| 一边摸一边做爽爽视频免费| 一级,二级,三级黄色视频| 我要看黄色一级片免费的| 国产免费现黄频在线看| 久久 成人 亚洲| 熟女av电影| 国产精品三级大全| 精品一区二区三卡| 女人精品久久久久毛片| 精品亚洲成a人片在线观看| 免费在线观看黄色视频的| 黄网站色视频无遮挡免费观看| 国产精品久久久久久人妻精品电影 | 国产精品秋霞免费鲁丝片| 亚洲av综合色区一区| 麻豆av在线久日| 亚洲精品日本国产第一区| 欧美日韩综合久久久久久| 啦啦啦在线免费观看视频4| 亚洲精品一二三| 中文精品一卡2卡3卡4更新| av在线app专区| 女警被强在线播放| 亚洲精品在线美女| 欧美亚洲 丝袜 人妻 在线| 午夜激情av网站| 久久精品国产亚洲av高清一级| 午夜91福利影院| 女人久久www免费人成看片| 人人妻人人添人人爽欧美一区卜| 99国产精品免费福利视频| 中文字幕最新亚洲高清| a级片在线免费高清观看视频| 亚洲精品国产一区二区精华液| 国产精品麻豆人妻色哟哟久久| 国产成人91sexporn| 中文字幕制服av| 成人黄色视频免费在线看| 一区二区三区激情视频| 国产精品偷伦视频观看了| 亚洲欧美日韩另类电影网站| 亚洲人成电影观看| 久久精品久久久久久久性| 婷婷色麻豆天堂久久| 曰老女人黄片| 免费高清在线观看日韩| 国产成人av激情在线播放| 午夜福利视频在线观看免费| 成人手机av| 日日夜夜操网爽| 亚洲av成人不卡在线观看播放网 | 一级毛片黄色毛片免费观看视频| 激情五月婷婷亚洲| 女人被躁到高潮嗷嗷叫费观| 大型av网站在线播放| 啦啦啦视频在线资源免费观看| 午夜福利一区二区在线看| 国产成人av教育| 九色亚洲精品在线播放| 成人亚洲精品一区在线观看| 精品久久蜜臀av无| 2021少妇久久久久久久久久久| 国产主播在线观看一区二区 | 一级毛片我不卡| 久热这里只有精品99| 18禁黄网站禁片午夜丰满| 亚洲午夜精品一区,二区,三区| 日本黄色日本黄色录像| 国产男女内射视频| 男人舔女人的私密视频| 欧美精品人与动牲交sv欧美| 91精品伊人久久大香线蕉| 一区二区日韩欧美中文字幕| 国产极品粉嫩免费观看在线| 男人爽女人下面视频在线观看| 黄色一级大片看看| 多毛熟女@视频| 亚洲图色成人| 免费高清在线观看视频在线观看| 高清欧美精品videossex| 在线精品无人区一区二区三| 91麻豆av在线| 亚洲av成人不卡在线观看播放网 | 日本vs欧美在线观看视频| 久久精品久久久久久久性| 在线看a的网站| 免费在线观看日本一区| 午夜福利乱码中文字幕| 菩萨蛮人人尽说江南好唐韦庄| 另类精品久久| 日韩av不卡免费在线播放| 老司机影院成人| 久久精品人人爽人人爽视色| 黄片播放在线免费| 一区二区日韩欧美中文字幕| 少妇的丰满在线观看| 欧美 日韩 精品 国产| 电影成人av| 亚洲精品久久午夜乱码| 久久久国产欧美日韩av| 亚洲五月婷婷丁香| 女性被躁到高潮视频| 国产高清不卡午夜福利| 青春草亚洲视频在线观看| 国产一区有黄有色的免费视频| 别揉我奶头~嗯~啊~动态视频 | 欧美 日韩 精品 国产| 母亲3免费完整高清在线观看| 亚洲国产欧美网| 欧美黄色片欧美黄色片| 欧美日韩亚洲国产一区二区在线观看 | 啦啦啦在线免费观看视频4| 欧美变态另类bdsm刘玥| 狂野欧美激情性xxxx| 日韩制服丝袜自拍偷拍| 亚洲免费av在线视频| 国产日韩欧美在线精品| 男女高潮啪啪啪动态图| 欧美人与善性xxx| 啦啦啦在线免费观看视频4| 国产免费现黄频在线看| 2021少妇久久久久久久久久久| 国产成人精品无人区| 手机成人av网站| 男女边摸边吃奶| 午夜两性在线视频| 亚洲人成电影免费在线| 91成人精品电影| 精品欧美一区二区三区在线| 国产精品国产av在线观看| 久久综合国产亚洲精品| 19禁男女啪啪无遮挡网站| 亚洲av片天天在线观看| 最近最新中文字幕大全免费视频 | 国产欧美日韩综合在线一区二区| 久久人人97超碰香蕉20202| 七月丁香在线播放| 天堂俺去俺来也www色官网| 成人黄色视频免费在线看| 欧美+亚洲+日韩+国产| 一级毛片 在线播放| 国产精品久久久av美女十八| 亚洲精品国产色婷婷电影| 国产伦理片在线播放av一区| 91精品国产国语对白视频| 久久中文字幕一级| 国产精品99久久99久久久不卡| 只有这里有精品99| 伊人久久大香线蕉亚洲五| 国产精品亚洲av一区麻豆| 亚洲国产看品久久| 亚洲av电影在线观看一区二区三区| 国产一区二区三区综合在线观看| 91九色精品人成在线观看| 久久热在线av| 亚洲精品一二三| 一区二区三区四区激情视频| 90打野战视频偷拍视频| 国产老妇伦熟女老妇高清| 麻豆av在线久日| 欧美亚洲日本最大视频资源| 亚洲国产av影院在线观看| 亚洲欧美色中文字幕在线| www.熟女人妻精品国产| 19禁男女啪啪无遮挡网站| 人妻人人澡人人爽人人| 一级,二级,三级黄色视频| 免费看av在线观看网站| 操美女的视频在线观看| 美女中出高潮动态图| 久久午夜综合久久蜜桃| 国产在线免费精品| 老司机亚洲免费影院| 国产女主播在线喷水免费视频网站| 午夜两性在线视频| 国产麻豆69| 午夜影院在线不卡| 国产日韩一区二区三区精品不卡| 国产免费现黄频在线看| 亚洲欧美中文字幕日韩二区| 两性夫妻黄色片| 亚洲图色成人| 高清av免费在线| 亚洲,欧美精品.| 亚洲成人手机| 99国产精品一区二区蜜桃av | 国产麻豆69| 搡老岳熟女国产| 激情五月婷婷亚洲| 国产精品.久久久| 老司机影院成人| 久久精品亚洲av国产电影网| 亚洲少妇的诱惑av| 国产激情久久老熟女| 欧美黑人欧美精品刺激| 热re99久久国产66热| 亚洲欧美一区二区三区黑人| 久久精品久久久久久久性| 中文字幕人妻熟女乱码| 午夜福利视频在线观看免费| 青春草亚洲视频在线观看| 国产成人精品在线电影| 国产精品99久久99久久久不卡| 麻豆国产av国片精品| 一个人免费看片子| 国产一区二区 视频在线| 90打野战视频偷拍视频| 欧美精品亚洲一区二区| 国产一区二区三区av在线| 亚洲国产精品国产精品| 一级毛片 在线播放| 午夜福利视频在线观看免费| 久久久久久亚洲精品国产蜜桃av| 新久久久久国产一级毛片| 欧美日韩一级在线毛片| 国产高清视频在线播放一区 | 18禁黄网站禁片午夜丰满| 自线自在国产av| bbb黄色大片| 三上悠亚av全集在线观看| 欧美日韩福利视频一区二区| 三上悠亚av全集在线观看| 操出白浆在线播放| 亚洲专区中文字幕在线| bbb黄色大片| 亚洲av成人不卡在线观看播放网 | 大码成人一级视频| 日本欧美视频一区| 欧美黄色淫秽网站| 国产又爽黄色视频| 成人三级做爰电影| 精品人妻在线不人妻| 成人影院久久| 午夜福利,免费看| 国产99久久九九免费精品| 国产高清不卡午夜福利| 国产亚洲av高清不卡| 国产麻豆69| 国产精品国产av在线观看| 亚洲成人手机| 丝袜人妻中文字幕| videos熟女内射| 亚洲国产精品一区三区| 丝袜美腿诱惑在线| 久久久精品区二区三区| 各种免费的搞黄视频| 男女床上黄色一级片免费看| 不卡av一区二区三区| 亚洲美女黄色视频免费看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩视频高清一区二区三区二| 中文字幕人妻丝袜制服| 妹子高潮喷水视频| 亚洲,欧美精品.| 人妻人人澡人人爽人人| 最近最新中文字幕大全免费视频 | 丝袜人妻中文字幕| 亚洲中文字幕日韩| 国产精品一国产av| 午夜视频精品福利| 菩萨蛮人人尽说江南好唐韦庄| 在线观看人妻少妇| 婷婷丁香在线五月| 欧美黑人精品巨大| 国产高清国产精品国产三级| 在线精品无人区一区二区三| 真人做人爱边吃奶动态| 叶爱在线成人免费视频播放| 欧美国产精品va在线观看不卡| 久久久久久久久久久久大奶| 侵犯人妻中文字幕一二三四区| 久久九九热精品免费| 国产高清视频在线播放一区 | 男女边吃奶边做爰视频| a级片在线免费高清观看视频| 亚洲欧美日韩高清在线视频 | 国产成人精品在线电影| 一边摸一边做爽爽视频免费| 亚洲精品乱久久久久久| 捣出白浆h1v1| 九色亚洲精品在线播放| e午夜精品久久久久久久| 欧美黑人欧美精品刺激| 中文乱码字字幕精品一区二区三区| 久久精品久久久久久噜噜老黄| 久久毛片免费看一区二区三区| 人妻人人澡人人爽人人| 波多野结衣一区麻豆| 欧美黑人精品巨大| 天天躁日日躁夜夜躁夜夜| 欧美成狂野欧美在线观看| 久久狼人影院| 男男h啪啪无遮挡| 免费高清在线观看视频在线观看| 搡老岳熟女国产| 国产免费视频播放在线视频| 汤姆久久久久久久影院中文字幕| 国产精品久久久av美女十八| 日日爽夜夜爽网站| 日韩大码丰满熟妇| 搡老岳熟女国产| 在线观看免费高清a一片| 国产黄色免费在线视频| 午夜影院在线不卡| 少妇猛男粗大的猛烈进出视频| 久久精品成人免费网站| 亚洲欧美色中文字幕在线| 国产1区2区3区精品| 超色免费av| 天天影视国产精品| 99国产精品99久久久久| 国产精品偷伦视频观看了| 精品国产一区二区三区四区第35| 99久久综合免费| 中文欧美无线码| 午夜免费观看性视频| 午夜福利影视在线免费观看| 别揉我奶头~嗯~啊~动态视频 | 成年人黄色毛片网站| 男女无遮挡免费网站观看| 亚洲国产最新在线播放| 亚洲色图 男人天堂 中文字幕| 午夜免费观看性视频|