• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Algorithm for TSP Using Hopfield Neural Network with Continuous Hysteresis Neurons

    2013-07-19 08:46:20ZHANGWei
    關鍵詞:結構圖收斂性百分比

    ZHANG Wei

    (Mathematics,Physics and Information Science School of Zhejiang Ocean University,Zhoushan 316004,China)

    1 Intorduction

    The auto associative memory model proposed by HOPFIELD[1-2]has attracted considerable interest both as a content address memory(CAM)and,more interestingly,as a method of solving difficult optimization problems[3-5].The Hopfield neural network contain highly interconnected nonlinear processing elements(“neurons”)with two-state threshold neurons[1]or graded response neurons[2].TAKEFUJI and LEE[6]proposed a two-state(binary)hysteretic neuron model to suppress the oscillatory behaviors of neural dynamics.However,TATESHI AND TAMURA[7]showed TAKEFUJI and LEE’s model did not always guarantee the descent of energy function,WANG[8]also explained why the model may lead to inaccurate results and oscillatory behaviors in the convergence process.Since their report,several modifications on the hysteretic function,for example GALáN and MU?OZ’s[9]binary and BHARITKAR and MENDEL’s[10]multivalued hysteretic functions.Despite the improvement of the performance of the Hopfield networks over the past decade,this model still has some basic problems and no satisfactory refinement was found,when applied to the TSP[11-12].

    In this paper,we introduce a new Hopfield neural network algorithm for efficient solving TSP.Different to the original Hopfield neural network,our architecture uses continuous hysteresis neurons.We prove theoretically that the emergent collective properties of the original Hopfield neural network also are present in the Hopfield network with continuous hysteresis neurons.Simulations of randomly generated neural networks are performed on both networks and show that the Hopfield neural networks with continuous hysteresis neurons have the collective computational properties like the original Hopfield neural networks.What a more,the Hopfield neural networks with continuous hysteresis neuron converges faster than the original Hopfield neural networks do.In order to see how well the Hopfield neural networks with continuous hysteresis neurons do for solving practical combinatorial optimization problems,a large number of computer simulations are carried out for the TSP.The simulation results show that the Hopfield neural network architecture with continuous hysteresis neurons is much better than the previous works including the original Hopfield neural network architecture and Hopfield neural network with hysteresis binary neurons for the TSP in terms of both the computation time and the solution quality.

    2 Hopfield Network with Continuous Hysteresis Neurons

    For the original Hopfield neural networks,let the output variable yifor neuron i have the rangeand be an continuous and monotone-increasing function of the instantaneous input xito neuron i.The typical input-output relation gi(xi)yi=1/(1+e)shown in Fig.1(a)is sigmoid with asymptotes y0iand y1i.as,

    Where r is the gain factor and θ is the threshold parameter.

    In biological system,xiwill lag behind the instantaneous outputs yiof the other cells because of the input capacitance C of the cell membranes,the transmenmbrane resistance R,and the finite impedancebetween the output yiand the cell body of cell i.Thus there is a resistance-capacitance(RC)charging equation that determines the rate of change of xi.

    where Ciis the total input capacitance of the amplifier i and its associated input lead.wijyirepresents the electrical current input to cell i due to the present potential of cell j,and wijis thus the synapse efficacy.Iiis any other(fixed)input current to neuron i.In terms of electrical circuits,gi(xi)represents the input-output characteristic of a nonlinear amplifier with negligible response time.It is convenient also to define the inverse output-input relation,

    In order to improve the solution quality of TSP,we proposed a new neural network method for efficiently solving the TSP.In this method,a continuous hysteresis neuron is applied to the Hopfield neural network.

    The hysteresis continuous neurons change the value of their output or leave them fixed according to a hysteretic threshold rule(Fig.1(b)).Mathematically,hysteretic neuron function is described as:

    β>α,and(γα,γβ)>0,there is a resistance-capacitance(RC)charging equation that determines the rate of change of xi.

    Consider the energy:

    Its time derivative for a symmetric W is:

    The parenthesis is the right-hand side of Eq.6,so

    Since g-1i(yi)is a monotone increasing function and Ciis positive,each term in this sum is nonnegative.Therefore:

    Together with the boundedness of E,Eq.(6)shows that the time evolution of the system is a motion in state space that seeks out minima in E and comes to a stop at such points.E is a Liapunov function for the system.

    Fig.1 Hysteresis functions圖1 連續(xù)滯后神經元結構圖

    3 Application to TSP

    The TSP is a classic of difficult optimization problem.It may be stated as follows:given a group of cities to be visited and the distance between each city,find the shortest tour that visits each city only once and re-turns to the starting point.If an initial arbitrary ordering of the N cities is given,a solution to the TSP may be represented as an N×N permutation matrix.Each row of this matrix corresponds to a particular city,while each column corresponds to a particular position in the tour.HOPFIELD and TANK[3]proposed an approach of using a neural network to find a suboptimal solution of the TSP.In their approach,a TSP instance is represented by an energy function including the cost and constraint terms that reflect the objective of a solution.The objective of the constraint term is to find a valid tour,which requires that each city must be visited once and only once.The objective of the cost term is to find the shortest valid tour.

    The constraints and the cost function for the TSP can be represented by an energy function.The Hopfield’s original energy function for an N-city TSP is given by[3]:

    where x and y are row indices;i and j are column indices;vxiis output value for each neuron;dxyis a measure of the distance between cities x and y.The first term will be zero if each row corresponding to a city contains no more than one “1”,with all the other values being zero.Similarly,the second term is zero if each column,corresponding to a position in tour,contains no more than one “1”.The third term is zero if and only if there are N entries of“1”in the entire matrix.The last term represents the distance cost function.

    Parameters A,B,C and D,which are all positive constant,are the measure of the importance of the corresponding term.

    4 Simulation Results

    Experiments were first performed to show the convergence of the Hopfield neural networks with continuous hysteresis neurons.In the simulations,a 100-neuron Hopfield neural network with continuous hysteresis neurons(i=1,2,…,100)was chosen.Initial parameters of the network,connection weights and thresholds were randomly generated uniformly between-1.0 and 1.0.Simulations on a randomly generated 100-neuron Hopfield network with different value of α and β (α=β=0 and α=0.6,β=0.6 for i=1,…,100)were also carried out.Fig.2 shows the convergence charactoristics of both networks.From this figure we can see that both the Hopfield neural networks with continuous hysteresis neurons(α=0.6,β=0.6)converged to stable states that did not further change with time.It is worth to note that the Hopfield neural network with continuous hysteresis neurons (α=0.6,β=0.6)seek out a smaller minimum at seek out E=-158.87 than the Hopfield neural network without hysteresis neurons at E=-127.85(α=β=0).

    The Hopfield neural network with continuous hysteresis neurons were also applied to TSP and simulations were also carried out.The proposed algorithm was implemented in C++on PC Station (PentiumIIII 3GHz).A sigmoid function was used as intput/output function and the temperature parameter γα=γβwas set to 0.05.The evaluation in our experiment is based on 100 randomly generated the 10-city TSP data sets,including wide varieties of city distributions.That can reduce the effect of the location distribution of the cities.

    Fig.2 The convergence characteristic of a 100-neuron Hopfield network with and without the continuous hysteresis neurons圖2 100個普通神經元與100

    The simulations were done using parameters sets at or near A=B=5,C=1,D=2 and n was set to be:n=N+3,where N is the number of city[3].In the simulation,100 runs are conducted for each of the 100 data sets.For each of 100 runs,different random initial states are used.

    Fig.3 shows the average number of iterations for converging to valid tour of the 10-city TSP by the Hopfield networks with continuous hysteresis neurons.Each data point shown in Fig.3 is averaged over different runs for each data set and then averaged over 100 different data sets as shown in the following.

    The iteration steps of each valid tour j for data set i is averaged over all valid tours:

    where Stepiis the average iteration steps for data set i,Nistepis the number of the iteration steps of valid tour j,Nivalidis the number of valid tours among the total 100 runs for data set i.

    The iteration steps shown in Fig.3 is the average step in all data set:

    We can see in Fig.3 that the Hopfield networks with continuous hysteresis neurons converges to valid tour faster than the original Hopfield network does.The result shows that the networks with continuous hysteresis neurons can obtain valid tours in much fewer numbers of iterations than the network with zero.

    Using the similar condition(over 10 data sets),the network with continuous hysteresis neurons was also executed to the 20,30 and 50-city TSP for comparison.Fig.4 shows the average percentage of valid tours of the 20,30,50-city TSP by the Hopfield networks with different continuous hysteresis neurons.Fig.5 shows the average number of iterations for converging to valid tour of the 20,30,50-city TSP by the Hopfield networks with continuous hysteresis neurons.The simulation results show that the Hopfield networks with positive parameter has a rate of success higher than original Hopfield network for solving the TSP,and converges faster to valid solution than the original Hopfield network does.

    Fig.3 The average number of iterations for converging to valid tour of the 10-city TSP by the Hopfield networks with different α and β(α+β=-2.0,-1.8…6.0)圖3 α與β取不同值時(α+β=-2.0,-1.8…6.0),10城市TSP問題的收斂性

    5 Conclusions

    We have proposed a continuous hysteresis Hopfield neural network architecture for the TSP,and showed its effectiveness by simulation experiments.The proposed architecture was based on a modified Hopfield neural network in which the continuous hysteresis neurons were added to improve solution quality.We proved theoretically that the emergent collective properties of the original Hopfield neural network also were present in the Hopfield neural network architectures with continuous hysteresis neurons.A large number of computer simulations have been carried out for the TSP to verify the potential of this network in combinatorial optimization problems.The simulation results showed that the Hopfield neural network architecture with continuous hysteresis neurons was much better than the previous works including the original Hopfield neural network architecture for TSP in terms of both the computation time and the solution quality.

    Fig.4 The average percentage of valid tours of the 20,30,50-city TSP by the Hopfield networks with different α and β(α=β=-0.5,0,1.5)圖4 α與β取不同值時,20、30、50城市TSP問題的有效平均百分比

    Fig.5 The average number of iterations for converging to valid tour of the 20,30,50-city TSP by the Hopfield networks with different α and β(α=β=-0.5,0,1.5)圖5 α與β取不同值時,20、30、50城市TSP問題的有效平均迭代次數

    [1]HOPFIELD J J.Neural network and physical systems with emergent collective computational abilities[J].Proc Natl Acad Sci(USA),1982,79:2 554-2 558.

    [2]HOPFIELD J J.Neurons with graded response have collective computational properties like those of two-state neurons[J].Proc Natl Acad Sci(USA),1984,81:3 088-3 092.

    [3]HOPFIELD J J,TANK D W.‘Neural’computation of decisions in optimization problems[J].Biol Cybern,1985,52:141-152.

    [4]HOPFIELD J J,TANK D W.Computing with neural circuits:a model[J].Science,1986(233):625-633.

    [5]TANK D W,HOPFIELD J J.Simple neural optimization network:An A/D converter,signal decision circuit,and linear programming circuit[J].IEEE Trans,Circuits&Systems,1986,CAS-33(5):533-541.

    [6]TAKEFUJI Y,LEE K C.An hysterisis binary neuron:A model suppressing the oscillatory behavior of neural dynamics[J].Biol Cybern,1991,64:353-356.

    [7]TATEISHI M,TAMURA S.Comments on Artificial neural networks for four-coloring map problems and K-colorability problems'[J].IEEE Trans Circ Syst-I:Fundamental Theory and Applications,1994,41(3):248-249.

    [8]WANG L.Discrete-time convergence theory and updating rules for neural networks with energy functions[J].IEEE Trans Neural Networks,1997,8(5):445-447.

    [9]Galán-Marín G,Mu?oz-Pérez J.A new input-output function for binary Hopfield neural networks[C]//Proceedings of the International Work-Conference on Artificial and Natural Neural Networks:Foundations and Tools for Neural Modeling,1999:311-320.

    [10]BHARITKAR S,MENDEL J M.The hysteretic Hopfield neural network[J]IEEE Trans Neural Networks,2000,11(4):879-888.

    [11]COOPER B S.Higher Order Neural networks-can They Help us Optimize?[C]//Proceedings of the Sixth Australian Conference on Neural Networks(ACNN’95).1995:29-32.

    [12]VAN DEN BOUT D E,MILLER T K.Improving the Performance of the Hopfield-Tank Neural Network through Normalization and annealing[J].Bio Cybern,1989,62:129-139.

    猜你喜歡
    結構圖收斂性百分比
    中國共產黨第二十屆中央組織結構圖
    Lp-混合陣列的Lr收斂性
    概率知識結構圖
    END隨機變量序列Sung型加權和的矩完全收斂性
    第十九屆中共中央組織結構圖
    普通照明用自鎮(zhèn)流LED燈閃爍百分比測量不確定度分析
    電子制作(2017年20期)2017-04-26 06:57:46
    肝癌患者外周血Treg、Th17百分比及IL-17水平觀察
    行為ND隨機變量陣列加權和的完全收斂性
    松弛型二級多分裂法的上松弛收斂性
    商貿投資最適宜國家和地區(qū)
    海外星云 (2012年24期)2012-04-29 00:30:09
    国产一区二区在线观看av| 色综合婷婷激情| 国产精品久久久久久精品古装| 亚洲av日韩在线播放| 国产日韩欧美亚洲二区| 99九九在线精品视频| 国产成人精品在线电影| 婷婷成人精品国产| 久久这里只有精品19| 91麻豆精品激情在线观看国产 | 中文字幕精品免费在线观看视频| 精品国产一区二区久久| 久久精品国产亚洲av香蕉五月 | 嫁个100分男人电影在线观看| av视频免费观看在线观看| 亚洲情色 制服丝袜| 亚洲欧美激情在线| 久久天堂一区二区三区四区| 国产精品1区2区在线观看. | 又紧又爽又黄一区二区| 久久久久久久精品吃奶| 久久久精品免费免费高清| 欧美日韩亚洲综合一区二区三区_| 亚洲午夜理论影院| 香蕉丝袜av| 妹子高潮喷水视频| 色综合欧美亚洲国产小说| 日韩视频一区二区在线观看| 亚洲国产欧美日韩在线播放| 精品少妇内射三级| 久久精品成人免费网站| 午夜视频精品福利| 热99re8久久精品国产| 久久久水蜜桃国产精品网| 伊人久久大香线蕉亚洲五| 黄色片一级片一级黄色片| 在线看a的网站| 深夜精品福利| 少妇粗大呻吟视频| 高清av免费在线| 欧美精品人与动牲交sv欧美| 亚洲av美国av| 午夜视频精品福利| 亚洲av片天天在线观看| 黄色视频不卡| 麻豆乱淫一区二区| 人妻久久中文字幕网| 在线天堂中文资源库| 国产精品久久久久成人av| 欧美黄色淫秽网站| 一进一出好大好爽视频| 不卡av一区二区三区| 亚洲av电影在线进入| videos熟女内射| 国产精品免费视频内射| 午夜免费鲁丝| 日本av免费视频播放| 亚洲精品美女久久久久99蜜臀| 天天躁夜夜躁狠狠躁躁| 精品少妇内射三级| 成人国产av品久久久| 一区二区三区乱码不卡18| 精品免费久久久久久久清纯 | 人人妻人人添人人爽欧美一区卜| 亚洲av欧美aⅴ国产| 国产91精品成人一区二区三区 | 另类精品久久| 国产日韩一区二区三区精品不卡| 午夜老司机福利片| 视频区欧美日本亚洲| 好男人电影高清在线观看| 亚洲五月色婷婷综合| 国产激情久久老熟女| 国产主播在线观看一区二区| xxxhd国产人妻xxx| 久久午夜综合久久蜜桃| 亚洲七黄色美女视频| 天堂动漫精品| 不卡av一区二区三区| 久久国产精品人妻蜜桃| 精品久久久久久电影网| 免费在线观看完整版高清| 亚洲色图综合在线观看| 高清毛片免费观看视频网站 | xxxhd国产人妻xxx| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲九九香蕉| 午夜福利欧美成人| 日日夜夜操网爽| 757午夜福利合集在线观看| 亚洲熟女精品中文字幕| 叶爱在线成人免费视频播放| 日韩欧美三级三区| 精品国产超薄肉色丝袜足j| 别揉我奶头~嗯~啊~动态视频| 日韩中文字幕欧美一区二区| 国产色视频综合| 一区二区日韩欧美中文字幕| 午夜久久久在线观看| 日韩三级视频一区二区三区| 日本五十路高清| 黑人操中国人逼视频| 精品久久蜜臀av无| 一夜夜www| 精品一区二区三区视频在线观看免费 | 可以免费在线观看a视频的电影网站| 日韩视频一区二区在线观看| 精品国产一区二区三区四区第35| 咕卡用的链子| 亚洲精品久久午夜乱码| 久久精品国产亚洲av高清一级| tube8黄色片| 国产精品98久久久久久宅男小说| 亚洲天堂av无毛| 日本五十路高清| 精品高清国产在线一区| 亚洲国产av影院在线观看| 国产福利在线免费观看视频| 国产精品久久久久久精品古装| 免费日韩欧美在线观看| 淫妇啪啪啪对白视频| 免费av中文字幕在线| 欧美激情 高清一区二区三区| 欧美中文综合在线视频| 人妻一区二区av| 欧美成人午夜精品| 国产成人啪精品午夜网站| 久久av网站| 亚洲伊人色综图| 麻豆乱淫一区二区| 国产在视频线精品| 免费不卡黄色视频| 亚洲伊人色综图| 国产av国产精品国产| bbb黄色大片| videos熟女内射| aaaaa片日本免费| 男女之事视频高清在线观看| 天天添夜夜摸| 美女高潮喷水抽搐中文字幕| 黄色成人免费大全| 久久久久久久久免费视频了| 成人18禁在线播放| 一进一出抽搐动态| 久久国产精品大桥未久av| 精品少妇黑人巨大在线播放| 日韩欧美三级三区| 久久毛片免费看一区二区三区| 亚洲色图av天堂| 色播在线永久视频| 亚洲国产中文字幕在线视频| 99热国产这里只有精品6| 黄色视频,在线免费观看| www.自偷自拍.com| 美女国产高潮福利片在线看| 亚洲情色 制服丝袜| 老司机午夜十八禁免费视频| 大香蕉久久成人网| 俄罗斯特黄特色一大片| 日韩成人在线观看一区二区三区| 国产一区二区三区视频了| 国产成人免费无遮挡视频| 中文欧美无线码| 狠狠狠狠99中文字幕| 欧美黑人欧美精品刺激| 天堂俺去俺来也www色官网| 成人三级做爰电影| tocl精华| 成人亚洲精品一区在线观看| 亚洲精品在线美女| 久久精品国产综合久久久| 免费看十八禁软件| 国产日韩欧美在线精品| 精品亚洲成国产av| 国产精品久久久久久精品古装| 日韩一卡2卡3卡4卡2021年| 汤姆久久久久久久影院中文字幕| 国产三级黄色录像| 国产一区二区激情短视频| 精品少妇黑人巨大在线播放| 欧美激情极品国产一区二区三区| 午夜免费成人在线视频| 久久99热这里只频精品6学生| 美女主播在线视频| 精品熟女少妇八av免费久了| 精品人妻1区二区| 久久久久网色| 日日夜夜操网爽| 一级毛片精品| 国产99久久九九免费精品| 久久人人爽av亚洲精品天堂| 国产精品偷伦视频观看了| 国产免费福利视频在线观看| 考比视频在线观看| 在线观看舔阴道视频| av一本久久久久| 精品午夜福利视频在线观看一区 | 精品亚洲成国产av| 欧美 亚洲 国产 日韩一| 2018国产大陆天天弄谢| 天天操日日干夜夜撸| 久久精品人人爽人人爽视色| 久久毛片免费看一区二区三区| 亚洲欧美激情在线| 亚洲av片天天在线观看| 久久国产精品人妻蜜桃| 国产成人欧美在线观看 | 亚洲色图av天堂| 淫妇啪啪啪对白视频| 久久久国产成人免费| 日本av免费视频播放| 1024香蕉在线观看| 欧美精品高潮呻吟av久久| 丰满饥渴人妻一区二区三| 香蕉久久夜色| 国产人伦9x9x在线观看| 国产国语露脸激情在线看| 欧美精品人与动牲交sv欧美| 国产av精品麻豆| 狠狠狠狠99中文字幕| 国产成人精品在线电影| 久久久欧美国产精品| 99久久人妻综合| 亚洲午夜精品一区,二区,三区| 中文字幕精品免费在线观看视频| 欧美大码av| 国产人伦9x9x在线观看| 国产亚洲欧美在线一区二区| 国产xxxxx性猛交| 丝瓜视频免费看黄片| 亚洲国产看品久久| 欧美激情 高清一区二区三区| 99国产精品免费福利视频| 欧美日韩中文字幕国产精品一区二区三区 | 男女高潮啪啪啪动态图| 成人18禁高潮啪啪吃奶动态图| 亚洲色图综合在线观看| 丰满迷人的少妇在线观看| 黄片小视频在线播放| 极品少妇高潮喷水抽搐| 国产在线观看jvid| 他把我摸到了高潮在线观看 | 亚洲人成电影观看| 亚洲欧美一区二区三区黑人| 日本黄色日本黄色录像| 精品国产一区二区三区久久久樱花| 国产精品香港三级国产av潘金莲| 精品人妻在线不人妻| 欧美黄色片欧美黄色片| 黑人巨大精品欧美一区二区蜜桃| www.自偷自拍.com| 手机成人av网站| 国产在线精品亚洲第一网站| 日韩中文字幕视频在线看片| 777米奇影视久久| 女警被强在线播放| 久久久水蜜桃国产精品网| 亚洲国产欧美网| 怎么达到女性高潮| 一级毛片精品| 伊人久久大香线蕉亚洲五| 麻豆成人av在线观看| 亚洲午夜精品一区,二区,三区| 国产免费视频播放在线视频| 亚洲人成电影观看| 久久久欧美国产精品| 国产一区二区三区在线臀色熟女 | av网站在线播放免费| 十八禁网站网址无遮挡| 99在线人妻在线中文字幕 | 老司机影院毛片| kizo精华| 久热这里只有精品99| 精品视频人人做人人爽| 91精品国产国语对白视频| 国产成人啪精品午夜网站| 黄片播放在线免费| 日本a在线网址| 亚洲精品国产精品久久久不卡| 一级毛片精品| 欧美一级毛片孕妇| 美女主播在线视频| 日本a在线网址| 亚洲av电影在线进入| 人人妻人人爽人人添夜夜欢视频| 午夜福利欧美成人| 国产日韩欧美视频二区| 一边摸一边抽搐一进一出视频| 久久精品91无色码中文字幕| 夜夜夜夜夜久久久久| 一边摸一边抽搐一进一小说 | 一本大道久久a久久精品| 午夜日韩欧美国产| 亚洲国产中文字幕在线视频| 久久午夜综合久久蜜桃| 国产99久久九九免费精品| 精品少妇久久久久久888优播| 大片电影免费在线观看免费| 在线av久久热| 精品一区二区三区av网在线观看 | 国产精品.久久久| 少妇裸体淫交视频免费看高清 | 99久久国产精品久久久| 欧美日韩亚洲综合一区二区三区_| 久久99一区二区三区| 中国美女看黄片| 国产精品 国内视频| 中国美女看黄片| 亚洲色图 男人天堂 中文字幕| 欧美日韩福利视频一区二区| 欧美日韩视频精品一区| 99热国产这里只有精品6| 三级毛片av免费| e午夜精品久久久久久久| 一本—道久久a久久精品蜜桃钙片| 老司机福利观看| 亚洲avbb在线观看| 精品午夜福利视频在线观看一区 | 久久午夜亚洲精品久久| 久9热在线精品视频| 热99re8久久精品国产| 国产国语露脸激情在线看| 久久这里只有精品19| 国产日韩一区二区三区精品不卡| 黄色丝袜av网址大全| 日日摸夜夜添夜夜添小说| 欧美性长视频在线观看| 亚洲精品国产区一区二| 久久久国产欧美日韩av| 亚洲久久久国产精品| 天天添夜夜摸| 亚洲欧美一区二区三区黑人| 美女主播在线视频| 大码成人一级视频| 亚洲,欧美精品.| 人人妻人人澡人人爽人人夜夜| 国产av精品麻豆| 嫁个100分男人电影在线观看| 在线观看免费午夜福利视频| aaaaa片日本免费| 十分钟在线观看高清视频www| 大码成人一级视频| 91大片在线观看| 黄色怎么调成土黄色| 美女国产高潮福利片在线看| 国产成人系列免费观看| 男女之事视频高清在线观看| 亚洲国产av新网站| 国产在视频线精品| 两个人免费观看高清视频| 别揉我奶头~嗯~啊~动态视频| 丝袜美足系列| 国产不卡一卡二| 亚洲人成电影观看| 男男h啪啪无遮挡| 老熟妇仑乱视频hdxx| 深夜精品福利| 久久性视频一级片| 大片免费播放器 马上看| 国产精品影院久久| 满18在线观看网站| 国产高清videossex| 国产欧美日韩一区二区三区在线| 18禁美女被吸乳视频| 在线av久久热| 美国免费a级毛片| 无遮挡黄片免费观看| 狠狠婷婷综合久久久久久88av| 黄色片一级片一级黄色片| 国产精品欧美亚洲77777| 亚洲国产中文字幕在线视频| 精品久久久精品久久久| 国产无遮挡羞羞视频在线观看| 丝瓜视频免费看黄片| 老司机深夜福利视频在线观看| 亚洲精品中文字幕在线视频| 在线亚洲精品国产二区图片欧美| 成年动漫av网址| 日本黄色日本黄色录像| 香蕉国产在线看| 十分钟在线观看高清视频www| 午夜成年电影在线免费观看| 亚洲成人手机| 久久影院123| netflix在线观看网站| 黄色成人免费大全| 久久久久久久大尺度免费视频| 超碰97精品在线观看| 美女午夜性视频免费| 99国产精品免费福利视频| 18禁美女被吸乳视频| 露出奶头的视频| 亚洲天堂av无毛| 国产成人一区二区三区免费视频网站| 美女主播在线视频| 国产人伦9x9x在线观看| 天堂8中文在线网| 国产人伦9x9x在线观看| 久久久久精品国产欧美久久久| 日韩免费高清中文字幕av| 一边摸一边做爽爽视频免费| 天天躁夜夜躁狠狠躁躁| 涩涩av久久男人的天堂| 水蜜桃什么品种好| 国产精品一区二区精品视频观看| 亚洲伊人色综图| 亚洲久久久国产精品| 男女之事视频高清在线观看| 欧美精品一区二区免费开放| 成人三级做爰电影| 欧美中文综合在线视频| 精品久久蜜臀av无| 午夜福利视频精品| xxxhd国产人妻xxx| 久久精品国产综合久久久| 伊人久久大香线蕉亚洲五| 女人高潮潮喷娇喘18禁视频| a级片在线免费高清观看视频| 在线观看一区二区三区激情| 啦啦啦免费观看视频1| 久久久水蜜桃国产精品网| 热99re8久久精品国产| 久久人妻福利社区极品人妻图片| 麻豆av在线久日| 日韩视频一区二区在线观看| a在线观看视频网站| 一本色道久久久久久精品综合| 脱女人内裤的视频| 不卡一级毛片| 黄片小视频在线播放| 精品国产乱码久久久久久男人| av超薄肉色丝袜交足视频| 国产欧美日韩精品亚洲av| 精品乱码久久久久久99久播| 女人久久www免费人成看片| 纵有疾风起免费观看全集完整版| 国产欧美日韩一区二区三| 久久久国产精品麻豆| 国产精品成人在线| 欧美人与性动交α欧美精品济南到| 黄色片一级片一级黄色片| xxxhd国产人妻xxx| 欧美乱码精品一区二区三区| 侵犯人妻中文字幕一二三四区| 国产真人三级小视频在线观看| 国产一区二区激情短视频| 中文欧美无线码| 欧美大码av| 欧美乱码精品一区二区三区| 99re6热这里在线精品视频| 黑人欧美特级aaaaaa片| 精品国内亚洲2022精品成人 | 高清黄色对白视频在线免费看| 成人国语在线视频| 美女福利国产在线| 欧美日韩亚洲高清精品| 99国产极品粉嫩在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 国产国语露脸激情在线看| 男男h啪啪无遮挡| 少妇 在线观看| 欧美+亚洲+日韩+国产| 成年版毛片免费区| 99精品欧美一区二区三区四区| 久久久久国内视频| 免费日韩欧美在线观看| 亚洲精品久久成人aⅴ小说| 国产精品av久久久久免费| 午夜福利,免费看| 蜜桃在线观看..| 色在线成人网| 成人国产一区最新在线观看| 极品少妇高潮喷水抽搐| 岛国毛片在线播放| 成人国语在线视频| 国产精品一区二区精品视频观看| 久久亚洲精品不卡| 亚洲黑人精品在线| 亚洲中文av在线| 性少妇av在线| 两个人看的免费小视频| 热re99久久精品国产66热6| 精品国产乱码久久久久久小说| 欧美成狂野欧美在线观看| 制服诱惑二区| 狠狠狠狠99中文字幕| 大码成人一级视频| 一本大道久久a久久精品| 日韩视频在线欧美| 人成视频在线观看免费观看| 美女扒开内裤让男人捅视频| 国产一区二区在线观看av| 色婷婷久久久亚洲欧美| 黄片小视频在线播放| 搡老乐熟女国产| 国产精品久久久久久精品古装| 最近最新免费中文字幕在线| 免费日韩欧美在线观看| 纵有疾风起免费观看全集完整版| 美国免费a级毛片| 国内毛片毛片毛片毛片毛片| 黄色怎么调成土黄色| 久热这里只有精品99| av又黄又爽大尺度在线免费看| 黄色丝袜av网址大全| 女人高潮潮喷娇喘18禁视频| 免费观看人在逋| 9191精品国产免费久久| 国产欧美日韩精品亚洲av| 免费看十八禁软件| 在线观看舔阴道视频| 蜜桃在线观看..| 精品欧美一区二区三区在线| 国产无遮挡羞羞视频在线观看| 国产福利在线免费观看视频| 午夜福利视频精品| a级片在线免费高清观看视频| 成年女人毛片免费观看观看9 | 国产精品麻豆人妻色哟哟久久| 国产欧美日韩一区二区精品| 精品福利观看| 久久中文字幕一级| 啦啦啦中文免费视频观看日本| 人妻 亚洲 视频| 国产成人免费观看mmmm| 亚洲精品中文字幕在线视频| 亚洲国产欧美一区二区综合| 国产在视频线精品| 大香蕉久久网| 久久午夜综合久久蜜桃| 少妇被粗大的猛进出69影院| 午夜激情久久久久久久| av线在线观看网站| 操出白浆在线播放| 久久婷婷成人综合色麻豆| 桃红色精品国产亚洲av| 美女国产高潮福利片在线看| 久久人妻熟女aⅴ| 亚洲午夜理论影院| 亚洲精品美女久久av网站| 正在播放国产对白刺激| 精品国产一区二区三区四区第35| av片东京热男人的天堂| 天天躁夜夜躁狠狠躁躁| 国产色视频综合| 精品一区二区三区视频在线观看免费 | 51午夜福利影视在线观看| 香蕉久久夜色| 国产一卡二卡三卡精品| 亚洲精品国产色婷婷电影| 成年动漫av网址| 亚洲第一欧美日韩一区二区三区 | 国产欧美亚洲国产| 怎么达到女性高潮| 精品人妻熟女毛片av久久网站| 一区二区三区国产精品乱码| 亚洲av日韩精品久久久久久密| 91精品国产国语对白视频| 成人免费观看视频高清| 99久久99久久久精品蜜桃| 国产男女超爽视频在线观看| 香蕉久久夜色| 久久中文字幕一级| 99九九在线精品视频| 91成年电影在线观看| 国产av国产精品国产| 亚洲成av片中文字幕在线观看| 久久ye,这里只有精品| 午夜福利欧美成人| 国产精品欧美亚洲77777| 少妇被粗大的猛进出69影院| 制服人妻中文乱码| 国产伦理片在线播放av一区| 精品少妇久久久久久888优播| 99re6热这里在线精品视频| 色视频在线一区二区三区| 精品乱码久久久久久99久播| 国产精品一区二区在线不卡| 精品视频人人做人人爽| 777米奇影视久久| 亚洲第一av免费看| 亚洲国产欧美在线一区| 国产亚洲精品第一综合不卡| 菩萨蛮人人尽说江南好唐韦庄| 人人妻,人人澡人人爽秒播| 操出白浆在线播放| 999久久久国产精品视频| 三级毛片av免费| 女人高潮潮喷娇喘18禁视频| 亚洲免费av在线视频| 韩国精品一区二区三区| 日本av免费视频播放| 悠悠久久av| 免费观看a级毛片全部| 好男人电影高清在线观看| 国产极品粉嫩免费观看在线| 在线亚洲精品国产二区图片欧美| 日本一区二区免费在线视频| 伊人久久大香线蕉亚洲五| 性少妇av在线| 丝袜喷水一区| 老司机午夜福利在线观看视频 | 99国产精品免费福利视频| 精品国内亚洲2022精品成人 | 国产成人欧美| 免费人妻精品一区二区三区视频| 国产成人欧美| 黄色片一级片一级黄色片| 自线自在国产av| 国产成人免费观看mmmm| 国产野战对白在线观看| 亚洲精品乱久久久久久| 精品人妻1区二区| 国产成人免费观看mmmm| 啦啦啦免费观看视频1|