王漢裕 劉擁軍
?述 評(píng)?
間充質(zhì)干細(xì)胞定向分化及其在肝臟疾病應(yīng)用中的啟示
王漢裕 劉擁軍★
間充質(zhì)干細(xì)胞向肝細(xì)胞誘導(dǎo)分化成功后,分化后的肝細(xì)胞樣細(xì)胞應(yīng)用于肝病成為了研究熱點(diǎn)。不僅未分化的間充質(zhì)干細(xì)胞能治療肝病,其來(lái)源的分化后的肝細(xì)胞樣細(xì)胞亦能有效治療肝病。因此,有必要對(duì)間充質(zhì)干細(xì)胞分化前后的細(xì)胞治療效果進(jìn)行比較評(píng)價(jià)。本文從誘導(dǎo)分化培養(yǎng)方案、鑒定指標(biāo)及相關(guān)細(xì)胞生物學(xué)功能進(jìn)行述評(píng)。
間充質(zhì)干細(xì)胞;定向分化;細(xì)胞治療;肝病
干細(xì)胞研究的發(fā)展促進(jìn)了應(yīng)用干細(xì)胞治療肝病的研究,豐富了肝病的治療手段,尤其是肝硬化及肝功能衰竭的治療?;诟杉?xì)胞的分化潛能,利用干細(xì)胞,尤其是間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs),向肝細(xì)胞進(jìn)行誘導(dǎo)分化培養(yǎng),可獲得肝細(xì)胞樣細(xì)胞(hepatocyte-like cells,HLCs),并應(yīng)用于肝病的治療。不少研究開(kāi)始比較MSCs向肝細(xì)胞分化前后用于肝病治療。我們發(fā)現(xiàn)MSCs經(jīng)過(guò)向肝細(xì)胞分化誘導(dǎo)培養(yǎng)后,丟失了高分泌基質(zhì)金屬蛋白酶(matrix metalloproteinases,MMPs)和肝細(xì)胞生長(zhǎng)因子(hepatocyte growth factor,HGF)的能力。我們及其他實(shí)驗(yàn)均發(fā)現(xiàn)分化后的HLCs治療肝病的效果不如未分化的MSCs。本文結(jié)合本實(shí)驗(yàn)的研究,綜合目前相關(guān)研究文獻(xiàn),對(duì)MSCs向肝細(xì)胞定向分化及其在肝病中的應(yīng)用進(jìn)行簡(jiǎn)要述評(píng)。
2001年小鼠胚胎干細(xì)胞(embryonic stem cells,ESCs)[1]和2002年多潛能成體祖細(xì)胞(multipotent adult progenitor cells,MAPCs)[2]在體外向HLCs誘導(dǎo)分化培養(yǎng)獲得成功后,2004年MSCs在體外向HLCs分化誘導(dǎo)培養(yǎng)也獲得成功[3]。小鼠ESCs向HLCs的誘導(dǎo)分化方案中,ESCs在不含白血病抑制因子(leukemia inhibitory factor,LIF)的培養(yǎng)基中培養(yǎng)5天,繼而接種于I型膠原包被的培養(yǎng)皿中培養(yǎng)4天(基礎(chǔ)培養(yǎng)基為含20% 胎牛血清和300μM硫代甘油的IMDM,依次添加酸性成纖維細(xì)胞生長(zhǎng)因子(acidic fibroblast growth factor,aFGF,100 ng/mL)、HGF(20 ng/mL);在誘導(dǎo)培養(yǎng)的第15天,添加抑瘤素M(oncostatin M,OSM,10 ng/mL)、地塞米松(dexamethasone,DXM,10-7M)、ITS混合物(5 mg/mL胰島素、5 mg/mL轉(zhuǎn)鐵蛋白、5μm/mL亞硒酸)培養(yǎng)3天。經(jīng)過(guò)18天的誘導(dǎo)分化培養(yǎng),ESCs成功分化為具有部分肝細(xì)胞功能的HLCs?;贓SCs和MAPCs的誘導(dǎo)方案,改進(jìn)的MSCs誘導(dǎo)方案采用了兩步法,首先用含肝HGF(20 ng/mL)、堿性成纖維細(xì)胞生長(zhǎng)因子(basic fi broblast growth factor,bFGF,10 ng/mL)和尼克酰胺(0.61 g/L)的IMDM培養(yǎng)基培養(yǎng)1周;更換為誘導(dǎo)成熟培養(yǎng)基,即含OSM(20 ng/mL)、地塞米松(1×10-6mol/L)和 ITS 混合物(25 g/L胰島素、25 g/L轉(zhuǎn)鐵蛋白、25 mg/L亞硒酸鈉)的IMDM,繼續(xù)培養(yǎng)3周。經(jīng)過(guò)4周的誘導(dǎo)分化培養(yǎng),細(xì)胞形態(tài)從梭型轉(zhuǎn)變?yōu)榈湫偷母渭?xì)胞樣橢圓形,并能檢測(cè)到細(xì)胞色素P450(cytochrome P450,CYP)的2B6(CYP 2B6)亞型。隨后文獻(xiàn)中出現(xiàn)的培養(yǎng)分化方案都在此方案上加于變化,比如預(yù)先在I型[4]或IV型膠原[5]包被的培養(yǎng)皿上培養(yǎng)2天,再繼續(xù)往下分化培養(yǎng);把MSCs接種在Matrigel包被的納米聚酰胺纖維上進(jìn)行分化培養(yǎng)[6]。
在干細(xì)胞向HLCs分化培養(yǎng)過(guò)程中,除了HGF外,目前的分化培養(yǎng)方案中均需要添加bFGF[1~5]。我們簡(jiǎn)化了上述的分化方案,MSCs向HLCs分化誘導(dǎo)培養(yǎng)依然獲得成功。我們的誘導(dǎo)方案也是采取兩步法,在第一階段采用10-8mol/L的地塞米松、50 ng/mL的HGF、10 ng/mL的表皮生長(zhǎng)因子(epidermal growth factor,EGF)、1% ITS的DMEM-F12(高糖)培養(yǎng)基誘導(dǎo)培養(yǎng)2周;第二階段,使用含2%的FBS、20 ng/mL的OSM、10-6mol/L的DXM、1% ITS的DMEM-F12培養(yǎng)基誘導(dǎo)培養(yǎng)4周??紤]到第二階段的培養(yǎng)時(shí)間延長(zhǎng),添加低濃度的FBS以維持細(xì)胞的活性。經(jīng)過(guò)6周的誘導(dǎo)培養(yǎng)后,細(xì)胞逐漸變成圓形(圖1),并具有成熟肝細(xì)胞的功能,比如合成糖元(圖2)、分泌尿素(圖3)等。這說(shuō)明MSCs向HLCs分化的過(guò)程中,bFGF不是必需的。bFGF是胚胎干細(xì)胞培養(yǎng)基中維持ESCs未分化狀態(tài)的一個(gè)重要組成因子[7]。最近也有研究發(fā)現(xiàn)bFGF聯(lián)合骨形態(tài)發(fā)生蛋白4(bone morphogenetic protein-4,BMP-4)促進(jìn)了ESCs向成骨細(xì)胞和成軟骨細(xì)胞分化[8]。
圖1 誘導(dǎo)分化前后的細(xì)胞形態(tài)Figure 1 Cells morphology changes after hepatic differentiation
圖2 糖原染色(PAS法)Figure 2 Glycogen detection by PAS staining
圖3 隨著誘導(dǎo)分化培養(yǎng)時(shí)間的延長(zhǎng),尿素分泌逐漸增多Figure 3 The differentiated cells synthesized urea in a timedependent manner
不管大鼠[9]、小鼠[10],還是人類(lèi)[3],各種來(lái)源的(骨髓[11]、臍帶、臍帶血[12]或脂肪[11,13,14])MSCs均能分化為HLCs,為將來(lái)肝病的細(xì)胞治療解決了細(xì)胞來(lái)源的技術(shù)難題。但是,目前沒(méi)有提出一個(gè)特異的指標(biāo)來(lái)明確干細(xì)胞向HLCs分化成功與否,也沒(méi)有明確的鑒定指標(biāo)來(lái)評(píng)價(jià)分化效率。因此,在相關(guān)文獻(xiàn)中,均采用多指標(biāo)評(píng)價(jià)系統(tǒng)。常用的鑒定標(biāo)記有白蛋白(albumin)、甲胎蛋白(α-fetoprotein,AFP)、細(xì)胞角蛋白(cytokeratine,CK)、肝細(xì)胞核因子(hepatocyte nuclear factor,HNF)、細(xì)胞色素(cytochrome,CYP)P450、酪氨酸轉(zhuǎn)氨酶(tyrosine-aminotransferase)、色氨酸2,3雙加氧酶(tryptophan 2,3-dioxygenase)等,體現(xiàn)具有肝細(xì)胞功能的鑒定方法有過(guò)碘酸-希夫(Periodic Acid-Schiff,PAS)染色、Dil-Ac-LDL吸收、尿素合成等。另外,部分上述指標(biāo)還存在亞型,比如細(xì)胞角蛋白包括CK7[6]、CK18[5]、CK19[2],HNF包括HNF-1α[2]、HNF-3β[2]、HNF-4α[5]。然而,尚未有某一篇文獻(xiàn)全部采用上述指標(biāo)。有研究發(fā)現(xiàn)誘導(dǎo)分化早期出現(xiàn)的指標(biāo)有HNF-3β、CK19、AFP,而CK18、albumin、HNF-1α、CYP則表達(dá)于誘導(dǎo)分化晚期[2]。經(jīng)過(guò)4周的誘導(dǎo),HLCs表達(dá) CYP 2B6,而肝細(xì)胞核因子4(HNF-4)在誘導(dǎo)6周后才表達(dá)[3]。
不少文獻(xiàn)提到MSC在誘導(dǎo)分化之前沒(méi)有表達(dá)ALB、AFP、CK18[5,15,16]、CK19[15]。亦有文獻(xiàn)報(bào)道,經(jīng)過(guò)誘導(dǎo)分化培養(yǎng)后的細(xì)胞只有70%表達(dá)白蛋白[5]。BM-MSCs低表達(dá)白蛋白、CK18、色氨酸2,3雙加氧酶,但不表達(dá) AFP[3]。但是,我們發(fā)現(xiàn)未經(jīng)過(guò)誘導(dǎo)分化的UC-MSCs本身高表達(dá)白蛋白、CK19和AFP(圖4)。這些數(shù)據(jù)證明了白蛋白、色氨酸2,3雙加氧酶、CK18、CK19和AFP不能作為骨髓和臍帶來(lái)源的MSCs在向肝細(xì)胞誘導(dǎo)分化的鑒定指標(biāo)。分泌尿素是肝細(xì)胞活性的一個(gè)特性,但是腎小管上皮細(xì)胞也分泌尿素。CYP雖然首先在肝細(xì)胞中發(fā)現(xiàn),但也在其他細(xì)胞中表達(dá)[18]。即使是肝細(xì)胞相對(duì)特異性指標(biāo)的CYP,其不同亞型的活性亦存在種屬特異性,如大鼠的CYP 2B1[19]、小鼠的CYP 2B9和CYP 2B13[20,21]、人的CYP 2B6[2]。盡管肝細(xì)胞具有LDL吸收的功能,但其他細(xì)胞也有這樣的特性[22]。綜合目前的文獻(xiàn)報(bào)道,只有肝細(xì)胞能合成和存儲(chǔ)糖原[2]。在包被了Matrigel上培養(yǎng)的MAPCs分化為HLCs(同時(shí)表達(dá)白蛋白、CK18、HNF-3β)的分化率能達(dá)到 91%[2]。經(jīng)過(guò)6周的誘導(dǎo),大約 50%的分化細(xì)胞具有存儲(chǔ)糖原的功能[3]。
自從建立了干細(xì)胞向HLCs分化誘導(dǎo)的成熟方案,不少研究者隨即對(duì)這些HLCs生物學(xué)功能和特性進(jìn)行深入的研究。由于ESCs具有高度的致瘤性,在體外進(jìn)行誘導(dǎo)分化時(shí),很容易混雜未能充分分化的ESCs[23,24],這就給臨床使用帶來(lái)高風(fēng)險(xiǎn),限制其臨床應(yīng)用。和ESCs相比,成體干細(xì)胞不具有明顯潛在的成瘤性,沒(méi)有倫理問(wèn)題的困擾,非常適合于臨床的應(yīng)用[25]。
圖4 免疫熒光方法檢測(cè)間充質(zhì)干細(xì)胞表達(dá)的白蛋白、細(xì)胞角蛋白19、甲胎蛋白Figure 4 Expressions of albumin, CK19 and AFP from MSCs by immuno fl uorescence microscopy
MSCs向HLCs誘導(dǎo)分化的培養(yǎng)方案已經(jīng)得到很好的建立[3]。分化后的HLCs具有向損傷肝臟部位遷移的能力,而且能在體內(nèi)分泌白蛋白[26~28]。人脂肪來(lái)源的MSCs誘導(dǎo)分化為HLCs后,能減輕四氯化碳對(duì)裸鼠造成的急性肝損傷程度[29]。這些結(jié)果說(shuō)明來(lái)源于干細(xì)胞的HLCs合適于治療肝病,尤其是急性肝衰竭和終末期肝病[30]。分化后的HLCs和未經(jīng)分化誘導(dǎo)的MSC均有報(bào)道其對(duì)肝病的治療作用,例如肝纖維化[31~33]、肝損傷[34,35]、爆發(fā)性肝衰竭[27,29,36]和肝再生[26,37,38]。由于MSCs向肝細(xì)胞分化前后,對(duì)肝病的治療均有效果,因此,需要對(duì)分化前后的細(xì)胞進(jìn)行功能相關(guān)比較研究。
動(dòng)物實(shí)驗(yàn)證明,MSCs不僅能遷移到損傷的部位,修復(fù)損傷的組織,并使損傷的組織恢復(fù)一定的功能[27,39,40];而且能減少細(xì)胞的死亡,并促進(jìn)內(nèi)源性再生[41,42]。另外,MSCs也易于體外培養(yǎng)擴(kuò)增。這些特性使得MSCs成為臨床細(xì)胞治療的最佳來(lái)源。MSCs修復(fù)組織的可能機(jī)制在于分泌可溶性細(xì)胞因子,這些細(xì)胞因子能抑制炎癥和免疫反應(yīng),也能刺激內(nèi)源性干細(xì)胞的增殖和分化,從而起到組織修復(fù)作用[43,44]。體內(nèi)實(shí)驗(yàn)證明未分化的MSCs比分化后的HLCs治療急性肝衰竭的效果更好[27],我們的數(shù)據(jù)也證明了這點(diǎn)。由于未分化的MSCs亦表達(dá)高水平的白蛋白,這有益于肝病的治療。這也說(shuō)明前期動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn)HLCs在肝臟分泌白蛋白的數(shù)據(jù)是值得商榷的。需要注意的是,發(fā)現(xiàn)MSCs輸入治療后有向肝細(xì)胞分化的實(shí)驗(yàn)研究中,均采用的是免疫缺陷小鼠[15,26],而MSCs在免疫系統(tǒng)正常小鼠體內(nèi)存留時(shí)間大概為23天[45]。在不同的動(dòng)物模型中,MSCs能改善肝臟功能,而沒(méi)有出現(xiàn)細(xì)胞融合[27,46]。
HGF是促進(jìn)肝細(xì)胞增殖[47,48]和肝再生[47,49]的最強(qiáng)效細(xì)胞因子。HGF刺激肝干/祖細(xì)胞的增殖來(lái)修復(fù)肝損傷[50]。HGF可引起B(yǎng)cl-xL的強(qiáng)烈表達(dá),阻斷Fas及其配體激活后的信號(hào)傳導(dǎo),抑制Fas介導(dǎo)的肝細(xì)胞凋亡[51],從而治療Fas引起的爆發(fā)性肝衰竭[52]。HGF除了能誘導(dǎo)肝實(shí)質(zhì)細(xì)胞的迅速增殖外,還能刺激膽管上皮細(xì)胞增殖,因而影響整個(gè)器官的發(fā)育。由于HGF有促進(jìn)肝細(xì)胞增殖和抑制凋亡的特性,使得HGF可能是肝病細(xì)胞治療的一個(gè)關(guān)鍵因子。我們和其他的研究小組都發(fā)現(xiàn)MSCs分泌高水平的HGF[53]。而且,臍帶來(lái)源的MSCs分泌HGF的量比骨髓來(lái)源的MSCs高30倍[53]。 除了HGF,MSCs也分泌高水平的MMPs,這些分泌的MMPs有利于組織修復(fù)和肝纖維化的治療。MSCs分化為HLCs后,其分泌的HGF(圖5)和MMPs(表1)都顯著降低。也有數(shù)據(jù)證明MSCs向HLCs分化培養(yǎng)結(jié)束后,并不是處于分化終末期的穩(wěn)定狀態(tài),這增加了成瘤性的風(fēng)險(xiǎn)[54]。
圖5 細(xì)胞分化前后肝細(xì)胞生長(zhǎng)因子的表達(dá)水平變化Figure 5 The change of hepatocyte growth factor expression after hepatic differentiation
表1 細(xì)胞分化前后基質(zhì)金屬蛋白酶的分泌水平變化Table 1 Matrix metalloproteinase changes after hepatic differentiation
綜上所述,由于沒(méi)有明確的鑒定標(biāo)準(zhǔn),也難于評(píng)價(jià)分化效率。MSCs分化為HLCs后,丟失了分泌HGF和MMPs的能力,而HGF和MMPs均有利于相關(guān)肝病的治療。這些數(shù)據(jù)說(shuō)明直接用未分化的MSCs治療肝病效果好于經(jīng)過(guò)誘導(dǎo)分化培養(yǎng)后的細(xì)胞,而且還節(jié)約培養(yǎng)成本。
[1] Hamazaki T, Iiboshi Y, Oka M, et al. Hepatic maturation in differentiating embryonic stem cells in vitro[J]. FEBS Lett, 2001, 497(1): 15-19.
[2] Schwartz R E, Reyes M, Koodie L, et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells[J]. J Clin Invest, 2002,109(10): 1291-1302.
[3] Lee K D, Kuo T K, Whang-Peng J, et al. In vitro hepatic differentiation of human mesenchymal stem cells[J]. Hepatology, 2004, 40(6): 1275-1284.
[4] Lue J, Lin G, Ning H, et al. Transdifferentiation of adiposederived stem cells into hepatocytes: a new approach[J]. Liver Int, 2010, 30(6): 913-922.
[5] Sa-ngiamsuntorn K, Wongkajornsilp A, Kasetsinsombat K, et al. Upregulation of CYP 450s expression of immortalized hepatocyte-like cells derived from mesenchymal stem cells by enzyme inducers[J]. BMC Biotechnol, 2011, 11: 89.
[6] Piryaei A, Valojerdi M R, Shahsavani M, et al. Differentiation of bone marrow-derived mesenchymal stem cells into hepatocyte-like cells on nano fi bers and their transplantation into a carbon tetrachloride-induced liver fibrosis model[J]. Stem Cell Rev, 2011, 7(1): 103-118.
[7] Liu Y, Song Z, Zhao Y, et al. A novel chemical-defined medium with bFGF and N2B27 supplements supports undifferentiated growth in human embryonic stem cells[J]. Biochem Biophys Res Commun, 2006, 346(1): 131-139.
[8] Lee T J, Jang J, Kang S, et al. Enhancement of osteogenic and chondrogenic differentiation of human embryonic stem cells by mesodermal lineage induction with BMP-4 and FGF2 treatment[J]. Biochem Biophys Res Commun, 2013, 430(2): 793-797.
[9] Lange C, Bassler P, Lioznov M V, et al. Hepatocytic gene expression in cultured rat mesenchymal stem cells[J]. Transplant Proc, 2005, 37(1): 276-279.
[10] Wang P P, Wang J H, Yan Z P, et al. Expression of hepatocyte-like phenotypes in bone marrow stromal cells after HGF induction[J]. Biochem Biophys Res Commun, 2004, 320(3): 712-716.
[11] Taléns-Visconti R, Bonora A, Jover R, et al. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells[J]. World J Gastroenterol, 2006, 12(36): 5834-5845.
[12] Hong S H, Gang E J, Jeong J A, et al. In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells[J]. Biochem Biophys Res Commun, 2005, 330(4): 1153-1161.
[13] Seo M J, Suh S Y, Bae Y C, et al. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo[J]. Biochem Biophys Res Commun, 2005, 328(1): 258-264.
[14] Banas A, Teratani T, Yamamoto Y, et al. Adipose tissuederived mesenchymal stem cells as a source of human hepatocytes[J]. Hepatology, 2007, 46(1): 219-228.
[15] Yu J, Cao H, Yang J, et al. In vivo hepatic differentiation of mesenchymal stem cells from human umbilical cord blood after transplantation into mice with liver injury[J]. Biochem Biophys Res Commun, 2012, 422(4): 539-545.
[16] Hwang S, Hong H N, Kim H S, et al. Hepatogenic differentiation of mesenchymal stem cells in a rat model of thioacetamide-induced liver cirrhosis[J]. Cell Biol Int, 2012, 36(3): 279-288.
[17] Dunn J C, Tompkins R G, Yarmush M L. Long-term in vitro function of adult hepatocytes in a collagen sandwich con fi guration[J]. Biotechnol Prog, 1991, 7(3): 237-245.
[18] Hedlund E, Gustafsson J A , Warner M. Cytochrome P450 in the brain; a review[J]. Curr Drug Metab, 2001, 2(3): 245-263.
[19] Tzanakakis E S, Hsiao C C, Matsushita T, et al. Probing enhanced cytochrome P450 2B1/2 activity in rat hepatocyte spheroids through confocal laser scanning microscopy[J]. Cell Transplant, 2001, 10(3): 329-342.
[20] Li-Masters T, Morgan E T. Effects of bacterial lipopolysaccharide on phenobarbital-induced CYP2B expression in mice[J]. Drug Metab Dispos, 2001, 29(3): 252-257.
[21] Jarukamjorn K, Sakuma T, Miyaura J, et al. Different regulation of the expression of mouse hepatic cytochrome P450 2B enzymes by glucocorticoid and phenobarbital[J]. Arch Biochem Biophys, 1999, 369(1): 89-99.
[22] Rader D J, Dugi K A. The endothelium and lipoproteins: insights from recent cell biology and animal studies[J]. Semin Thromb Hemost, 2000, 26(5): 521-528.
[23] Basma H, Soto-Gutiérrez A, Yannam G R, et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes[J]. Gastroenterology, 2009, 136(3): 990-999.
[24] Kroon E, Martinson L A, Kadoya K, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells invivo[J]. Nat Biotechnol, 2008, 26(4): 443-452.
[25] Werbowetski-Ogilvie T E, Bossé M, Stewart M, et al. Characterization of human embryonic stem cells with features of neoplastic progression[J]. Nat Biotechnol, 2009, 27(1): 91-97.
[26] Aurich H, Sgodda M, Kaltwasser P, et al. Hepatocyte differentiation of mesenchymal stem cells from human adipose tissue in vitro promotes hepatic integration in vivo[J]. Gut, 2009, 58(4): 570-581.
[27] Kuo T K, Hung S P, Chuang C H, et al. Stem cell therapy for liver disease: parameters governing the success of using bone marrow mesenchymal stem cells[J]. Gastroenterology, 2008, 134(7): 2111-2121, 2121. e1-e3.
[28] Aurich I, Mueller L P, Aurich H, et al. Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers[J]. Gut, 2007, 56(3): 405-415.
[29] Banas A, Teratani T, Yamamoto Y, et al. Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure[J]. J Gastroenterol Hepatol, 2009, 24(1): 70-77.
[30] Muraca M. Cell therapy as support or alternative to liver transplantation[J]. Transplant Proc, 2003, 35(3): 1047-1048.
[31] Zhang D, Jiang M, Miao D. Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse[J]. PLoS One, 2011, 6(2): e16789.
[32] Lin S Z, Chang Y J, Liu J W, et al. Transplantation of human Wharton's Jelly-derived stem cells alleviates chemically induced liver fibrosis in rats[J]. Cell Transplant, 2010, 19(11): 1451-1463.
[33] Tsai P C, Fu T W, Chen Y M, et al. The therapeutic potential of human umbilical mesenchymal stem cells from Wharton's jelly in the treatment of rat liver fibrosis[J]. Liver Transpl, 2009, 15(5): 484-495.
[34] Stock P, Brückner S, Ebensing S, et al. The generation of hepatocytes from mesenchymal stem cells and engraftment into murine liver[J]. Nat Protoc, 2010, 5(4): 617-627.
[35] Banas A, Teratani T, Yamamoto Y, et al. IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury[J]. Stem Cells, 2008, 26(10): 2705-2712.
[36] Parekkadan B, van Poll D, Suganuma K, et al. Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure[J]. PLoS One, 2007, 2(9): e941.
[37] Lam S P, Luk J M, Man K, et al. Activation of interleukin-6-induced glycoprotein 130/signal transducer and activator of transcription 3 pathway in mesenchymal stem cells enhances hepatic differentiation, proliferation, and liver regeneration[J]. Liver Transpl, 2010, 16(10): 1195-1206.
[38] van Poll D, Parekkadan B, Cho C H, et al. Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo[J]. Hepatology, 2008, 47(5): 1634-1643.
[39] T?gel F, Hu Z, Weiss K, et al. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms[J]. Am J Physiol Renal Physiol, 2005, 289(1): F31-F42.
[40] Sato Y, Araki H, Kato J, et al. Human mesenchymal stem cells xenografted directly to rat liver are differentiated into human hepatocytes without fusion[J]. Blood, 2005, 106(2): 756-763.
[41] Miyahara Y, Nagaya N, Kataoka M, et al. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction[J]. Nat Med, 2006, 12(4): 459-465.
[42] Gnecchi M, He H, Liang O D, et al. Paracrine action accounts for marked protection of ischemic heart by Aktmodi fi ed mesenchymal stem cells[J]. Nat Med, 2005, 11(4): 367-368.
[43] Watanabe M, Murata S, Hashimoto I, et al. Platelets contribute to the reduction of liver fibrosis in mice[J]. J Gastroenterol Hepatol, 2009, 24(1): 78-89.
[44] Munoz J R, Stoutenger B R, Robinson A P, et al. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice[J]. Proc Natl Acad Sci U S A, 2005, 102(50): 18171-18176.
[45] Zangi L, Margalit R, Reich-Zeliger S, et al. Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells[J]. Stem Cells, 2009, 27(11): 2865-2874.
[46] Kaibori M, Adachi Y, Shimo T, et al. Stimulation of liver regeneration after hepatectomy in mice by injection of bone marrow mesenchymal stem cells via the portal vein[J]. Transplant Proc, 2012, 44(4): 1107-1109.
[47] Ishii T, Sato M, Sudo K, et al. Hepatocyte growth factor stimulates liver regeneration and elevates blood protein level in normal and partially hepatectomized rats[J]. J Biochem, 1995, 117(5): 1105-1112.
[48] Fujiwara K, Nagoshi S, Ohno A, et al. Stimulation of liver growth by exogenous human hepatocyte growth factor in normal and partially hepatectomized rats[J]. Hepatology, 1993, 18(6): 1443-1449.
[49] Matsumoto K, Nakamura T. Hepatocyte growth factor: molecular structure and implications for a central role in liver regeneration[J]. J Gastroenterol Hepatol, 1991, 6(5): 509-519.
[50] Hasuike S, Ido A, Uto H, et al. Hepatocyte growth factor accelerates the proliferation of hepatic oval cells and possibly promotes the differentiation in a 2-acetylaminofluorene/ partial hepatectomy model in rats[J]. J Gastroenterol Hepatol, 2005, 20(11): 1753-1761.
[51] Suzuki H, Toyoda M, Horiguchi N, et al. Hepatocyte growth factor protects against Fas-mediated liver apoptosis in transgenic mice[J]. Liver Int, 2009, 29(10): 1562-1568.
[52] Kosai K, Matsumoto K, Nagata S, et al. Abrogation of Fasinduced fulminant hepatic failure in mice by hepatocyte growth factor[J]. Biochem Biophys Res Commun, 1998, 244(3): 683-690.
[53] Friedman R, Betancur M, Boissel L, et al. Umbilical cord mesenchymal stem cells: adjuvants for human cell transplantation[J]. Biol Blood Marrow Transplant, 2007, 13(12): 1477-1486.
[54] Le Blanc K, Tammik C, Rosendahl K, et al. HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells[J]. Exp Hematol, 2003, 31(10): 890-896.
Mesenchymal stem cells committed differentiation and its application in liver diseases therapy
WANG Hanyu, LIU Yongjun★
(Alliancells Institute of Stem Cells and Translational Regenerative Medicine, Tianjin 300300, China)
The protocols for differentiation of hepatocyte-like cells (HLCs) from mesenchymal stem cells (MSCs) have been well established. Previous datas have shown that MSCs and their derived-HLCs were able to engraft injured liver and alleviate injuries. It is necessary to elvaluate the cells therapeutic effects before and after MSCs differentiation. We will make a brief comment on the induction and differentiation culture protocol, hepatic markers and related functions of cell biology.
Mesenchymal stem cells; Committed differentiation; Cytotherapy; Liver diseases
國(guó)家自然科學(xué)基金(30872618)
和澤干細(xì)胞轉(zhuǎn)化再生醫(yī)學(xué)研究中心,天津 300300
★通訊作者:劉擁軍,E-mail: andyliuliu2001@yahoo.com.cn