• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Novel isoniazid cyclocondensed 1,2,3,4-tetrahydropyrimidine derivatives for treating infectious disease: a synthesis and in vitro biological evaluation

    2013-06-15 17:48:14NewDrugDiscoveryResearchDepartmentofMedicinalChemistrySunriseUniversityAlwarRajasthan30030India
    Journal of Acute Disease 2013年4期

    New Drug Discovery Research, Department of Medicinal Chemistry, Sunrise University, Alwar, Rajasthan -30030, India

    2Faculty of Pharmaceutical Sciences, UCSI University, Cheras, KualaLumpur - 56000, Malaysia

    3Department of Pharmacy, Jayamukhi Educational Society, Warangal -506 332, India

    Document heading doi: 10.1016/S2221-6189(13)60151-1

    Novel isoniazid cyclocondensed 1,2,3,4-tetrahydropyrimidine derivatives for treating infectious disease: a synthesis and in vitro biological evaluation

    Karthikeyan Elumalai1,3*, Mohammed Ashraf Ali1, Manogaran Elumalai2, Kalpana Eluri2, Sivaneswari Srinivasan3

    1New Drug Discovery Research, Department of Medicinal Chemistry, Sunrise University, Alwar, Rajasthan -301030, India

    2Faculty of Pharmaceutical Sciences, UCSI University, Cheras, KualaLumpur - 56000, Malaysia

    3Department of Pharmacy, Jayamukhi Educational Society, Warangal -506 332, India

    Document heading doi: 10.1016/S2221-6189(13)60151-1

    ARTICLE INFO

    Article history:

    Isoniazid

    Tetrahydropyrimidines

    Cyclocondensation

    Antimicrobial

    Antimycobacterial

    Objective: To synthesize new congeners by incorporating isoniazid with 1,2,3,4-tetrahydropyrimidinones moieties in a single molecular frame work and to evaluate their antimicrobial and antimycobacterial activity. Methods: A new series of some novel isoniazid cyclocondensed 1,2,3,4-tetrahydropyrimidines was prepared by N′-acetoacetylisonicotinohydrazide with urea/thiourea and appropriate aldehyde in the presence of catalytic amount of laboratory made benzenesulphonic acid. Confirmation of the chemical structure of the synthesized compounds (4a-n) was substantiated by melting point, TLC, different spectral data IR,1H-NMR, and Mass spectra were done. The synthesized compounds were evaluated for in vitro antimicrobial and antimycobacterial activity against Bacillus subtilis (B. subtilis), Escherichia coli (E. coli), Mycobacterium tuberculosis (M. tuberculosis) CIP and H37Rv strain. Results: The titled compounds exhibited weak, moderate, or high antimicrobial and antimycobacterial activity. Compounds 4l, 4m, and 4n, exhibited potential antimicrobial and antimycobacterial action, when compare with the current therapeutic agent of Norfloxacin and Rifampicin. Conclusions: Compound 4l, 4m, and 4n is arguably the most potent, our present study makes it an interesting compound when compared to the current therapeutic agents and are considered the candidates to investigate further for the same.

    1. Introduction

    Organic compound synthesis has been promoted by microwave assisted methods by which small molecules are built up into large polymers in a fraction of time when compared to thermal methods ensuring the acceptance of Microwave assisted irradiation reactions as a valuable tool for acceleration of a wide variety of organic molecules development[1-3]. The advent of microwave assisted technology in organic chemistry dates back to the mid 1980s and since the 1990s there has been a significant increase in the number of publications on Microwave Assisted Organic Reactions (MAOS) due to increased benefits associated with the process[4-6]. The promotion of microwave assisted reactions in organic chemistry has improved the speed,reduced cost, reduced energy spent making it a sustainable process and is widely heralded as “green chemistry”measures whose applications are promoted today to minimize the use of non renewable resources as well as polluting solvent, to reduce generation of secondary products which are often toxic and to reduce the emission of harmful gases[7-9]. Microwave assisted reactions in organic chemistry achieve the same by ensuring facilitation of faster reactions under bulk conditions as well as promoting reduction of reaction time[10].

    Pyrimidine derivatives comprise a diverse and interesting group of drugs are extremely important for their biological activities. Dihydropyrimidine and their derivatives have attracted increasing interest owing to their therapeutic and pharmaceutical properties, such as antiviral, antibacterial, antitubercular[11-13], antagonists of the human adenosine A2A receptor[14], cyclooxygenase-2 inhibitory activity[15-16], tyrosine kinase inhibitors, antiamoebic activity[17-18]and anticancer activities[19]. Recently, functionalized dihydropyrimidinones have been successfully usedas antihypertensive agents, calcium channel blockers, adrenergic and neuropeptide Y (NPY) antagonists[20]. In addition, some alkaloids containing the dihydropyrimidine core unit which also exhibit interesting biological properties have been isolated from marine sources. Most notably, among these are the batzelladine alkaloids, which were found to be potent HIV gp-120-CD4 inhibitors[21-22]. The original protocol for the synthesis of dihydropyrimidinones, reported by Biginelli in 1893, involves a one-pot reaction of benzaldehyde, ethyl acetoacetate and urea in ethanol under strongly acidic conditions[23]. However, this method suffers from drawbacks such as low yields (20%-40%) of the desired products, particularly in case of substituted aldehydes, and loss of acid sensitive functional groups during the reaction. This has led to multi-step synthetic strategies that produce somewhat better yields, but which lack the simplicity of the original one-pot Biginelli protocol[24]. The discovery during the 1930s that a dihydropyridine (dihydronicotinamide derivative, NADH), ‘‘hydrogentransferring coenzyme’’ consequently became important in biological system, has generated numerous studies on the biochemical properties of dihydropyridines and their bioisosteres dihydropyrimidines. The search for more suitable preparation of dihydropyrimidinones continues today.

    The chemical structure of isoniazid provides a most valuable molecular template for the development of agents able to interact with a wide variety of biological activities. Tetrahydropyrimidines are structurally similar to dihydropyrimidines. The synthesis of isoniazid condensed with 1, 2, 3, 4-tetrahydropyrimidinones are not reported so for. Hence, it was thought worthwhile to synthesize new congeners by incorporating isoniazid with 1, 2, 3, 4-tetrahydropyrimidinones moieties in a single molecular frame work and to evaluate their antimicrobial and antimycobacterial activity.

    2. Materials and methods

    2.1. Experimental

    All chemicals were supplied by E. Merck (Germany) and S.D fine chemicals (India). Melting points were determined by open tube capillary method and are uncorrected. Purity of the compounds was checked on thin layer chromatography (TLC) plates (silica gel G) in the solvent system ethanol, chloroform, ethylacetate (6:3:1); the spots were located under iodine vapors or UV light. IR spectrums were obtained on a Perkin-Elmer 1720 FT-IR spectrometer (KBr Pellets).1H-NMR spectra were recorded or a Bruker AC 300 MHz spectrometer using TMS as internal standard in DMSO/ CDCl3. Mass spectra were obtained using Shimadzu LCMS 2010A under ESI ionization technique.

    2.2. General procedure

    2.2.1. Preparation of N’-acetoacetylisonicotinohydrazide (3)

    Isoniazid 1 (0.01 M) and ethyl acetoacetate 2 (0.01 M) were mixed and refluxed for approximately 7 h. The colorless liquid formed was then heated on a water bath to remove the alcohol formed during the reaction. After allowing the reaction mixture to cool, crude crystals were obtained. Purification was performed by stirring crude crystals with cold diethyl ether for approximately 15 min using a mechanical stirrer. Allowing it to stand for 15 min, followed by filtration, resulted in the third compound in a pure form of N’-acetoacetylisonicotinohydrazide 3.

    2.2.2. Preparation of 1,2,3,4-tetrahydropyrimidines by microwave irradiation method(4a-n)

    The mixture of N’-acetoacetylisonicotinohydrazide (0.005 M), urea/thiourea (0.007 5 M), and appropriate aldehyde (0.005 M) with catalytic amount of benzenesulphonic acid in 10 ml of ethanol was subjected to microwave irradiation (300 W) for 8 min at the interval of 10 s. The reactions were monitored through TLC using 25 percent ethyl acetate in pet ether as solvent system. After the reaction was complete, the reaction mixture was cooled in a refrigerator and filtered. The precipitate obtained was washed thoroughly with water to remove unreacted urea/thiourea and dried. The crude solid product was recrystallized with ethanol to give the pure compounds (4a-n).

    2.3. Analytical data

    2.3.1. N’-(3-oxobutanoyl) pyridine-4-carbohydrazide (3)

    Colourless crystalline solid, M.P: 174-176℃, Yield 68%, IR (KBr, cm-1): 3 312 (N-H), 3 052 (Ht-ArC-H), 2 864 (AliC-H), 1 732 (C=O, ketone), 1 652 (C=O, amide), 1 563 (C=C), 1 348 (C-N),1H-NMR (DMSO-d6) δ: 2.28 (s, 3H, CH3), 3.36 (s, 2H, CH2), 7.32 (d, 2H, ArH), 9.38 (s, 1H, NH), 9.38 (s, 1H, NH), MS (m/z): M+ calculated 221.07, found 221.24.

    2.3.2. 6-methyl-2-oxo-4-(pyridin-4-yl)-N’-(pyridin-4-ylcarbonyl)-1,2,3,4 tetrahydropyrimidine-5-carbohydrazide (4a)

    Pale-bluish colored solid, M.P: 236-238℃, Yield 72%, IR (KBr, cm-1): 3 296 (N-H), 3 136(ArC-H), 2 942 (AliC-H), 1 675 (C=O, amide), 1 556 (C=C), 1 210 (O-C),1H-NMR (DMSO-d6) δ: 2.05 (s, 3H, CH3), 5.42 (s, 1H, CH), 6.52-6.67(d, 2H, ArH), 7.24-7.35 (m, 5H, ArH), 7.54 (d, 2H, ArH), 8.71 (s, 1H, NH), 8.85 (s,1H, NH), 9.42 (s, 1H, NH), 9.86 (s, 1H, NH). MS (m/z): M+ calculated 352.12, found 351.92.

    2.3.3. 6-methyl-4-(pyridin-4-yl)-N’-(pyridin-4-ylcarbonyl)-2-thioxo-1,2,3,4 tetrahydropyrimidine-5-carbohydrazide(4b)

    Pale-yellowish solid, M.P: 248-251℃, Yield 70%, IR (KBr, cm-1): 3 264 (N-H), 3 178(ArC-H), 2 956 (AliC-H), 1685 (C=O, amide), 1 574 (C=C), 1 872 (C=S), 1 169 (O-C), 1HNMR (DMSO-d6)δ: 2.07 (s, 3H, CH3), 5.53(s, 1H, CH), 6.57 (d, 2H, ArH), 7.31-7.45 (m, 5H, ArH), 7.82 (d, 2H, ArH), 9.22 (s, 1H, NH), 9.58 (s, 1H, NH), 9.85 (s, 1H, NH), MS (m/z): M+ calculated 353, found 353.75. MS (m/z): M+ calculated 368.10, found 368.40.

    2.3.4. 6-methyl-4-(3-nitrophenyl)-2-oxo-N’-(pyridin-4-ylcarbonyl)-1,2,3,4 tetrahydropyrimidine-5-carbohydrazide (4c)

    Light-greenish colored solid, M.P: 256-259 ℃, Yield 78%, IR (KBr, cm-1): 3 314 (N-H), 3 210 (ArC-H), 2 936 (AliC-H), 1 684 (C=O, amide), 1 568 (C=C), 1 324 (O-C),1H-NMR (DMSO-d6)δ: 2.05 (s, 3H, CH3), 5.62 (s, 1H, CH),6.53 (d, 2H, ArH), 6.74-7.21 (m, 4H, ArH), 7.56 (d, 2H, ArH), 8.52 (s, 1H, NH), 8.76 (s, 1H, NH), 9.54 (s, 1H, NH). MS (m/z): M+ calculated 396.11, found 395.96.

    2.3.5. 6-methyl-4-(3-nitrophenyl)-N’-(pyridin-4-ylcarbonyl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbohydrazide (4d)

    Dark-brownish solid, M.P: 278-280 ℃, Yield 74%, IR (KBr, cm-1): 3 228 (N-H), 3 146(ArC-H), 2 930 (AliC-H), 1 672 (C=O, amide), 1 584 (C=C), 1858 (C=S), 1 210(O-C), 1H-NMR (DMSO-d6)δ: 2.04 (s, 3H, CH3), 5.38 (s, 1H, CH), 6.59 (d, 2H, ArH), 6.84 (d, 2H, ArH), 7.32 (d, 2H, ArH), 7.64 (d, 2H, ArH), 9.24 (s, 1H, NH), 9.46 (s, 1H, NH), 9.88(s, 1H, NH). MS (m/z): M+ calculated 412.09, found 413.26.

    2.3.6. 4-(3-chlorophenyl)-6-methyl-2-oxo-N’-(pyridin-4-ylcarbonyl)-1,2,3,4-tetrahydropyrimidine-5-carbohydrazide (4e)

    Light-ash-colored solid, M.P: 263-266℃, Yield 81%, IR (KBr, cm-1): 3 322 (N-H), 3178 (ArC-H), 2 942 (AliC-H), 1 667 (C=O amide), 1 568 (C=C), 1 276 (C-O),1HNMR (DMSO-d6)δ :2.01 (s, 3H, CH3), 5.61 (s, 1H, CH), 6.72 (d, 2H, ArH), 7.54 (m, 3H, ArH), 7.78 (d, 2H, ArH), 8.75 (s, 1H, NH), 9.44 (s, 1H, NH), 9.88 (s, 1H, NH). MS (m/z): MS (m/z): M+ calculated 385.09, found 386.12.

    2.3.7. 4-(3-chlorophenyl)-6-methyl-N’-(pyridin-4-ylcarbonyl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbohydrazide (4f)

    Ash-colored solid, M.P: 284-287℃, Yield 78%, IR (KBr, cm-1): 3 257 (N-H), 3 156(ArC-H), 2 966 (AliC-H), 1 648 (C=O, amide), 1 588 (C=C), 1 846 (C=S), 1 177 (O-C),1HNMR (DMSO-d6)δ: 2.07 (s, 3H,CH3), 5.58 (s, 1H, CH), 6.72 (d, 2H, ArH), 6.89 (d, 2H, ArH),7.66-7.82 (m, 3H, ArH), 9.24 (s, 1H, NH), 9.47 (s, 1H, NH), 10.01 (s, 1H, NH), MS (m/z): M+ calculated 401.07, found 400.94.

    2.3.8. 4-(furan-2-yl)-6-methyl-2-oxo-N’-(pyridin-4-ylcarbonyl)-1,2,3,4-tetrahydropyrimidine-5-carbohydrazide (4g)

    Light-yellowish solid, M.P: 242-245 ℃, Yield 77%, IR (KBr, cm-1): 3 252 (N-H), 3 146(ArC-H), 2 954 (AliC-H), 1 664 (C=O, amide), 1 586 (C=C), 1 174 (O-C),1H-NMR (DMSO-d6)δ: 2.01 (s, 3H, CH3), 5.43 (s, 1H, CH), 6.54 (d, 2H, ArH), 7.39-7.63 (m, 4H, ArH), 8.92 (s, 1H, NH), 9.44 (s, 1H, NH), 9.92 (s, 1H, NH). MS (m/z): M+ calculated 341.11, found 340.86.

    2.3.9. 4-(furan-2-yl)-6-methyl-N’-(pyridin-4-ylcarbonyl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbohydrazide (4h)

    Light-greenish solid, M.P: 268-271 ℃, Yield 75%, IR (KBr, cm-1): 3 246 (N-H), 3 164(ArC-H), 2 968 (AliC-H), 1 638 (C=O, amide), 1 566 (C=C), 1 846 (C=S), 1 154 (O-C),1H-NMR (DMSO-d6)δ: 2.08 (s, 3H, CH3), 5.73 (s, 1H, CH), 6.51 (d, 2H, ArH), 7.38-7.56 (m, 4H, ArH), 8.94 (s, 1H, NH), 9.28 (s, 1H, NH), 9.93 (s, 1H, NH). MS (m/z): M+ calculated 357.08, found 356.93.

    2.3.10. 4-(2-chlorophenyl)-6-methyl-2-oxo-N’-(pyridin-4-ylcarbonyl)-1,2,3,4-tetrahydropyrimidine-5-carbohydrazide (4i)

    Light-bluish solid, M.P: 282-285℃, Yield 76%, IR (KBr, cm-1): 3 243 (N-H), 3 153(ArC-H), 2 938 (AliC-H), 1 663 (C=O, amide), 1 568 (C=C), 1 187 (O-C),1H-NMR (DMSO-d6)δ: 2.07 (s, 3H, CH3), 5.38 (s, 1H, CH), 6.69 (d, 2H, ArH), 7.53-7.68 (m, 4H, ArH), 8.82 (s, 1H, NH), 9.51 (s, 1H, NH), 9.87 (s, 1H, NH). MS (m/z): M+ calculated 385.09, found 384.88.

    2.3.11. 4-(2-chlorophenyl)-6-methyl-N’-(pyridin-4-ylcarbonyl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbohydrazide (4j)

    Ash-colored solid, M.P: 289-291 ℃, Yield 72%, IR (KBr, cm-1): 3 247 (N-H), 3 148(ArC-H), 2 928 (AliC-H), 1 658 (C=O, amide), 1 568 (C=C), 1 834 (C=S), 1 157 (O-C),1H-NMR (DMSO-d6)δ: 2.06 (s, 3H, CH3), 5.63 (s, 1H, CH), 6.59 (d, 2H, ArH), 7.42-7.67 (m, 4H, ArH), 8.76 (s, 1H, NH), 9.39 (s, 1H, NH), 9.95 (s, 1H, NH). MS (m/z): M+ calculated 401.07, found 401.76.

    2.3.12. 4-(4-chlorophenyl)-6-methyl-2-oxo-N’-(pyridin-4-ylcarbonyl)-1,2,3,4-tetrahydropyrimidine-5-carbohydrazide (4k)

    Light-bluish colored solid, M.P: 294-296 ℃, Yield 79%, IR (KBr, cm-1): 3 258 (N-H), 3 152(ArC-H), 2 934 (AliC-H), 1 686 (C=O, amide), 1 568 (C=C), 1 149 (O-C),1H-NMR (DMSO-d6) δ: 2.03 (s, 3H, CH3), 5.39 (s, 1H, CH), 6.72 (d, 2H, ArH), 7.46-7.72 (m, 4H, ArH), 8.88 (s, 1H, NH), 9.38 (s, 1H, NH), 9.74 (s, 1H, NH). MS (m/z): M+ calculated 385.09, found 385.84.

    2.3.13. 4-(4-chlorophenyl)-6-methyl-N’-(pyridin-4-ylcarbonyl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbohydrazide (4l)

    Light-yellowish solid, M.P: 312-315 ℃, Yield 73%, IR (KBr, cm-1): 3 256 (N-H), 3 174(ArC-H), 2 966 (AliC-H), 1 672 (C=O, amide), 1 574 (C=C), 1 858 (C=S),1 134 (O-C),1H-NMR (DMSO-d6)δ: 2.06 (s, 3H, CH3), 5.72 (s, 1H, CH), 6.49 (d, 2H,ArH), 7.38-7.64 (m, 4H, ArH), 8.72 (s, 1H, NH), 9.68 (s, 1H, NH), 9.96 (s, 1H, NH). MS (m/z): M+ calculated 401.07, found 400.92.

    2.3.14. 4-(4-fluorophenyl)-6-methyl-2-oxo-N’-(pyridin-4-ylcarbonyl)-1,2,3,4-tetrahydropyrimidine-5-carbohydrazide (4m)

    Light-greenish solid, M.P: 328-331℃, Yield 82%, IR (KBr, cm-1): 3 246 (N-H), 3 178(ArC-H), 2 936 (AliC-H), 1 646 (C=O, amide), 1 571 (C=C), 1 154 (O-C),1H-NMR (DMSO-d6)δ: 2.08 (s, 3H, CH3), 5.58 (s, 1H, CH), 6.44 (d, 2H, ArH), 7.36-7.69 (m, 4H, ArH), 8.84 (s, 1H, NH), 9.58 (s, 1H, NH), 9.98 (s, 1H, NH). MS (m/z): M+ calculated 369.12, found 369.26

    2.3.15. 4-(4-fluorophenyl)-6-methyl-N’-(pyridin-4-ylcarbonyl)-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbohydrazide (4n)

    Light-bluish colored solid, M.P: 344-346 ℃, Yield 78%, IR (KBr, cm-1): 3 246 (N-H), 3 134(ArC-H), 2 972 (AliC-H), 1 646 (C=O, amide), 1 578 (C=C), 1 826 (C=S), 1 184 (O-C),1H-NMR (DMSO-d6)δ: 2.09 (s, 3H, CH3), 5.74 (s, 1H, CH), 6.68 (d, 2H, ArH), 7.34-7.66 (m, 4H, ArH), 8.82 (s, 1H, NH), 9.56 (s, 1H, NH), 9.96 (s, 1H, NH). MS (m/z): M+ calculated 385.10, found 385.84.

    2.4. Antimicrobial activity

    The in vitro antibacterial activities were tested against Gram-positive bacteria Bacillus subtilis (B. subtilis) and Gram-negative bacteria Escherichia coli (E. coli) by standard serial dilution method using a stock solution of 100 μg/mL concentration[25,26]. Double strength nutrient broth was used as culture media and dimethyl sulphoxide (DMSO) was used as solvent control. The stock solutions of the test compounds were serially diluted in test tubes containing 1 mL of sterile medium to get the different concentrations and then inoculated with 100 μL of suspension of respective microorganism in sterile saline. Norfloxacin was used as standard drug. The inoculated test tubes were incubated at (37 ± 1)℃for 24 h.

    2.5. Antimycobacterial activity

    Antimycobacterial activity was performed following a protocol previously reported[27]. Compounds (4a - n) were preliminarily assayed against to freshly isolate clinical strains, M. furtuitum and M. tuberculosis, according to the dilution method in agar. Growth media were Mueller-Hilton (Difco) containing 10% of OADC (oleic acid, albumin and dextrose complex) for M. furtuitum and Middle brook 7H11 agar (Difco) with 10% of OADC for M. tuberculosis. Substances were tested at single dose of 100 μg/mL. The compounds were then assayed for inhibitory activity against a panel of mycobacterial (M. tuberculosis CIP, M. tuberculosis H37Rv) in Middle brook 7H11 agar by a standard twofold dilution method. Plates were incubated at 37 ℃ for 3 or 28 d. Rifampicin was used as reference compound. After cultivation, MICs were read as minimal concentrations of drugs completely inhibiting visible of mycobacterial growth (Table 1).

    3. Results

    A series of 14 novel isoniazid cyclocondensed 1,2,3,4-tetrahydropyrimidines of biological interest were synthesized and evaluated for antimicrobial and anti-mycobacterial activity, all the compounds were characterized by IR,1H NMR, MS for their structures.

    3.1. Chemistry

    Synthesis of 1,2,3,4-tetrahydropyrimidines by microwave irradiation method reaction was performed by following steps as outlined in Figure 1. In the first step, ethylacetoacetate 2 and isoniazid 1 reacted under neat conditions resulting in the formation of N’-acetoacetylisonicotinohydrazide 3 with the yield of 68 percent. The N’-acetoacetylisonicotinohydrazide was further taken for the condensation reaction by reacting it with urea/thiourea and appropriate aldehyde in the presence of catalytic amount of benzenesulphonic acid. The reaction times were found to be 8 minutes. Totally, fourteen compounds 4a-n, various substituted 1,2,3,4-tetrahydropyrimidines, were synthesized with the yield ranging from 70 to 82 percent. These conditions enable this method to be applicable for the synthesis of 1,2,3,4-tetrahydropyrimidines based heterocyclic compounds. The 1,2,3,4-tetrahydropyrimidines, (4a-n) were synthesized relatively easily by using laboratory made benzenesulphonic acid as an efficient catalyst compared with Lewis acid. The present protocol best describes the synthesis of 1,2,3,4-tetrahydropyrimidines. All the reported 1,2,3,4-tetrahydropyrimidines compounds were found to be novel and not reported elsewhere.

    Figure 1. Synthesis of compounds (4a – 4n).Reagents and conditions: (a) Reflux 6 h; (b) C2H5OH, Benzenesulphonic acid, microwave irradiation (300 W) for 8 min.

    Table 1Synthesized 1,2,3,4-tetrahydropyrimidines: Antimicrobial and antimycobacterial activity.

    3.2. Antimicrobial and antimycobacterial activity

    The synthesized compounds were subjected to in vitro antimicrobial activity against Gram-positive bacteria B. subtilis, Gram-negative bacteria E. coli and antimycobacterial against M. tuberculosis CIP and H37RV strain. The motive is to check the antimicrobial and antimycobacterial activity for the synthesized compounds. Almost all the titled compounds exhibited weak, moderate, or high antimicrobial and antimycobacterial activity.

    Analyzing the activities of the synthesized compounds, the following structure activity relationships (SARs) were obtained. The fifth position of 1,2,3,4-tetrahydropyrimidines contain N’-acetoacetylisonicotinohydrazide group contributed toward antimicrobial and antimycobacterial and forth positions of 1,2,3,4-tetrahydropyrimidines contain substituted phenyl and hetero aromatic ring responsible antimicrobial and antimycobacterial potency. Substituted atom or group of atom must be strong electron withdrawing nature for potent activity because it decreases electron density in the ring due to inductive effect. Fluoride and chloride substitution at fourth position of phenyl ring showed potent antimicrobial and antimycobacterial action because of strong electron withdrawing nature. Substitution of chloro group at third position of phenyl ring showed potent action when compare with nitro atom. Among all the substituted phenyl ring, the activity order was F>Cl>NO2. Introduction of heterocyclic ring at forth position it showed moderate antimicrobial and antimycobacterial activity. Among the compounds reported here in, compound (4l, 4m, 4n) is arguably the most potent when compare with current therapeutic agent norfloxacin and rifampicin because fluride and chloride substituted phenyl ring present at 4th position of 1,2,3,4-tetrahydropyrimidines it enhance the antimicrobial and antimycobacterial activity (Table 1).

    4. Discussion

    A series of novel 1,2,3,4-tetrahydropyrimidines of biological interest were synthesized and analyzed for their structures. The libraries of compounds were prepared by using laboratory made benzenesulphonic acid as an efficient catalyst. The importance of substitutions at the fourth and fifth positions of 1,2,3,4-tetrahydropyrimidines was studied toward the antimicrobial and anti mycobacterial activity. The antimicrobial and anti mycobacterial activity data revealed that the all synthesized compounds proved to be active against the test organism B. subtilis, E. coli, M. tuberculosis CIP and H37RV strain. Almost all of the titled compounds exhibited weak, moderate, or high antimicrobial and antimycobacterial activity. Some of new derivatives showed an in vitro antimicrobial activity against B. subtilis, E. coli better than that of norfloxacin and antimycobacterial activity against M. tuberculosis CIP and H37RV strain better than that of antitubercular drug rifampicin. Among the compounds reported here in, compound (4l, 4m, 4n) is arguably the most potent, our present study makes it an interesting compound when compared to the current therapeutic agents and are considered the candidates to investigate further for the same.

    Conflict of interest statement

    The authors report no conflict of interest.

    Acknowledgments

    The authors wish to thank Sunrise University for research support. Also thank the Tuberculosis Research Center, Chennai, India.

    [1] Mavandadi F, Pilotti A. The impact of microwave-assisted organic synthesis in drug discovery. Dru Disc Tod 2006; 11: 165-174.

    [2] Tsoleridis, CA, Neochoritis CG, Tzitzikas T, Stephanidou Stephanatou J, Kontogiorgis CA, Hadjipavlou Litina DJ, et al. One-pot microwave assisted synthesis under green chemistry conditions, antioxidant screening, and cytotoxicity assessments of benzimidazole Schiff bases and pyrimido[1,2-a] benzimidazol-3(4H)-ones. Eur J Med Chem 2011; 46: 297-306.

    [3] Jolly Jacob. Microwave assisted reactions in organic chemistry: A rev. Recent Adv 2012; 4: 29-43.

    [4] Langa F, de la Cruz P, de la Hoz A, Diaz-Ortiz A, Diez Barra E. Microwave irradiation: more than just a method for accelerating reactions Contemp. Org Synth 1997; 4: 373-386.

    [5] Strauss CR, Trainor RW. Developments in microwave-assisted organic chemistry. Aust J Chem 1995; 48: 1665-1692.

    [6] Wathey B, Tierney J, Lidstr?m P, Westman. The impact of microwave-assisted organic chemistry on drug discovery. Drug Disc Tod 2002; 7: 373-380.

    [7] Prasad D, Preetam A, Nath M. Microwave-assisted green synthesis of dibenzoxanthenes using p-dodecylbenzenesulfonic acid as an efficient bronsted acid catalyst under solvent-free conditions. Comp Ren Chim 2012; 15: 675-678.

    [8] Tucker JL. Green chemistry: cresting a summit toward sustainability. Org Pro Res Dev 2010; 14: 328-331.

    [9] Shu-Liang Wang, Chuang Cheng, Fei-Yue Wu, Bo Jiang, Feng Shi, Shu-Jiang Tu, et al. Microwave-assisted multi-component reaction in water leading to highly regioselective formation of benzo[f]azulen-1-ones. Tetr 2011; 67: 4485-4493.

    [10] Erdmenger T, Guerrero Sanchez C, Vitz J, Hoogenboom R, Schubert US. Recent developments in the utilization of green solvents in polymer chemistry. Chem Soc 2010; 39: 3317-3333.

    [11] Kamaljit Singh, Kawaljit Singh, Baojie Wan, Scott Franzblau, Kelly Chibale. Facile transformation of Biginelli pyrimidin-2(1H)-ones to pyrimidines. In vitro evaluation as inhibitors of Mycobacterium tuberculosis and modulators of cytostatic activity. Bio Med Chem Let 2011; 46: 2290-2294.

    [12] Desai B, Sureja D, Naliapara Y, Shah A, Saxena AK. Synthesis and QSAR studies of 4-substituted phenyl-2,6-dimethyl-3,5-bis-n-(substituted phenyl) carbamoyl-1,4-dihydropyridines as potential antitubercular agents. Bio Med Chem 2001; 9: 1993-1998.

    [13] Prashantha Kumar BR, Yuvaraj S, Srivastava A, Chaturvedi V, Manju YK, Suresh B, et al. CoMFA study, syntheses, antitubercular and anticancer activity of some novel 1,4-dihydropyridines. Let Dru Des Disc 2008; 5: 7-14.

    [14] Roger J. Gillespie, Ian A. Cliffe, Claire E. Dawson. Antagonists of the human adenosine A2A receptor. Part 3: Design and synthesis of pyrazolo[3,4-d]pyrimidines, pyrrolo[2,3 d] pyrimidines and 6-arylpurines. Bio Med Chem Let 2008; 18: 2924-2929.

    [15] Aurelio Orjales, Ramon Mosquera, Beatriz Lopez, Roberto Olivera. Novel 2-(4-methylsulfonylphenyl)pyrimidine derivatives as highly potent and specific COX-2 inhibitors. Bio Med Chem 2008; 16: 2183-2199.

    [16] Emerson Peter da S. Falcao, Sebastiao J. de Melo, Rajendra M. Srivastava. Synthesis and antiinflammatory activity of 4-amino-2-aryl-5-cyano-6-{3- and 4-(N-phthalimidophenyl)} pyrimidines. Eur J Med Chem 2006; 41: 276-282.

    [17] Aleem Gangjee, Ying Zhao, Sudhir Raghavan, Michael A. Ihnat, Bryan C. Disch. Design, synthesis and evaluation of 2-amino-4-m-bromoanilino-6-arylmethyl-7 H-pyrrolo[2,3 d]pyrimidines as tyrosine kinase inhibitors and antiangiogenic Agents. Bio Med Chem 2010; 18: 5261-5273.

    [18] Humaira Parveen, Faisal Hayat, Attar Salahuddin, Amir Azam. Synthesis, characterization and biological evaluation of novel 6-ferrocenyl-4-aryl-2-substituted pyrimidine derivatives. Eur J Med Chem 2010; 45: 3497-3503.

    [19] Saritha Jyostna T, Achaiah G. Synthesis of new pyrrolo[2,3-d] pyrimidine derivatives and evaluation of their activities against human colon cancer cell lines. Eur J Med Chem 2010; 45: 1453-1458.

    [20] Atwal KS, Rovnyak GC, Kimball SD, Floyd DM, Moreland S, Swanson BN, et al. Dihydropyrimidine calcium channel blockers. 3-Substituted-4-aryl-1,4-dihydro-6-methyl-5-pyrimidinecarboxylic acid esters as potent mimics of dihydropyridines. J Med Chem 1990; 33: 2629-2635.

    [21] Atwal KS, Rovnyak GC, O’Reilly BC, Schewartz J. Substituted 1,4-dihydropyrimidines. Synthesis of selectively functionalized 2-hetero-l,4- dihydropyrimidin. J Org Chem 1989; 54: 5898-5907.

    [22] Patil AD, Kumar NV, Kokke WC, Bean MF, Freyer AJ, Brossi CD, et al. Novel alkaloids from the sponge Batzella sp.: Inhibitors of HIV gp120-human CD4 binding. J Org Chem 1995; 60: 1182-1188.

    [23] Biginelli P. Aldehyde-urea derivatives of aceto-and oxaloacetic acids. Gazz Chim Ital 1893; 23: 360-413.

    [24] Rovnyak GC, Kimbal SD, Beyer B, Cucinotta G, Dimarco JD, Gougoutas J, et al. Calcium entry blockers and activators: Conformational and structural determinants of dihydropyrimidine calcium channel modulators. J Med Chem 1995; 38: 119-129.

    [25] Bin Zhu, Brett A. Marinelli, Raul Goldschmidt, Barbara D. Foleno, Jamese J. Hilliard, Karen Bush, et al. Synthesis and antibacterial activity of 7-(1, 2, 3, 4-tetrahydropyrrolo [1, 2-a]-pyrazin-7-yl) quinolones. Bioorg Med Chem Let 2009; 19: 4933-4936.

    [26] Vasudeva Rao A, Rajendra Prasad Y, Girijasankar G, Pradeepsagar G. Synthesis, characterization and in vitro biological evaluation of some novel diarylsulfonylureas as potential cytotoxic and antimicrobial agents. Bioorg Med Chem Let 2012; 22: 1031-1035.

    [27] Biava M, Porretta GC, Poce G. Identification of a novel pyrole derivative endowed with antimycobacterial activity and protection index comparable to that of the current antitubercular drugs streptomycin and rifampicin. Bio Med Chem 2010; 18: 8076-8084.

    16 July 2013

    *Corresponding author: Karthikeyan Elumalai, New Drug Discovery Research, Department of Medicinal Chemistry, Sunrise University, Alwar, Rajasthan -301030, India.

    Tel: +91- 95733 96024

    E-mail: karthikeyanelumalai@hotmail.com

    Received in revised form 23 August 2013

    Accepted 29 August 2013

    Available online 20 December 2013

    九色亚洲精品在线播放| 黄频高清免费视频| 国产国语露脸激情在线看| 极品人妻少妇av视频| 天天躁夜夜躁狠狠躁躁| 777久久人妻少妇嫩草av网站| 欧美日韩视频精品一区| 成年人免费黄色播放视频| 美女视频免费永久观看网站| 91大片在线观看| 久99久视频精品免费| 老鸭窝网址在线观看| 青草久久国产| 校园春色视频在线观看| 国产成人欧美在线观看 | 中文字幕最新亚洲高清| 91在线观看av| 免费看a级黄色片| 热99久久久久精品小说推荐| 国产亚洲精品久久久久5区| 亚洲黑人精品在线| 日本撒尿小便嘘嘘汇集6| 看免费av毛片| 亚洲专区字幕在线| 高清毛片免费观看视频网站 | 在线观看免费午夜福利视频| 亚洲国产精品一区二区三区在线| 99国产综合亚洲精品| 亚洲第一青青草原| 久久久国产欧美日韩av| 亚洲久久久国产精品| tube8黄色片| 久久人妻熟女aⅴ| 婷婷精品国产亚洲av在线 | 黄色成人免费大全| 成年人午夜在线观看视频| 久久久久国内视频| 国产av一区二区精品久久| 好男人电影高清在线观看| 9色porny在线观看| 夜夜躁狠狠躁天天躁| 亚洲国产欧美网| 午夜福利影视在线免费观看| 丝袜在线中文字幕| 成人免费观看视频高清| 桃红色精品国产亚洲av| √禁漫天堂资源中文www| 岛国在线观看网站| 亚洲av成人不卡在线观看播放网| 国产高清激情床上av| 欧美老熟妇乱子伦牲交| 亚洲人成77777在线视频| 在线观看免费午夜福利视频| 久久人人爽av亚洲精品天堂| 热99国产精品久久久久久7| 搡老熟女国产l中国老女人| 老熟妇乱子伦视频在线观看| 丰满的人妻完整版| 国产男女超爽视频在线观看| 亚洲熟女精品中文字幕| 在线观看免费高清a一片| 又紧又爽又黄一区二区| 国产又爽黄色视频| a级毛片在线看网站| 老司机午夜十八禁免费视频| 日日夜夜操网爽| 999精品在线视频| 国产免费av片在线观看野外av| 免费高清在线观看日韩| 一级作爱视频免费观看| 国产成人精品久久二区二区免费| 欧美成人午夜精品| 午夜福利乱码中文字幕| 99精国产麻豆久久婷婷| 最新在线观看一区二区三区| 亚洲色图综合在线观看| 亚洲精品国产区一区二| 国产精品.久久久| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美激情综合另类| 久久久久视频综合| 久久午夜亚洲精品久久| 又大又爽又粗| 亚洲av美国av| 男人舔女人的私密视频| 搡老乐熟女国产| e午夜精品久久久久久久| 国产高清国产精品国产三级| 9热在线视频观看99| 一a级毛片在线观看| 视频区欧美日本亚洲| 最新的欧美精品一区二区| 亚洲人成电影免费在线| 大香蕉久久网| 69精品国产乱码久久久| 一本一本久久a久久精品综合妖精| 天堂√8在线中文| 1024视频免费在线观看| 亚洲一区高清亚洲精品| 精品久久久久久电影网| 亚洲 欧美一区二区三区| 精品熟女少妇八av免费久了| 欧美人与性动交α欧美精品济南到| 国产精品自产拍在线观看55亚洲 | 久久天躁狠狠躁夜夜2o2o| 成人国语在线视频| av网站在线播放免费| 日本五十路高清| 一个人免费在线观看的高清视频| 国产区一区二久久| 国产精华一区二区三区| 欧美人与性动交α欧美软件| 人成视频在线观看免费观看| 两个人免费观看高清视频| 黄色a级毛片大全视频| 国产麻豆69| 亚洲av第一区精品v没综合| 成人18禁在线播放| 欧美午夜高清在线| 99精品欧美一区二区三区四区| 一a级毛片在线观看| 欧美日本中文国产一区发布| 精品免费久久久久久久清纯 | 国产精品一区二区在线不卡| 欧洲精品卡2卡3卡4卡5卡区| 一区在线观看完整版| 黄色视频,在线免费观看| 亚洲熟妇熟女久久| 好男人电影高清在线观看| 91在线观看av| 国产亚洲欧美98| 欧美 亚洲 国产 日韩一| 欧美日韩亚洲国产一区二区在线观看 | 久久国产精品人妻蜜桃| 国产97色在线日韩免费| 久久久国产成人免费| 欧美日韩视频精品一区| 国产成人影院久久av| 视频在线观看一区二区三区| 国产成人av教育| 久久久久国产一级毛片高清牌| 老司机午夜十八禁免费视频| 欧美精品高潮呻吟av久久| 91成人精品电影| a级片在线免费高清观看视频| 十八禁网站免费在线| 亚洲久久久国产精品| 视频在线观看一区二区三区| 成人黄色视频免费在线看| 狂野欧美激情性xxxx| 91老司机精品| 欧美日韩精品网址| 999精品在线视频| 国产高清激情床上av| 在线天堂中文资源库| 欧美日韩乱码在线| 超色免费av| 别揉我奶头~嗯~啊~动态视频| 99热国产这里只有精品6| 校园春色视频在线观看| 两个人看的免费小视频| 亚洲中文日韩欧美视频| 午夜91福利影院| 夜夜躁狠狠躁天天躁| 天天操日日干夜夜撸| 国产成人精品无人区| 久久午夜亚洲精品久久| 国产麻豆69| 国产高清videossex| 亚洲中文日韩欧美视频| 精品国产超薄肉色丝袜足j| 欧美av亚洲av综合av国产av| 99热只有精品国产| 亚洲aⅴ乱码一区二区在线播放 | 国产黄色免费在线视频| 亚洲av第一区精品v没综合| 欧美日韩中文字幕国产精品一区二区三区 | 99久久国产精品久久久| 波多野结衣一区麻豆| 国产成人影院久久av| 热99re8久久精品国产| 午夜久久久在线观看| 国产成人免费无遮挡视频| 国产欧美日韩一区二区三区在线| 日韩视频一区二区在线观看| 午夜成年电影在线免费观看| 麻豆成人av在线观看| 久久精品aⅴ一区二区三区四区| 亚洲精品美女久久久久99蜜臀| 美女 人体艺术 gogo| 久久国产亚洲av麻豆专区| 日韩免费av在线播放| 五月开心婷婷网| 如日韩欧美国产精品一区二区三区| 日韩欧美在线二视频 | 国产男女超爽视频在线观看| 国产区一区二久久| 亚洲专区国产一区二区| 免费在线观看完整版高清| 18在线观看网站| 淫妇啪啪啪对白视频| 黄网站色视频无遮挡免费观看| 天堂√8在线中文| 99香蕉大伊视频| 美女福利国产在线| 欧美av亚洲av综合av国产av| 91国产中文字幕| 久久热在线av| 午夜精品国产一区二区电影| 女性生殖器流出的白浆| 中文字幕最新亚洲高清| 纯流量卡能插随身wifi吗| 亚洲中文av在线| 18禁裸乳无遮挡动漫免费视频| 亚洲自偷自拍图片 自拍| 亚洲国产精品sss在线观看 | 成在线人永久免费视频| 一区福利在线观看| 亚洲,欧美精品.| 国产精品二区激情视频| 国产三级黄色录像| 18禁裸乳无遮挡免费网站照片 | 十分钟在线观看高清视频www| 久久性视频一级片| 欧美日韩亚洲综合一区二区三区_| 麻豆国产av国片精品| 99久久精品国产亚洲精品| 黄色丝袜av网址大全| 久久精品国产综合久久久| 国产高清videossex| 色综合婷婷激情| 国产乱人伦免费视频| 日韩制服丝袜自拍偷拍| 男女下面插进去视频免费观看| 大片电影免费在线观看免费| 真人做人爱边吃奶动态| 精品一区二区三卡| 国产精品 国内视频| 欧美精品av麻豆av| 亚洲精品国产区一区二| 天堂√8在线中文| 亚洲国产中文字幕在线视频| 美女视频免费永久观看网站| 国产av精品麻豆| 久久草成人影院| 老汉色∧v一级毛片| 大香蕉久久网| 久久久国产成人精品二区 | a级毛片黄视频| 国产午夜精品久久久久久| 亚洲熟女精品中文字幕| 亚洲欧洲精品一区二区精品久久久| 亚洲 欧美一区二区三区| 欧美乱色亚洲激情| 精品一区二区三区视频在线观看免费 | 亚洲国产欧美网| 精品国内亚洲2022精品成人 | 少妇猛男粗大的猛烈进出视频| 亚洲午夜理论影院| 国内久久婷婷六月综合欲色啪| 看片在线看免费视频| 欧美日韩亚洲高清精品| 国产精品免费一区二区三区在线 | 久久精品亚洲精品国产色婷小说| 国产主播在线观看一区二区| 欧美色视频一区免费| 两性午夜刺激爽爽歪歪视频在线观看 | 又大又爽又粗| 色播在线永久视频| videos熟女内射| 亚洲色图 男人天堂 中文字幕| 99久久99久久久精品蜜桃| 亚洲精品在线观看二区| 国产欧美日韩精品亚洲av| 国产成人精品无人区| 如日韩欧美国产精品一区二区三区| 欧美丝袜亚洲另类 | 欧美精品人与动牲交sv欧美| 麻豆国产av国片精品| 欧美大码av| 成人永久免费在线观看视频| 黑人巨大精品欧美一区二区mp4| 午夜影院日韩av| 国产精品自产拍在线观看55亚洲 | 老熟妇乱子伦视频在线观看| 久久人妻福利社区极品人妻图片| 国产aⅴ精品一区二区三区波| 大型黄色视频在线免费观看| 欧美精品人与动牲交sv欧美| 99久久99久久久精品蜜桃| av在线播放免费不卡| 国产熟女午夜一区二区三区| 天天躁日日躁夜夜躁夜夜| 欧美激情极品国产一区二区三区| 欧美成人免费av一区二区三区 | 日韩三级视频一区二区三区| 国产成人av教育| 亚洲精品中文字幕在线视频| 精品免费久久久久久久清纯 | 一本一本久久a久久精品综合妖精| 无人区码免费观看不卡| 亚洲成人免费电影在线观看| 黑丝袜美女国产一区| 国产成人av激情在线播放| 亚洲伊人色综图| 国产精品 国内视频| av国产精品久久久久影院| 欧美日韩亚洲高清精品| 18禁国产床啪视频网站| 日韩三级视频一区二区三区| 亚洲人成电影免费在线| 午夜福利影视在线免费观看| 国产野战对白在线观看| 久久香蕉国产精品| 久久人妻熟女aⅴ| 可以免费在线观看a视频的电影网站| 欧美久久黑人一区二区| 岛国在线观看网站| 一级a爱片免费观看的视频| 99精国产麻豆久久婷婷| 精品国产一区二区久久| 亚洲欧美日韩高清在线视频| 午夜两性在线视频| 亚洲第一欧美日韩一区二区三区| 免费一级毛片在线播放高清视频 | 欧美老熟妇乱子伦牲交| 久久九九热精品免费| 黄片播放在线免费| 少妇 在线观看| 日韩欧美一区二区三区在线观看 | 看片在线看免费视频| 亚洲成人免费电影在线观看| 亚洲熟妇熟女久久| 久久久国产成人精品二区 | 50天的宝宝边吃奶边哭怎么回事| 女同久久另类99精品国产91| 欧美黑人精品巨大| 色精品久久人妻99蜜桃| 丰满迷人的少妇在线观看| 飞空精品影院首页| 99国产综合亚洲精品| 久久久国产一区二区| 亚洲三区欧美一区| 一个人免费在线观看的高清视频| 精品卡一卡二卡四卡免费| 国产一区二区三区综合在线观看| 99精品在免费线老司机午夜| 久久天堂一区二区三区四区| 久久午夜综合久久蜜桃| 美女高潮喷水抽搐中文字幕| 一级毛片女人18水好多| 大香蕉久久网| 色综合婷婷激情| 大香蕉久久网| 两个人看的免费小视频| 在线免费观看的www视频| 成人18禁在线播放| 亚洲第一av免费看| 校园春色视频在线观看| 不卡一级毛片| 亚洲七黄色美女视频| 国精品久久久久久国模美| 在线视频色国产色| 在线观看日韩欧美| 天堂俺去俺来也www色官网| 欧美在线一区亚洲| netflix在线观看网站| 大香蕉久久网| 91大片在线观看| 久久精品国产清高在天天线| 一级作爱视频免费观看| 激情在线观看视频在线高清 | 婷婷丁香在线五月| 国精品久久久久久国模美| 成人永久免费在线观看视频| 大型黄色视频在线免费观看| 大型av网站在线播放| 两人在一起打扑克的视频| 丝袜美足系列| 国产又爽黄色视频| 亚洲人成电影观看| svipshipincom国产片| 在线国产一区二区在线| 自线自在国产av| 欧美黄色片欧美黄色片| 精品熟女少妇八av免费久了| 国产精品一区二区在线不卡| 国产精品国产高清国产av | 欧美不卡视频在线免费观看 | 精品一品国产午夜福利视频| 99riav亚洲国产免费| 韩国av一区二区三区四区| 亚洲精品久久成人aⅴ小说| 99精品久久久久人妻精品| 可以免费在线观看a视频的电影网站| 亚洲国产欧美日韩在线播放| 亚洲人成电影观看| 建设人人有责人人尽责人人享有的| 亚洲九九香蕉| 看免费av毛片| 国产男女超爽视频在线观看| 久久ye,这里只有精品| 久久天堂一区二区三区四区| 成人三级做爰电影| 老司机在亚洲福利影院| 亚洲七黄色美女视频| 一区二区三区国产精品乱码| 久久国产精品大桥未久av| 人人澡人人妻人| 18禁国产床啪视频网站| 黑人猛操日本美女一级片| 欧美 亚洲 国产 日韩一| 久久久久久久精品吃奶| 91九色精品人成在线观看| 久久人妻福利社区极品人妻图片| 亚洲国产欧美网| 国产欧美日韩精品亚洲av| 精品一区二区三区av网在线观看| 国产免费av片在线观看野外av| 国产aⅴ精品一区二区三区波| 无遮挡黄片免费观看| 十八禁人妻一区二区| 手机成人av网站| 俄罗斯特黄特色一大片| 色婷婷久久久亚洲欧美| 美女高潮喷水抽搐中文字幕| 91麻豆av在线| 久久精品国产亚洲av香蕉五月 | 99国产极品粉嫩在线观看| 欧美亚洲 丝袜 人妻 在线| 少妇猛男粗大的猛烈进出视频| 亚洲性夜色夜夜综合| av国产精品久久久久影院| 一个人免费在线观看的高清视频| 高潮久久久久久久久久久不卡| 欧美 日韩 精品 国产| 三级毛片av免费| 久久人妻av系列| 亚洲伊人色综图| 又大又爽又粗| 一级a爱视频在线免费观看| 久久天躁狠狠躁夜夜2o2o| 精品国产亚洲在线| 99久久国产精品久久久| 啦啦啦免费观看视频1| 高清在线国产一区| 亚洲精品粉嫩美女一区| 香蕉久久夜色| 午夜福利在线观看吧| 久久久久久免费高清国产稀缺| a级毛片黄视频| 亚洲精品自拍成人| 女人被躁到高潮嗷嗷叫费观| 女人精品久久久久毛片| 精品国产一区二区三区四区第35| av天堂久久9| 日本黄色日本黄色录像| av电影中文网址| 国产精品久久久久久人妻精品电影| 一边摸一边做爽爽视频免费| 国产欧美日韩综合在线一区二区| 亚洲国产精品sss在线观看 | 国产精品欧美亚洲77777| 亚洲成人国产一区在线观看| 69精品国产乱码久久久| 日韩成人在线观看一区二区三区| 高清在线国产一区| 啦啦啦免费观看视频1| 久久久久精品国产欧美久久久| 午夜福利视频在线观看免费| 亚洲精品国产色婷婷电影| www.自偷自拍.com| 欧美日韩亚洲国产一区二区在线观看 | 色老头精品视频在线观看| 亚洲精品美女久久av网站| 女人爽到高潮嗷嗷叫在线视频| 19禁男女啪啪无遮挡网站| svipshipincom国产片| 亚洲国产精品sss在线观看 | 亚洲第一av免费看| 久久久久久久久久久久大奶| 久久精品亚洲精品国产色婷小说| 午夜免费观看网址| 两性夫妻黄色片| 中文字幕高清在线视频| av视频免费观看在线观看| 国产熟女午夜一区二区三区| av一本久久久久| 国产亚洲精品第一综合不卡| 又大又爽又粗| 在线国产一区二区在线| 1024香蕉在线观看| 女警被强在线播放| 亚洲在线自拍视频| 两性午夜刺激爽爽歪歪视频在线观看 | 夜夜夜夜夜久久久久| 日本黄色视频三级网站网址 | 一夜夜www| 亚洲欧美日韩高清在线视频| 大型黄色视频在线免费观看| 免费在线观看完整版高清| 国产1区2区3区精品| 香蕉丝袜av| 曰老女人黄片| 久久午夜亚洲精品久久| 亚洲av成人不卡在线观看播放网| 国产成人啪精品午夜网站| 欧美日本中文国产一区发布| 国产精品乱码一区二三区的特点 | 狠狠婷婷综合久久久久久88av| 亚洲欧美精品综合一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久久久久,| 国产aⅴ精品一区二区三区波| 人人妻人人澡人人爽人人夜夜| 曰老女人黄片| 亚洲人成电影免费在线| 一区福利在线观看| 久久国产亚洲av麻豆专区| cao死你这个sao货| 国产精品综合久久久久久久免费 | 男女下面插进去视频免费观看| 国产无遮挡羞羞视频在线观看| 成人国语在线视频| 欧美老熟妇乱子伦牲交| 亚洲一区二区三区不卡视频| 中国美女看黄片| 超碰97精品在线观看| 亚洲精品乱久久久久久| 日本精品一区二区三区蜜桃| av不卡在线播放| 1024视频免费在线观看| 99国产极品粉嫩在线观看| 久久久久精品国产欧美久久久| 女性生殖器流出的白浆| 欧美日韩国产mv在线观看视频| 又大又爽又粗| 亚洲欧美精品综合一区二区三区| 99久久国产精品久久久| 超碰97精品在线观看| 久久草成人影院| 精品人妻熟女毛片av久久网站| av国产精品久久久久影院| 国产成人精品久久二区二区91| 色婷婷久久久亚洲欧美| 欧美日韩一级在线毛片| 成人国产一区最新在线观看| 国产片内射在线| 人人妻人人澡人人爽人人夜夜| 精品久久久精品久久久| 两性夫妻黄色片| 悠悠久久av| 国产区一区二久久| 国产无遮挡羞羞视频在线观看| 一区二区三区精品91| 国产免费男女视频| 在线免费观看的www视频| 国产成人免费观看mmmm| 在线观看免费视频日本深夜| 啪啪无遮挡十八禁网站| 婷婷丁香在线五月| 亚洲精品中文字幕在线视频| 叶爱在线成人免费视频播放| 欧洲精品卡2卡3卡4卡5卡区| 欧美黑人精品巨大| 最近最新中文字幕大全电影3 | 操美女的视频在线观看| 激情在线观看视频在线高清 | 叶爱在线成人免费视频播放| av国产精品久久久久影院| 嫩草影视91久久| 亚洲国产欧美一区二区综合| 一级毛片女人18水好多| 侵犯人妻中文字幕一二三四区| 桃红色精品国产亚洲av| 麻豆乱淫一区二区| 亚洲精品自拍成人| 亚洲美女黄片视频| 成熟少妇高潮喷水视频| 久久精品人人爽人人爽视色| 日韩免费高清中文字幕av| 国产精品成人在线| 天天躁夜夜躁狠狠躁躁| www.精华液| 亚洲成av片中文字幕在线观看| 欧美国产精品va在线观看不卡| 久久精品91无色码中文字幕| 女人高潮潮喷娇喘18禁视频| 美女扒开内裤让男人捅视频| 色94色欧美一区二区| 成人特级黄色片久久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| av有码第一页| 亚洲中文字幕日韩| 色综合欧美亚洲国产小说| 女人久久www免费人成看片| 国产亚洲精品久久久久久毛片 | 亚洲欧美激情在线| 午夜福利在线观看吧| 波多野结衣av一区二区av| 成人国语在线视频| 国产精品九九99| 精品高清国产在线一区| 久久精品亚洲av国产电影网| 国产无遮挡羞羞视频在线观看| www.精华液| 欧美老熟妇乱子伦牲交| 日日爽夜夜爽网站| 俄罗斯特黄特色一大片| av免费在线观看网站| 夜夜夜夜夜久久久久| 久久精品国产亚洲av香蕉五月 | 欧美黑人精品巨大| 免费av中文字幕在线| 91av网站免费观看|