• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    microRNAs and ceRNAs: RNA networks in pathogenesis of cancer

    2013-06-12 12:33:54
    Chinese Journal of Cancer Research 2013年2期
    關(guān)鍵詞:目標(biāo)值下層約束條件

    Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China

    microRNAs and ceRNAs: RNA networks in pathogenesis of cancer

    Xiangqian Su, Jiadi Xing, Zaozao Wang, Lei Chen, Ming Cui, Beihai Jiang

    Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China

    Corresponding to:Xiangqian Su, MD, Professor. Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Minimally Invasive Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing 100142, China. Email: suxiangqian@bjmu.edu.cn.

    microRNAs (miRNAs) are a class of endogenous, single-stranded non-coding RNAs of 20-23 nucleotides in length, functioning as negative regulators of gene expression at the post-transcriptional level. The dysregulation of miRNAs has been demonstrated to play critical roles in tumorigenesis, either through inhibiting tumor suppressor genes or activating oncogenes inappropriately. Besides their promising clinical applications in cancer diagnosis and treatment, recent studies have uncovered that miRNAs could act as a regulatory language, through which messenger RNAs, transcribed pseudogenes, and long noncoding RNAs crosstalk with each other and form a novel regulatory network. RNA transcripts involved in this network have been termed as competing endogenous RNAs (ceRNAs), since they influence each other’s level by competing for the same pool of miRNAs through miRNA response elements (MREs) on their target transcripts. The discovery of miRNA-ceRNA network not only provides the possibility of an additional level of post-transcriptional regulation, but also dictates a reassessment of the existing regulatory pathways involved in cancer initiation and progression.

    miRNA; ceRNA; cancer

    Scan to your mobile device or view this article at:http://www.thecjcr.org/article/view/1754/2485

    Introduction

    microRNAs (miRNAs) are small, evolutionarily conserved, single-stranded RNAs of 18-25 nucleotides in length that play major roles in gene regulation. miRNAs were shown to inhibit their target genes through binding to miRNA response elements (MREs) on the 3' untranslated regions (UTRs) of target RNA transcripts with imperfect complementarity, and leading to decreased expression of their target proteins either by mRNA degradation or translational inhibition (1). Single mRNA usually contains MREs for multiple miRNAs. At the same time, individual miRNA often targets up to 200 transcripts which are diverse in their function. miRNAs have been shown to suppress the expression of important cancer-related genes and have been proved useful in the diagnosis and treatment of cancer (2). However, the mechanism by which the miRNA could be regulated is largely unknown.

    Based on the fact that the MREs on the RNA transcripts could be predicted and validated by many types of software and experimental techniques, Salmenaet al.hypothesized that all types of RNA transcripts talk to each other by miRNA-mediated language. The previous pattern, “miRNAs→RNAs”, could be replaced by “RNAs→miRNAs→RNAs”. RNA transcripts sharing multiple MREs in their 3' UTRs communicate to each other and regulate the expression levels by competing for a limited pool of miRNAs. The upregulation of a given mRNA leads to the increased total number of MREs, which exceeds their targeting miRNAs. As a result, the targeting miRNAs would be diluted with the derepression of other mRNAs sharing the same MREs. RNAs involved in this process are known as competitive endogenous RNAs (ceRNAs). The large scale identification of ceRNAs constructs ceRNAs regulatory networks (Figure 1) (3,4).

    Figure 1 The role of miRNA in ceRNA networks. Multiple RNA transcripts share MREs for the same miRNA in their 3' UTR. Overexpression of ceRNAs increases the concentration of specific MREs and shifts the miRNA pool distribution, consequently, leading to the increased expression of target mRNA

    In this system, in addition to conventional function of RNAs to translate to proteins, RNAs may exert another function through their ability to regulate other RNAs (5-8). Furthermore, general studies in gene function usually focus on gene coding regions by overexpression or knocking down of the coding sequence (CDS). The function of UTRs in transcript will be neglected. However, hypothesis of ceRNAs network provides a new understanding on the regulatory function of full transcript including 3' UTR and CDS. The discovery of ceRNAs not only dictates a reevaluation of our understanding of gene regulatory networks but also opens up the possibility of a new biological mechanism that could be targeted by oligonucleotide gene therapy (3).

    Methods of Identification of ceRNAs

    The identification of ceRNAs depends on the precision of MREs prediction on RNAs, as well as miRNA target prediction (4). miRNAs target prediction algorithms and experimental approaches make it possible to identify MREs related to the RNA-induced silencing complex (RISC). Tayet al. devised a novel approach termed mutually targeted MRE enrichment (MuTaME) to predict the candidate ceRNAs for distinct target. The possibility of putative ceRNAs rank on MuTaME scores generated from the rna22 miRNA target prediction algorithm, which is mainly based on the number of miRNAs with which ceRNAs and target transcripts shared, as well as the distribution of MREs in both ceRNAs and target transcripts (9). Sumazinet al.presented Hermes, a new multivariate analysis method, to analyze candidates according to genome-wide expression profiles of mRNAs and miRNAs from the same tumor samples (10). On the other hand, the novel biochemical techniques, including the argonaute high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (Ago HITS-CLIP) and photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP), provide general platforms for identification of ceRNAs, due to restricting the precise sequences for miRNA-mRNA interactions (11).

    Condition that ceRNA network may occur

    ceRNAs network contains transcripts that share multiple MREs targeted by multiple miRNAs. Thus, whether ceRNAs network has its function largely depends on the concentration of the ceRNAs and their miRNAs. Changes in the ceRNA level need to be large enough to effectively compete for miRNAs binding. Appropriate miRNA level is another important factor impacting ceRNAs network, since there is a balance between ceRNAs and target RNAs for the distribution of miRNAs. In addition, ceRNA networks would also rely on the subcellular distribution and tissue specificity of RNAs and miRNAs existent in a proper cell type at a proper moment (4).

    ceRNA association with cancer and its classification

    Cancers develop from the accumulation of genomic mutations and epigenetic changes that alter gene function and expression. Accordingly, DNA-based somatic base-pair mutations, changes in DNA copy number, chromosomal translocation, as well as mRNA-based gene fusions, alternative splicing are commonly observed in cancer (12). As a result, such events inducing altered expression of UTRs in transcripts would influence MRE levels, or introduce new MREs into the cells. Changes in MREs of ceRNAs impact the capacity of a proper mRNA transcript to attach or titrate miRNAs. Consequently, the perturbed ceRNA network may contribute to diseases and cancers (4,9,10,13,14). There are three types of transcriptome belonging to ceRNA: protein coding genes, transcribed pseudogenes, and long noncoding RNAs.

    Protein coding genes

    The study by Tayet al. identified a series of endogenous protein-coding transcripts, serine incorporator 1 (SERINC1), vesicle-associated membrane protein associated protein A (VAPA), CCR4-NOT transcription complex, subunit 6-like (CNOT6L), as phosphatase and tensin homolog (PTEN) ceRNAs which regulate PTEN levels in a miRNA-dependent manner. Due to the same target miRNAs that PTEN and ceRNAs shared, deletion of ceRNA by siRNAs facilitated more miRNAs contacting withPTEN3' UTR, and resulted in a significant reduction in PTEN protein levels. Moreover, mutual reciprocal regulation of transcripts in the PTEN ceRNA network is validated by the fact not only that PTEN downregulation modulates ceRNA expression, but also that PTEN ceRNAs are coexpressed with PTEN in human samples (9). Further studies by the same group isolated zinc finger E-box binding homeobox 2 (ZEB2) as a PTEN ceRNA by a Sleeping Beauty insertional mutagenesis screen in oncogenic BRAF-induced mouse model of melanoma. Consistent with other PTEN ceRNAs, ZEB2 levels were commonly reduced and significantly correlated with PTEN in a set of human cancers (13). Recently, it has been reported that 3' UTR of versican could serve as a ceRNA in up-regulating the expression of versican, CD34, and fibronectin, leading to the development of hepatocellular carcinoma by controlling the miRNA activity (15). Furthermore, based on Hermes, a novel bioinformatics multivariate analysis method, Sumazinet al.predicted an extensive miRNA-mediated ceRNA network, including about 7,000 genes, which regulate established oncogenic pathways in glioblastoma (10).

    Transcribed pseudogenes

    Although pseudogenes share high sequence identity with their ancestral protein coding genes, they are lack of protein-coding ability, due to various genetic disablements including premature stop codes, frameshifts, insertions, or deletions (16). Nevertheless, sequencing efforts have revealed nearly 19,000 pseudogenes in human genome, many of which are transcribed and are often well conserved, suggesting that selective pressure to maintain pseudogenes exists (17).

    Previous studies focus on miRNA dependent regulation, also known as “miRNAs→RNAs”. However, the studies by Seitzet al. hypothesized that most miRNA targets regulate the miRNA. Since there is a high homology between pseudogenes and their protein coding partners, numerous miRNA targets identified by computational prediction, especially the transcribed pseudogenes, may actually be competitive inhibitors of miRNA function, preventing miRNAs from binding to their authentic targets by sequestering and titrating them (18). Recently, the research by Polisenoet al. also supported the similar theory that pseudogenes can regulate miRNAs, and influence miRNAs’ availability for other RNAs. They discovered that PTENP1, the pseudogene of tumor suppressor PTEN sharing high sequence homology with PTEN, can compete with PTEN for the same pool of miRNAs through many conserved MREs. As a result, PTENP1 3' UTR overexpression increased both PTEN transcript and protein in a DICER-dependent manner. Moreover, the correlation between PTENP1 and PTEN in normal human tissues, and prostate tumor samples, as well as the direct association between PTENP1 copy number and PTEN expression in colon cancer tissues suggests that PTENP1 transcript levels can regulate PTEN expression, and act as a tumor suppressor gene (19). KRAS and its pseudogene KRAS1P have the similar trend to PTEN and PTENP1. KRAS1P 3' UTR overexpression induced KRAS mRNA abundance. The transcript levels of KRAS and KRAS1P are directly correlated in prostate cancer, neuroblastoma, retinoblastoma and hepatocellular carcimoma, which indicates KRAS1P plays a proto-oncogenic role in cancer and acts as a ceRNA of KRAS for the same pool of miRNAs. Sequence alignment also uncovered that a miRNA binding site, MRE, is conserved in gene and its pseudogene counterpart, as OCT4 and OCT4-pg1-5, FOXO3 and FOXO3B, or E2F3 and E2F3P1 (19).

    Long noncoding RNAs

    With the expanding of the number of long noncoding RNAs (lncRNAs), more and more studies pay attention to the role of lncRNAs in diseases. Especially, a subset of lncRNAs is associated with epigenetic mechanisms (20,21). Through the Ago HITS-CLIP technique, a recent Argonaute (Ago)-bound transcripts analysis discovered that lncRNAs are the targets of miRNAs (11,22). Highly up-regulated in liver cancer (HULC) is one of lncRNAs, and plays an important role in tumorigenesis. HULC acts as a ceRNA, which down-regulates a series of miRNAs activities, including miR-372. As a result, the translational level of miR-372 target gene, PRKACB, was derepressed in liver cancer (23). Since noncoding RNAs are not involvedin active protein translation process, they are more effective ceRNAs than protein-coding RNAs in miRNAs binding (24).

    ceRNAs and cancer therapy

    The perturbations of ceRNA networks could lead to carcinogenesis and other diseases (4,9,10,13,14). However, it provides a new perspective to explain disease processes and offer new opportunities to manipulate ceRNA networks through miRNA competition for cancer therapy. Although the mechanism of ceRNAs needs largely to be explored, the techniques are available to identify MREs on the transcripts, and recognize the related binding miRNAs as the ceRNA language.

    With regard to the therapies against miRNA function, many studies found that “miRNA sponges”, the artificial miRNA decoys, which are oligonucleotide constructs with multiple copies of the same MRE in tandem targeting for only one miRNA, have already been used as a RNA-based therapy to deplete individual miRNA in cells and transgenic animals (25-30). In contrast, ceRNAs are “endogenous sponges” which are able to regulate the distribution of miRNAs on their natural targets. Unlike artificial miRNA sponges, ceRNAs contain MREs to combine different miRNAs. Therefore, they could influence the multiple targets containing multiple miRNAs. The application of ceRNA sponges could be an ideal approach for developing therapies against miRNA function (4). Although both miRNA sponges and ceRNA sponges provide strategies for miRNA loss-of-function studies, more study is required to rule out off-target effects and evaluate their potential effects.

    Taken together, the identification of the ceRNA mechanism expands the theory of the dynamics and complexity of the miRNA regulatory network and provides more challenge in the development of new strategies for miRNA-based cancer diagnosis and therapy.

    Acknowledgements

    This study was supported by the grants from the National Natural Science Foundation of China (No. 81272766), Capital Medical Development and Research Foundation (No. 2009-2093), Clinical Characteristics and Application Research of Capital (No. Z121107001012130), Beijing Natural Science Foundation (No. 7132054), and New Star of Science and Technology Program of Beijing (No. 2011060).

    Disclosure:The authors declare no conflict of interest.

    1. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33.

    2. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 2006;6:259-69.

    3. Khvorova A, Wolfson A. New competition in RNA regulation. Nat Biotechnol 2012;30:58-9.

    4. Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 2011;146:353-8.

    步驟4 將決策變量決策變量Wli的值Wlit代入下層模型目標(biāo)函數(shù)中,獲得下層模型函數(shù)目標(biāo)值θ,s-,s+及目標(biāo)值符合滿意值范圍時(shí)(下層約束條件),則轉(zhuǎn)入步驟5;如果目標(biāo)值未達(dá)到滿意值范圍時(shí),根據(jù)松馳變量s-,s+的值,調(diào)整的Wlit值,轉(zhuǎn)入步驟1。

    5. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011;39:D152-7.

    6. Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009;19:92-105.

    7. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004;101:2999-3004.

    8. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2002;99:15524-9.

    9. Tay Y, Kats L, Salmena L, et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 2011;147:344-57.

    10. Sumazin P, Yang X, Chiu HS, et al. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 2011;147:370-81.

    11. Thomas M, Lieberman J, Lal A. Desperately seeking microRNA targets. Nat Struct Mol Biol 2010;17:1169-74.

    12. Berger MF, Levin JZ, Vijayendran K, et al. Integrative analysis of the melanoma transcriptome. Genome Res 2010;20:413-27.

    13. Karreth FA, Tay Y, Perna D, et al. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 2011;147:382-95.

    14. Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011;147:358-69.

    15. Fang L, Du WW, Yang X, et al. Versican 3'-untranslated region (3'-UTR) functions as a ceRNA in inducing the development of hepatocellular carcinoma by regulatingmiRNA activity. FASEB J 2013;27:907-19.

    16. D'Errico I, Gadaleta G, Saccone C. Pseudogenes in metazoa: origin and features. Brief Funct Genomic Proteomic 2004;3:157-67.

    17. Pink RC, Wicks K, Caley DP, et al. Pseudogenes: pseudofunctional or key regulators in health and disease? RNA 2011;17:792-8.

    18. Seitz H. Redefining microRNA targets. Curr Biol 2009;19:870-3.

    19. Poliseno L, Salmena L, Zhang J, et al. A codingindependent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010;465:1033-8.

    20. Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 2009;458:223-7.

    21. Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci U S A 2009;106:11667-72.

    22. Chi SW, Zang JB, Mele A, et al. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009;460:479-86.

    23. Wang J, Liu X, Wu H, et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res 2010;38:5366-83.

    24. Gu S, Jin L, Zhang F, et al. Biological basis for restriction of microRNA targets to the 3' untranslated region in mammalian mRNAs. Nat Struct Mol Biol 2009;16:144-50.

    25. Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities. RNA 2010;16:2043-50.

    26. Gentner B, Schira G, Giustacchini A, et al. Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods 2009;6:63-6.

    27. Brown BD, Gentner B, Cantore A, et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 2007;25:1457-67.

    28. Lujambio A, Lowe SW. The microcosmos of cancer. Nature 2012;482:347-55.

    29. Loya CM, Lu CS, Van Vactor D, et al. Transgenic microRNA inhibition with spatiotemporal specificity in intact organisms. Nat Methods 2009;6:897-903.

    30. Zhu Q, Sun W, Okano K, et al. Sponge transgenic mouse model reveals important roles for the microRNA-183 (miR-183)/96/182 cluster in postmitotic photoreceptors of the retina. J Biol Chem 2011;286:31749-60.

    Cite this article as:Su X, Xing J, Wang Z, Chen L, Cui M, Jiang B. microRNAs and ceRNAs: RNA networks in pathogenesis of cancer. Chin J Cancer Res 2013;25(2):235-239. doi: 10.3978/j.issn.1000-9604.2013.03.08

    10.3978/j.issn.1000-9604.2013.03.08

    Submitted Jul 20, 2012. Accepted for publication Feb 21, 2013.

    猜你喜歡
    目標(biāo)值下層約束條件
    基于一種改進(jìn)AZSVPWM的滿調(diào)制度死區(qū)約束條件分析
    AI講座:ML的分類方法
    ML的迭代學(xué)習(xí)過程
    A literature review of research exploring the experiences of overseas nurses in the United Kingdom (2002–2017)
    一類多個(gè)下層的雙層規(guī)劃問題
    積雪
    陜西橫山羅圪臺(tái)村元代壁畫墓發(fā)掘簡報(bào)
    考古與文物(2016年5期)2016-12-21 06:28:48
    線性規(guī)劃的八大妙用
    有借有還
    不同危險(xiǎn)程度患者的降脂目標(biāo)值——?dú)W洲《血脂異常防治指南》
    国产精品亚洲一级av第二区| 嫩草影视91久久| 日本熟妇午夜| 波野结衣二区三区在线 | 三级男女做爰猛烈吃奶摸视频| 亚洲在线观看片| 国产视频内射| 中亚洲国语对白在线视频| 亚洲国产色片| 亚洲在线观看片| 亚洲国产高清在线一区二区三| 少妇丰满av| 婷婷六月久久综合丁香| 日韩av在线大香蕉| 内地一区二区视频在线| 手机成人av网站| 国产野战对白在线观看| 久久精品影院6| 午夜福利视频1000在线观看| 免费观看精品视频网站| 国产精品久久久久久久电影 | 国产成人av激情在线播放| 欧美区成人在线视频| 一区福利在线观看| 亚洲国产精品成人综合色| aaaaa片日本免费| 国产在线精品亚洲第一网站| 1000部很黄的大片| 亚洲无线在线观看| 欧美丝袜亚洲另类 | 国产精品久久久久久久久免 | 在线天堂最新版资源| 久久精品国产亚洲av香蕉五月| 岛国在线免费视频观看| av片东京热男人的天堂| 757午夜福利合集在线观看| 在线视频色国产色| 色播亚洲综合网| 婷婷丁香在线五月| 免费av不卡在线播放| 久久精品夜夜夜夜夜久久蜜豆| 亚洲七黄色美女视频| 美女 人体艺术 gogo| 国产成人系列免费观看| 日本 欧美在线| 午夜亚洲福利在线播放| 极品教师在线免费播放| 神马国产精品三级电影在线观看| 91字幕亚洲| 久久人人精品亚洲av| 3wmmmm亚洲av在线观看| 国产私拍福利视频在线观看| 国产一区二区在线av高清观看| 国产黄色小视频在线观看| 久久精品91无色码中文字幕| 在线免费观看不下载黄p国产 | 亚洲精品成人久久久久久| www.999成人在线观看| 亚洲av第一区精品v没综合| 成年女人永久免费观看视频| 亚洲欧美日韩高清专用| 国产av麻豆久久久久久久| 久久香蕉精品热| 一进一出好大好爽视频| 久久性视频一级片| 小蜜桃在线观看免费完整版高清| 午夜影院日韩av| 在线观看美女被高潮喷水网站 | 九色国产91popny在线| 日韩中文字幕欧美一区二区| 国产精品一区二区三区四区久久| 无人区码免费观看不卡| 午夜日韩欧美国产| 一级a爱片免费观看的视频| 亚洲av电影在线进入| 在线观看免费午夜福利视频| 丁香六月欧美| 亚洲精品日韩av片在线观看 | 国产欧美日韩精品一区二区| 亚洲av成人不卡在线观看播放网| 天美传媒精品一区二区| 法律面前人人平等表现在哪些方面| 欧美绝顶高潮抽搐喷水| 久久久成人免费电影| 欧美xxxx黑人xx丫x性爽| 精品人妻一区二区三区麻豆 | 母亲3免费完整高清在线观看| 精品99又大又爽又粗少妇毛片 | 日本熟妇午夜| 88av欧美| 国产美女午夜福利| 日本熟妇午夜| 丰满人妻一区二区三区视频av | 波野结衣二区三区在线 | 日本免费a在线| 91麻豆精品激情在线观看国产| 一卡2卡三卡四卡精品乱码亚洲| av在线天堂中文字幕| 免费看a级黄色片| 午夜a级毛片| 老汉色av国产亚洲站长工具| 1000部很黄的大片| av福利片在线观看| 亚洲精品在线观看二区| 国产91精品成人一区二区三区| 听说在线观看完整版免费高清| 国模一区二区三区四区视频| 国产97色在线日韩免费| 免费观看精品视频网站| 白带黄色成豆腐渣| 人人妻人人澡欧美一区二区| 十八禁网站免费在线| 亚洲七黄色美女视频| 亚洲人与动物交配视频| 黑人欧美特级aaaaaa片| 18禁裸乳无遮挡免费网站照片| 日韩av在线大香蕉| 婷婷丁香在线五月| 国内精品美女久久久久久| 国产一区二区激情短视频| 免费在线观看成人毛片| 欧美绝顶高潮抽搐喷水| 天堂动漫精品| 首页视频小说图片口味搜索| 久久精品91蜜桃| 麻豆国产97在线/欧美| 老司机午夜十八禁免费视频| 波野结衣二区三区在线 | 欧美成人一区二区免费高清观看| 国产精品野战在线观看| 国产真人三级小视频在线观看| 久久精品91无色码中文字幕| 日韩欧美在线乱码| 久久99热这里只有精品18| 久久九九热精品免费| 国产av麻豆久久久久久久| 亚洲美女黄片视频| 久久久久国内视频| 波多野结衣巨乳人妻| 美女大奶头视频| 国产精品久久视频播放| 99久久99久久久精品蜜桃| 国产av在哪里看| 18禁在线播放成人免费| 精品久久久久久久久久久久久| 一区二区三区激情视频| 一个人免费在线观看的高清视频| 欧美中文综合在线视频| 伊人久久大香线蕉亚洲五| 精品免费久久久久久久清纯| 国内精品久久久久精免费| 婷婷精品国产亚洲av在线| 91在线精品国自产拍蜜月 | 亚洲国产欧洲综合997久久,| xxxwww97欧美| 一级黄色大片毛片| 中文字幕熟女人妻在线| 欧美大码av| 小说图片视频综合网站| 嫩草影院精品99| 色综合欧美亚洲国产小说| 国产老妇女一区| www.999成人在线观看| 99久久精品国产亚洲精品| 欧美不卡视频在线免费观看| 琪琪午夜伦伦电影理论片6080| 少妇的丰满在线观看| 久久国产精品影院| 叶爱在线成人免费视频播放| 黑人欧美特级aaaaaa片| 国产一区二区在线观看日韩 | 婷婷亚洲欧美| 丰满乱子伦码专区| 级片在线观看| 国产成人系列免费观看| 亚洲精品影视一区二区三区av| 国产97色在线日韩免费| 亚洲av中文字字幕乱码综合| 色综合欧美亚洲国产小说| 久久伊人香网站| 免费人成在线观看视频色| 欧美最新免费一区二区三区 | 国产精品久久久久久久电影 | xxx96com| 九九在线视频观看精品| 久久精品国产清高在天天线| 午夜亚洲福利在线播放| 国内精品久久久久久久电影| 国产精品一区二区免费欧美| 少妇高潮的动态图| 国产精品香港三级国产av潘金莲| 淫秽高清视频在线观看| 无人区码免费观看不卡| 人人妻人人看人人澡| 国产男靠女视频免费网站| 99国产综合亚洲精品| 成年免费大片在线观看| 欧美乱色亚洲激情| 一进一出抽搐gif免费好疼| 久久久成人免费电影| 一夜夜www| 99久久精品国产亚洲精品| 亚洲aⅴ乱码一区二区在线播放| 午夜免费成人在线视频| 久久欧美精品欧美久久欧美| 亚洲国产精品999在线| 日韩欧美免费精品| 久久精品国产99精品国产亚洲性色| 99久久精品一区二区三区| 三级国产精品欧美在线观看| 国产高清视频在线观看网站| 一本久久中文字幕| 国产高清videossex| 在线a可以看的网站| 久久这里只有精品中国| 亚洲精品久久国产高清桃花| 国产成人啪精品午夜网站| 黄色日韩在线| 国产伦精品一区二区三区视频9 | 桃色一区二区三区在线观看| 国产免费男女视频| 男女午夜视频在线观看| 波多野结衣高清作品| 亚洲av熟女| 亚洲久久久久久中文字幕| 午夜免费男女啪啪视频观看 | 日日干狠狠操夜夜爽| 99久久精品国产亚洲精品| 久久久久免费精品人妻一区二区| 中文字幕av成人在线电影| 亚洲av电影在线进入| 国产视频内射| 亚洲无线观看免费| 国产成人系列免费观看| 成人午夜高清在线视频| 精品久久久久久成人av| 两性午夜刺激爽爽歪歪视频在线观看| 成人三级黄色视频| 亚洲国产精品成人综合色| 级片在线观看| 国产免费一级a男人的天堂| 国产一区二区在线观看日韩 | 好男人在线观看高清免费视频| 在线十欧美十亚洲十日本专区| 国产欧美日韩精品亚洲av| 色av中文字幕| 最好的美女福利视频网| 狂野欧美白嫩少妇大欣赏| 国产精品亚洲一级av第二区| 夜夜爽天天搞| 又黄又爽又免费观看的视频| 久久精品综合一区二区三区| 天堂网av新在线| 一区福利在线观看| 欧美成人免费av一区二区三区| 欧美一区二区精品小视频在线| 亚洲精品影视一区二区三区av| 欧美乱码精品一区二区三区| 久久香蕉国产精品| 一级毛片女人18水好多| 在线免费观看的www视频| 国产v大片淫在线免费观看| 日韩欧美 国产精品| 母亲3免费完整高清在线观看| 中文字幕av在线有码专区| 久久久久久久久大av| 国产v大片淫在线免费观看| 亚洲精品亚洲一区二区| 久99久视频精品免费| 国产视频一区二区在线看| 国产伦人伦偷精品视频| 在线观看舔阴道视频| 亚洲熟妇中文字幕五十中出| 男女那种视频在线观看| 国产蜜桃级精品一区二区三区| 久久久久性生活片| 国产高清视频在线播放一区| 一本久久中文字幕| 国产伦精品一区二区三区四那| 精品久久久久久,| 欧美乱妇无乱码| 窝窝影院91人妻| 一a级毛片在线观看| 很黄的视频免费| 我的老师免费观看完整版| 在线观看午夜福利视频| 国产黄片美女视频| 69av精品久久久久久| 好看av亚洲va欧美ⅴa在| 国产三级黄色录像| 日日夜夜操网爽| 黄片小视频在线播放| 99热这里只有精品一区| 啦啦啦免费观看视频1| 三级毛片av免费| 国产极品精品免费视频能看的| 亚洲五月天丁香| 一个人看视频在线观看www免费 | 成人特级黄色片久久久久久久| 女人十人毛片免费观看3o分钟| 在线观看舔阴道视频| 国产精品三级大全| 可以在线观看毛片的网站| 日韩欧美三级三区| 日本一本二区三区精品| 午夜免费观看网址| 级片在线观看| 国产精品一及| 国产在视频线在精品| avwww免费| 又爽又黄无遮挡网站| 嫩草影视91久久| 国产欧美日韩一区二区精品| 老汉色∧v一级毛片| 高清毛片免费观看视频网站| 欧美日韩综合久久久久久 | 久久亚洲精品不卡| 中出人妻视频一区二区| www日本黄色视频网| 国产97色在线日韩免费| 精品久久久久久,| 亚洲欧美激情综合另类| 日韩欧美国产一区二区入口| 亚洲欧美激情综合另类| av中文乱码字幕在线| 国产麻豆成人av免费视频| 每晚都被弄得嗷嗷叫到高潮| 男人和女人高潮做爰伦理| 三级男女做爰猛烈吃奶摸视频| 亚洲aⅴ乱码一区二区在线播放| 伊人久久精品亚洲午夜| 国产高清有码在线观看视频| 欧美日韩瑟瑟在线播放| 日韩av在线大香蕉| 黄色成人免费大全| 99riav亚洲国产免费| 一级黄色大片毛片| 嫁个100分男人电影在线观看| 久久国产精品影院| 男人的好看免费观看在线视频| 黄色日韩在线| 99riav亚洲国产免费| 久久国产精品影院| 午夜福利视频1000在线观看| 国产一区二区三区视频了| 青草久久国产| 身体一侧抽搐| 久久久色成人| 悠悠久久av| 国产淫片久久久久久久久 | 亚洲国产精品999在线| 色视频www国产| 亚洲精品在线观看二区| 美女高潮的动态| 日本五十路高清| 精品无人区乱码1区二区| 伊人久久大香线蕉亚洲五| 在线观看免费午夜福利视频| 久久欧美精品欧美久久欧美| 国产69精品久久久久777片| 国产精品综合久久久久久久免费| 女警被强在线播放| 国产男靠女视频免费网站| 99久久精品国产亚洲精品| 99国产极品粉嫩在线观看| 非洲黑人性xxxx精品又粗又长| ponron亚洲| 在线观看日韩欧美| av天堂在线播放| 精品无人区乱码1区二区| 久久久久亚洲av毛片大全| 一级黄片播放器| 亚洲av成人不卡在线观看播放网| 色视频www国产| 亚洲成人精品中文字幕电影| 免费看日本二区| 五月伊人婷婷丁香| 日本在线视频免费播放| 99热只有精品国产| 国产欧美日韩精品一区二区| 国产精品爽爽va在线观看网站| 中文字幕高清在线视频| 天天添夜夜摸| 欧美精品啪啪一区二区三区| 免费搜索国产男女视频| 欧美区成人在线视频| 久久久久九九精品影院| 人妻夜夜爽99麻豆av| 在线观看日韩欧美| 女人高潮潮喷娇喘18禁视频| 欧美一级毛片孕妇| 婷婷六月久久综合丁香| 99热这里只有是精品50| 女生性感内裤真人,穿戴方法视频| 免费一级毛片在线播放高清视频| 黄色视频,在线免费观看| 国产伦一二天堂av在线观看| 免费人成视频x8x8入口观看| 变态另类成人亚洲欧美熟女| tocl精华| 99国产极品粉嫩在线观看| 欧美丝袜亚洲另类 | 欧美+亚洲+日韩+国产| 老司机午夜十八禁免费视频| 啦啦啦免费观看视频1| 亚洲久久久久久中文字幕| 黄色女人牲交| 制服人妻中文乱码| 亚洲精品国产精品久久久不卡| 午夜日韩欧美国产| 精品免费久久久久久久清纯| 变态另类成人亚洲欧美熟女| 久久午夜亚洲精品久久| 亚洲av成人不卡在线观看播放网| 欧美丝袜亚洲另类 | av中文乱码字幕在线| 国产精品亚洲av一区麻豆| www日本黄色视频网| 色尼玛亚洲综合影院| 宅男免费午夜| 窝窝影院91人妻| 舔av片在线| 国产亚洲精品av在线| 日本免费a在线| 精品福利观看| 真人一进一出gif抽搐免费| 亚洲五月天丁香| 久久香蕉精品热| 国产淫片久久久久久久久 | 国产蜜桃级精品一区二区三区| xxx96com| 淫秽高清视频在线观看| 亚洲国产精品合色在线| a在线观看视频网站| 国产免费一级a男人的天堂| 午夜激情福利司机影院| 3wmmmm亚洲av在线观看| 观看免费一级毛片| 琪琪午夜伦伦电影理论片6080| 国产午夜精品论理片| 欧美在线一区亚洲| 亚洲精品在线美女| 国产中年淑女户外野战色| 亚洲国产精品999在线| 日本在线视频免费播放| 变态另类丝袜制服| 亚洲无线观看免费| 中亚洲国语对白在线视频| 国产一区二区三区视频了| 色在线成人网| 欧美一级毛片孕妇| 97超视频在线观看视频| 18+在线观看网站| 精品免费久久久久久久清纯| 亚洲人成网站在线播放欧美日韩| 精品熟女少妇八av免费久了| 国产真实伦视频高清在线观看 | 久久久国产成人精品二区| 热99在线观看视频| 人妻丰满熟妇av一区二区三区| 综合色av麻豆| 精品福利观看| 成人性生交大片免费视频hd| 国产成人系列免费观看| 最近最新中文字幕大全电影3| 99在线人妻在线中文字幕| 亚洲无线观看免费| 在线观看午夜福利视频| 欧美一区二区精品小视频在线| 一级作爱视频免费观看| 12—13女人毛片做爰片一| 男人的好看免费观看在线视频| 亚洲 欧美 日韩 在线 免费| 好男人在线观看高清免费视频| 网址你懂的国产日韩在线| 久久天躁狠狠躁夜夜2o2o| 国产精品1区2区在线观看.| 女人十人毛片免费观看3o分钟| 特级一级黄色大片| 综合色av麻豆| 日本一本二区三区精品| 搡女人真爽免费视频火全软件 | 午夜激情福利司机影院| 国产高清videossex| 欧美av亚洲av综合av国产av| 日本黄色片子视频| 日韩成人在线观看一区二区三区| 欧美色欧美亚洲另类二区| 精品人妻1区二区| 99热6这里只有精品| 日韩精品青青久久久久久| 日韩有码中文字幕| 两个人的视频大全免费| 午夜精品在线福利| 亚洲精品在线美女| av视频在线观看入口| 一个人看视频在线观看www免费 | 国产精品亚洲美女久久久| 久久久精品欧美日韩精品| 国产亚洲精品av在线| 亚洲狠狠婷婷综合久久图片| 91在线观看av| 超碰av人人做人人爽久久 | 天美传媒精品一区二区| 国产视频一区二区在线看| 女警被强在线播放| 精品国产三级普通话版| 看免费av毛片| 51午夜福利影视在线观看| 变态另类成人亚洲欧美熟女| 三级毛片av免费| 少妇人妻一区二区三区视频| 国产综合懂色| 国产亚洲av嫩草精品影院| 精品国产亚洲在线| 麻豆成人午夜福利视频| 麻豆久久精品国产亚洲av| 在线观看日韩欧美| 国产高潮美女av| 国产淫片久久久久久久久 | 免费av观看视频| 欧美日韩中文字幕国产精品一区二区三区| 久久人妻av系列| 久久婷婷人人爽人人干人人爱| 最新在线观看一区二区三区| 欧美日本亚洲视频在线播放| 非洲黑人性xxxx精品又粗又长| 亚洲 国产 在线| 操出白浆在线播放| 99视频精品全部免费 在线| 欧美xxxx黑人xx丫x性爽| av天堂中文字幕网| 国产高清有码在线观看视频| 激情在线观看视频在线高清| av视频在线观看入口| 国产免费男女视频| 亚洲国产精品成人综合色| 国产黄片美女视频| 国产精品久久视频播放| 在线观看66精品国产| 久久精品91无色码中文字幕| 99久久久亚洲精品蜜臀av| 特大巨黑吊av在线直播| 黄片小视频在线播放| 国产成+人综合+亚洲专区| 亚洲五月天丁香| 久久久久亚洲av毛片大全| 亚洲男人的天堂狠狠| 久久香蕉国产精品| 欧美日韩瑟瑟在线播放| 熟女人妻精品中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 看片在线看免费视频| av视频在线观看入口| 精品人妻偷拍中文字幕| 成人亚洲精品av一区二区| 国产亚洲欧美在线一区二区| 国产黄片美女视频| 免费在线观看亚洲国产| 日韩欧美三级三区| 国产免费男女视频| 99精品久久久久人妻精品| 成人三级黄色视频| 可以在线观看毛片的网站| 欧美成人性av电影在线观看| 国产精品综合久久久久久久免费| 亚洲精品456在线播放app | 国产精品免费一区二区三区在线| 好看av亚洲va欧美ⅴa在| 亚洲五月婷婷丁香| 亚洲欧美日韩无卡精品| 高潮久久久久久久久久久不卡| 91在线精品国自产拍蜜月 | 欧美中文日本在线观看视频| 国产高清视频在线观看网站| 免费看光身美女| 可以在线观看的亚洲视频| 精品国产三级普通话版| 91在线观看av| 俺也久久电影网| 亚洲精品日韩av片在线观看 | 久久精品国产清高在天天线| 亚洲无线观看免费| 亚洲最大成人手机在线| 精华霜和精华液先用哪个| 天堂av国产一区二区熟女人妻| 亚洲五月天丁香| 亚洲美女黄片视频| 99热精品在线国产| 欧美成人a在线观看| 2021天堂中文幕一二区在线观| 淫妇啪啪啪对白视频| 成人午夜高清在线视频| 神马国产精品三级电影在线观看| 国产精品一区二区免费欧美| 日日干狠狠操夜夜爽| 国产三级中文精品| 国产精品一区二区免费欧美| 亚洲欧美一区二区三区黑人| 在线观看av片永久免费下载| 99国产精品一区二区三区| 欧美色视频一区免费| 国产精品av视频在线免费观看| 亚洲无线观看免费| 在线观看日韩欧美| 国产私拍福利视频在线观看| 成人高潮视频无遮挡免费网站| 麻豆成人午夜福利视频| 精品国产美女av久久久久小说| 国产免费男女视频| 成人性生交大片免费视频hd| 欧美午夜高清在线| 搞女人的毛片| 黄色片一级片一级黄色片| 亚洲av免费高清在线观看|