吳曉江
“藍(lán)色碳匯”“綠色碳匯”,還有“碳捕獲和儲存”工程,哪一個能解決CO2的出路問題?
從享用貝類海鮮話說“海洋碳匯”
“如果你酷愛食用貝類海鮮,那么在享受美食的同時,你可能正在為低碳事業(yè)做出貢獻(xiàn)?!?011年在滬舉行的“低碳之道”環(huán)保沙龍上,有專家告訴公眾:在海洋生物大家族中,貝類、藻類看來不起眼,其實它們是擁有強大“捕碳、固碳”能力的“高手”。
覆蓋地球表面71%面積的海洋,是大量吸收人類活動排放的二氧化碳、減緩氣候變暖的頭等“功臣”。人類燃燒礦物燃料向大氣每年排放百億噸的碳,其中約三分之一被海洋吸收,陸地生態(tài)系統(tǒng)僅吸收約五分之一。海洋中浮游生物、海藻、貝類、海草、鹽沼植物和紅樹林等生物碳捕獲、碳匯集的數(shù)量超過陸地生物。有數(shù)據(jù)顯示,地球上生物約55%的碳捕獲是由海洋生物完成的。單位面積海域中生物固碳量是森林的10倍,是草原的290倍。
人工大規(guī)模養(yǎng)殖貝類、藻類,明顯有利于淺海區(qū)域的碳捕獲。尤其是貝類,其吸收的碳有相當(dāng)一部分被固化在貝殼里,很長時間內(nèi)不會重新回到大氣中。收獲一批貝類后,還可以繼續(xù)養(yǎng)殖新一批貝類,繼續(xù)“吸碳”,從而減少大氣中的碳總量。1999年到2008年間,通過收獲養(yǎng)殖貝類,我國每年從近海移出的碳量為70萬到99萬噸,其中67萬噸碳以貝殼的形式長期封存。 據(jù)此,有專家認(rèn)為海洋能夠成為一個巨大的固碳容器,通過發(fā)展水產(chǎn)養(yǎng)殖和漁業(yè)生產(chǎn)促進(jìn)海洋生物吸收海水中的二氧化碳,發(fā)展“碳匯漁業(yè)”。
“藍(lán)碳”美景面臨碳排放帶來的雙重困境
“海洋碳匯”,其實就是國際科學(xué)界所稱的“藍(lán)色碳匯”或“藍(lán)碳”——藍(lán)色大海中的碳捕獲和碳儲存。然而,人們向往的“藍(lán)碳”美景近年來遭遇碳排放過度帶來海洋生態(tài)退化的雙重困境。
第一重困境是海洋酸化日趨嚴(yán)重,海洋生物深受威脅。
最近,國際海洋現(xiàn)狀計劃和國際自然保護(hù)聯(lián)合會發(fā)布的報告令人震驚:由人類燃燒礦物燃料每年釋放的二氧化碳約達(dá)300億噸,這至少是大約5500萬年前地球上一次大規(guī)模物種滅絕之前的碳排放速度的10倍。海洋作為天然的二氧化碳儲存庫,其容量是有限的,而且吸收的二氧化碳與海水反應(yīng)后會形成碳酸,使本來偏堿性的海水不斷酸化??茖W(xué)家測算,至2012年海水的酸度已經(jīng)比工業(yè)化初期的1800年提高了30%,并且現(xiàn)在仍以每小時約100萬噸的速度吸收著。如果過量碳排放趨勢延續(xù)下去,預(yù)計到本世紀(jì)末海水酸度將比1800年高150%。該報告警示,目前海洋酸化程度至少是3億年以來絕無僅有的。海洋酸化使海水中碳酸鈣含量不斷降低,而碳酸鈣則是貝類、甲殼類海洋生物吸收用以生長外殼、珊瑚制造骨骼的原料。日益酸化的海水使以鈣元素為主的貝殼面臨著巨大威脅。五年多前,英國南極考察隊就發(fā)現(xiàn)南冰洋部分海域中貝類生物出現(xiàn)貝殼溶解現(xiàn)象。珊瑚在酸化海水中不但難以生長,而且易遭溶解。目前世界20%的珊瑚礁已被嚴(yán)重破壞。海水酸化已干擾了海洋甲殼類磷蝦卵孵化的能力。
近期國外海洋生物學(xué)家測試高濃度二氧化碳海水中珊瑚礁魚類行為,發(fā)現(xiàn)它們的中樞神經(jīng)系統(tǒng)出現(xiàn)嚴(yán)重混亂,聽覺和嗅覺變差,躲避天敵的能力變?nèi)?。諸如小丑魚和少女魚的幼魚嗅覺下降,很難找到珊瑚礁或聞到天敵的氣味。聽覺變?nèi)醯聂~極易成為天敵的口中美餐??茖W(xué)家還發(fā)現(xiàn)在酸度高的海洋環(huán)境中,烏賊的孵化速度變慢。尚未完成孵化的小烏賊沒有任何防御能力,易被天敵吃掉。即使它們完成孵化后,體型比在正常海水中生活的烏賊小,易受捕食者傷害。
第二重困境是海水含氧量下降,“海域死區(qū)”猛增。
海洋作為減緩全球氣候變暖步伐的頭等“功臣”,還在于它吸收了90%以上因溫室氣體排放而困于地表的熱量。但這一功勞的代價卻是隨著海洋上層水溫升高,海水溶氧量降低。魚類在升溫的海洋中代謝率會加快,需求更多的氧。而升溫的海水中含氧減少,影響魚類生長。加拿大海洋研究團隊考察了世界各海域600多種魚類生長和分布狀況,發(fā)現(xiàn)不少魚類體型縮小與海水溫度上升存在密切關(guān)系。他們用計算機模型預(yù)測,如溫度持續(xù)上升,到2050年魚類體型將縮小14%~24%。英國科學(xué)家發(fā)現(xiàn),由于水比空氣的含氧量低,在同等升溫狀況下,相比陸地動物,海洋動物更難獲得充足的氧氣??茖W(xué)家比較了不同溫度條件下百余種陸地動物和海洋動物成年體,發(fā)現(xiàn)每升高1攝氏度,海洋動物體型縮小5%,而陸地動物體型僅縮小0.5%,兩者縮小比率相差10倍。
近年來,海藻成為人們心目中“海洋碳匯”的理想主角之一。不錯,海藻在生長過程中會通過光合作用吸收二氧化碳放出氧氣,將太陽能轉(zhuǎn)化為化學(xué)能,以碳水化合物和油脂形態(tài)儲存起來,成為可供開發(fā)的生物質(zhì)能。如海藻纖維素可制成乙醇燃料,海藻油可以提煉成生物柴油。然而,凡事都有個限度。二氧化碳排放增量過度,海溫升高過快,促使海藻大量瘋狂生長和繁殖,爾后又不斷死亡,沉入海底并腐敗,成為海底泥潭中細(xì)菌豐富的食物來源。細(xì)菌在分解這些海藻時會大量消耗水中的氧氣。而海藻生長中產(chǎn)生的氧氣比細(xì)菌消耗的氧氣少得多。再因氣候變暖加劇暴雨洪澇災(zāi)害,更多的農(nóng)田肥料被沖刷入海中,促使浮游生物大量生長,進(jìn)而引發(fā)海底細(xì)菌分解浮游生物腐敗物,大量消耗水中氧氣。海水含氧量減少使魚類等海洋生物無法生存,形成“海洋死區(qū)”。據(jù)聯(lián)合國環(huán)境規(guī)劃署發(fā)布的海洋調(diào)查報告,最近十年全球海洋中這樣的“死區(qū)”面積翻了一番,死區(qū)數(shù)量超過400個。
“藍(lán)碳”之外,碳匯出路何在
“藍(lán)碳”困境逼促我們加快減碳、低碳的行動步伐。加緊改變我國能源消費結(jié)構(gòu)的“高碳”狀況是當(dāng)務(wù)之急。目前我國使用礦物燃料占能源消費總量的90.9%,其中碳排放量最大的燃煤占68.5%(年耗煤36億噸,遠(yuǎn)超過北美、歐洲和前蘇聯(lián)地區(qū)年耗煤總量的19.8億噸),而同等熱值比煤減排一半二氧化碳的天然氣僅占4.7%。非礦物能源只占9.1%,其中核電為0.8%,水力發(fā)電為7.1%,太陽能、風(fēng)能、生物質(zhì)能等可再生清潔能源只有1.2%。我國政府承諾到2020年比2005年二氧化碳排放量下降40%~50%,非礦物能源上升到15%。然而,應(yīng)看到非礦物能源中核電發(fā)展受核燃料供應(yīng)、核安全等不確定因素制約,水電建設(shè)受干旱天氣、流域生態(tài)破壞和移民困難的制約,積極開發(fā)太陽能、風(fēng)能、生物質(zhì)能等可再生清潔能源是大勢所趨。令人憂慮的是,我國到2020年礦物能源比重仍占85%,如此比重的碳基燃料所排放的巨量二氧化碳如何處置?
你也許會說,擴大植樹造林,發(fā)展“綠色碳匯”是解決“藍(lán)碳”困境的好出路。不錯,我國早已規(guī)劃到2020年完成造林4000萬公頃,而且鼓勵生產(chǎn)礦物能源的大企業(yè)捐資數(shù)億元營造“碳匯林”。然而,你別忽略除了海洋、森林兩大“碳庫”之外,還有第三大“碳庫”——濕地。全球濕地面積有514萬平方公里,雖然僅占地球表面的6%,卻生存著地球上20%的物種。我國有記載的濕地植物達(dá)2760余種。濕地吸收碳的能力超過森林,碳儲量約為770億噸,占陸地生物圈碳元素的35%。保護(hù)和恢復(fù)濕地就是低成本實現(xiàn)“綠色碳匯”的途徑。
“綠色碳匯”的更深意義在于讓碳匯植物成為開發(fā)綠色新能源的原料庫。上海張江高科技園區(qū)眾偉生化科技公司在外省不宜種糧食的鹽堿地、荒地種植纖維素含量高的麻類植物,既擴大了“綠色碳匯”,又可將麻類植物纖維素?zé)捴瞥汕鍧嵉摹吧锲汀薄掖既剂稀?/p>
無疑,火電廠和鋼鐵、水泥等制造業(yè)燃煤大量集中排放的二氧化碳,僅靠林地、濕地植物吸收是遠(yuǎn)遠(yuǎn)不夠的。目前國內(nèi)外正開展“碳捕獲和儲存”工程建設(shè),將收集的二氧化碳輸入采空的油氣田、廢棄的煤田地下封存。有趣的是,碳封存與油田二三次開采可以一舉兩得。當(dāng)二氧化碳被200個大氣壓注入油田千米深處,原本黏稠厚重的石油迅速稀釋、膨脹,紛紛從巖石孔隙中溢出,變得更易開采。美國共有70多座油田注入二氧化碳驅(qū)油,年封存二氧化碳達(dá)3000萬噸,增產(chǎn)石油10%。我國先后有六七座油田嘗試了這一技術(shù),二氧化碳一次性最大封存量達(dá)11萬噸。
碳匯出路不僅是碳捕集和和封存,更在于碳利用。藻類確實是生長最快、碳匯效率較高的植物,是煉制生物柴油和乙醇的理想原料之一。目前國外利用海藻捕碳、固碳的方法是,將工廠集中排出的二氧化碳廢氣與含養(yǎng)分的水混合,在透明的人造閉合水渠中,或在封閉的池塘等水體中養(yǎng)殖海藻。這比完全自然放養(yǎng)效率高,也避免了造成海水缺氧后果。
目前全球回收的二氧化碳約有40%用于生產(chǎn)化工產(chǎn)品,如作為能源的甲烷、甲醇,以及具有永久固碳性質(zhì)的碳纖維、工程塑料、瀝青、建材等?;厥斩趸歼€可用于制冷和碳酸飲料生產(chǎn)。
近來國外科學(xué)界多途徑開發(fā)將二氧化碳轉(zhuǎn)化為新能源原料的生物技術(shù)。有科研團隊已培養(yǎng)出一種能光合作用的轉(zhuǎn)基因細(xì)菌,比藻類更快地將二氧化碳轉(zhuǎn)化為可煉制生物柴油、乙醇的原料。由于利用生物質(zhì)能可以實現(xiàn)碳循環(huán)而不增加碳排放,歐盟計劃到2020年生物質(zhì)燃料占能源消費結(jié)構(gòu)的14%,占可再生能源總量的60%。這一方略是值得我們借鑒的減碳之道。
(作者系上海社會科學(xué)院科技哲學(xué)特色學(xué)科研究員、上海市低碳科技與產(chǎn)業(yè)發(fā)展協(xié)會專委會專家顧問)