• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Reynolds Number on the Hydrodynamic Characteristics of Heave Damping Plate

    2013-02-27 09:05:48TIANXinliangYANGJianminLIXinSHENYugao
    船舶力學(xué) 2013年12期

    TIAN Xin-liang,YANG Jian-min,LI Xin,SHEN Yu-gao

    (State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    1 Introduction

    Deepwater offshore structures at sea,e.g.a Spar platform and a tension leg platform(TLP),may experience motion responses due to incident wave forces[1-2].The motion in vertical direction,i.e.heave motion,is specially concerned by engineers because large heave motion may cause damages in risers,drilling pipes and mooring lines.Heave damping plates are installed in Spar platforms and they have been demonstrated as an effective way to minimize the heave response[3-5].The heave damping plates significantly increase the heave added mass of the platform.Therefore,the natural frequency of heave motion is decreased and be moved further out of the wave-frequency region of significant wave energy to avoid resonance.On the other hand,heave damping plates could provide extra damping forces in heave due to vortex shedding at the edges of the plates[1].

    Model test in wave basin is a classic and widely recognized way to investigate and estimate the hydrodynamic performance of floating offshore structures.Generally,the platforms are scaled to model size based on the geometric similarity and Froude similarity(i.e.gravity similarity)while the Reynolds similarity(i.e.viscous similarity)is not able to be satisfied[6].However,for the heave damping plates in Spar platform which are often located under the water surface as deep as 100 meters,the effects of free surface waves could be eliminated and the viscous effects which are closely related with the flow separation and vortex shedding phenomena start to play the major role in characterizing the hydrodynamic performance of heave damping plates.The Reynolds number in model tests is about two orders lower in magnitude than that in the prototype[7].Although many experimental[1,3-5,7-11]and numerical[4,12-18]studies on the hydrodynamic characteristics of heave damping plates have been carried out in the past two decades,their studies mainly focused on the geometric configurations of the heave damping plates,e.g.size of plates[9],distances between plates[4,15],thickness[9,11],porosity[1,3,5,13,19]and taper angles[18],etc.To our best knowledge,the effects of Reynolds number on the hydrodynamic characteristics of heave damping plates have not been well documented and studies on this issue are awaited.

    The present study aims to investigate the effects of Reynolds number on the heave damping plates with the technique of Computational Fluid Dynamics(CFD)using large-eddy simulation(LES)method.We consider a thin circular disk which is forced to oscillate sinusoidally along its axis in a fluid at rest.The axis velocity of the circular disk is as a function of time:uz(t)=Umaxcos( 2πt/T),where z represents the axis direction,Umaxis the maximum speed of the oscillation motion,T is the period of the oscillation and t is the time.The key dimensionless parameters characterizing the flow features are the Reynolds number(Re)and Keulegan-Carpenter number(KC).The definitions of Re and KC are given as:

    where D is the diameter of the disk,ν is the kinematic viscosity of the fluid and a is the amplitude of the oscillation motion.Following the nomenclature proposed by Sarpkaya[20],we can also obtain the frequency number

    Therefore,for a fixed KC number,the effect of Reynolds number(Re)is equivalent to the effect of β.

    In this study,we investigate the cases at KC=0.2,0.6 and 1.0,respectively.For each KC number,five β numbers,i.e.β=8×102,8×103,8×104,8×105and 8×106,are considered respectively.Therefore,the Reynolds number considered in this study ranges from O(102)to O(107),which covers the Reynolds number region of heave damping plates in both wave basin model tests and prototype.

    The remainder of this paper is organized as follows.The mathematical formulations and numerical methods used in the present study are given in chapter 2.Computational overview,convergence and validation studies are presented in chapter 3.The results and discussions are described in chapter 4.Finally,some concluding remarks are given in chapter 5.

    2 Mathematical formulations and numerical methods

    2.1 Mathematical formulations

    In this study,the numerical simulations are carried out with the large-eddy simulation method,in which large-scale motions are explicitly computed and small-scale eddies are modeled with a subgrid scale(SGS)model in order to represent the effects of unresolved motions on the resolved scales.A filtering is introduced to decompose the variable φ into the sum of a filtered componentnd a subgrid scale component φ′,i.e. φ=+φ′.By applying the filtering operation to the Navier-Stokes(N-S)equations for an incompressible flow,the filtered NS equations can be expressed as follows:

    where i,j=1-3;x1,x2and x2(or x,y and z)denote three coordinates in Cartesian coordinate system;are the corresponding resolved velocity components;ρ is the density of the fluid;is the resolved pressure;and the subgrid stress τis given byij

    The first term on the right-hand side of equation(6)can not be computed directly from equations(4)and(5),thus τijmust be modeled in order to close the equations.The SGS model proposed by Smagorinsky[21]is used in the present study,and τis written asij

    where δijis the Kronecker delta;=0.5 (?ui/?uj+?uj/?ui)is the strain rate in the resolved velocity field;νtis the subgrid eddy viscosity.

    Using dimensional analysis,the eddy viscosity νtcan be calculated by the following formula

    where the constant Cs=0.2;Δ is the filter-width.In this study,the Van Driest damping function proposed by Van Driest[22]is applied;is the cubic root of the mesh cell volume;κ=0.41 is the von Kármán constant;CΔ=0.158;A+=26;n is the wall normal distance;n+is the nondimensionalized wall normal distance,taken as n+=u*n/ν,where u*is the wall friction velocity;

    2.2 Numerical methods

    The open source CFD code OpenFOAM is used here to solve the equations described in chapter 2.1.OpenFOAM is mainly applied for solving problems in continuum mechanics.It is built based on the tensorial approach and object oriented techniques[23].The PIMPLE algorithm which merged PISO(Pressure Implicit with Splitting of Operators)and SIMPLE(Semi-Implicit Method for Pressure-Linked Equations)is used in the present study.The spatial schemes for interpolation,gradient,Laplacian and divergence are linear,Gauss linear,Gauss linear corrected and Gauss linear schemes,respectively.All these schemes are in second order.The second order Crank-Nicolson scheme is used for the time integration.Further details of these schemes are given in OpenFOAM[24].

    3 Computational overview,convergence and validation studies

    3.1 Computational overview

    A spherical computational domain is used in this study and the circular disk locates at the center of the computational domain,see Fig.1(a).The diameter of the computational domain is 40 D,which is large enough to eliminate the effects of far field boundaries on the calculated results.The origin of the coordinates locates at the center of the disk and the z-axis coincides with the axis of the disk.On the disk surface,no-slip boundary condition is specified for the velocity and the pressure is set as zero normal gradient.At the outer boundary,the velocity is set as zero normal gradient and the pressure is fixed at zero.The whole computational domain is discretized with hexahedral elements,and the grid near the disk surface is refined in order to resolve the steep gradient there.Fig.1(b)shows the mesh structures on the disk surface.The thickness of the disk is 0.02 D.

    Fig.1 Computational domain and mesh structures overview

    The oscillation motion of the circular disk is simulated by using the deforming mesh technique.The grid points relocate at each time step in a spring-like way and the topology of the mesh does not change during the simulation in order to sustain a good mesh quality.

    The computations are carried out on the TH-1A system in National Supercomputer Center in Tianjin.The parallel computing technique is adopted and the computational domain is divided into 36 subdomains.Each case runs for 15 periods of oscillations and the results presented in this paper are calculated from the latest 10 cycles,this is to eliminate the transient effects at the beginning of the calculations.

    3.2 Convergence and validation studies

    To assert the effects of grid and time resolutions on the calculated results,the grid and time step convergence studies are carried out for the case at KC=0.2 and β=8×104.The main characteristics of three typical configurations with different grid resolutions and time steps are shown in Tab.1,where n1represents the height of the first node away from the disk surface,Δt is the time step.

    Fig.2 shows the time histories of the axis drag force coefficient(Cz)on the disk obtained from the cases with different configurations as well as the comparison with the experimental measurement by Tao and Dray[1].Here Czis defined as

    Tab.1 Details of the cases with different grid and time resolutions

    where Fz(t) is the axis force acting on the disk and it is directly calculated by integrating the pressure and viscous shear stress over the disk surfaces;S is the projected area of the disk,taken as S=πD2/4.As shown in Fig.2,the results for the cases with Set-II and Set-III collapse together,indicating a reasonable convergence for the special and time resolutions.To make the calculations accurate,Set-III with 1 329 152 mesh elements and a time step of T/5 000 is used for the cases with other KC and β numbers.

    Furthermore,the experimental results obtained by Tao and Dray[1]are reproduced and repeated in each period in Fig.2 for comparison.It appears that the present calculated results agree well with the experimental measurements by Tao and Dray[1].It is reported that the phase lag between the axis force and the displacement is crucial in determining the energy transfer to the fluid due to the small magnitude of damping force[1].He[11]also emphasized that the ac-curate measure in the phase lag between the axis force and the displacement is the key to the successful measurement of damping coefficient.Fortunately,the calculated phase by the present simulation is in good agreement with the experimental results by Tao and Dray[1],see Fig.2.Therefore,it is concluded that the present numerical approach can provide satisfactory results for the heave damping plate.

    Fig.2 Time histories of the axis drag force coefficient on the disk at KC=0.2 and β=8×104.

    4 Results and discussions

    4.1 Hydrodynamic force coefficients

    The hydrodynamic added mass coefficient(Ca)and damping coefficient(Cd)are the two key parameters regarding the hydrodynamic characteristics of the oscillating structures.In this study,Caand Cdare calculated from the axis force histories by Fourier analysis,as follows[25]:

    where?is the immersed volume of the disk;ω is the angular frequency of the oscillation,here ω=2π/T.

    Following the formulations proposed by Tao and Dray[1],the hydrodynamic force coefficients(Caand Cd)are further nondimensionalised with respect to the theoretical ideal fluid added mass of a disk,m′=1/3ρD3.Hence,the added mass and damping coefficients are rewritten,respectively,as:

    Fig.3 shows the variations of added mass coefficient(A′)with respect to the frequency number(β).It is observed that A′increases as KC increases in the considered KC region(0.2≤KC≤1.0),i.e.large oscillation motion results in large added mass.This is consistent with the measurements by Tao and Dray[1],but in contrast to the potential solution[13]which gives constant added mass(A′=1)independent of KC.For the cases at KC=0.2 and β<104,A′decreases as β increases,and A′appears independent of β as β>104.For the cases at KC=0.6 and 1.0,A′increases as β increases when β<105.Similar with that of KC=0.2,A′for KC=0.6 and 1.0 becomes less sensitive to the variations of β for high β values.For the heave damping plates in Spar platform at sea,the frequency numbers(β)are in the order of O(106-7),while the model tests carried out in wave basins are usually at β~O(104-5).Effects of β on A′are getting weaker as β increases,and the added mass in the model test carried out is approximately equivalent to that in the prototype Spar at sea.

    Fig.3 A′versus β for the oscillating disk at KC=0.2,0.6 and 1.0

    Fig.4 shows the variations of damping coefficient(B′)versus frequency number (β)at various KC numbers.As shown in Fig.4,B′increases as KC increases,this is again consistent with the measurements by Tao and Dray[1].It appears that the effects of β on B′is small.Therefore,the damping coefficient B′of heave damping plate in the wave basin model tests is equivalent to that in the prototype Spar at sea.

    Overall,unlike the case of a circular cylinder,the added mass and damping coefficients of heave damping plates are not so sensitive to β for a given KC.This is because the flow separation point is fixed at the edge of the heave damping plate but varies along the surface of the circular cylinder.It is good news for wave basin model test that the Reynolds number effects(scale effects)are minimized in the case of a heave damping plate.Therefore,the heave damping plate in Spar platform could be scaled to model size by simply following the geometric similarity law.

    4.2 Vortical structures

    Characteristics of the hydrodynamic forces on the disk are closely related with the features of the flow around the disk.The vortical structures are investigated in this section for better understanding the underlying physics in the hydrodynamic mechanism of the heave damping plate.Tab.2 shows the instantaneous vortical structures around the disk for all the considered cases in this study,i.e.the cases at KC=0.2,0.6,1.0 and β=8×102,8×103,8×104,8×105and 8×106.The deep dark region in each picture represents the heave damping plate.Here the vortical structures are identified by the iso-surface of the Q-criterion[26]

    where S and Ω denote the strain and the rotation tensor,respectively.The instantaneous flow was obtained at t=T/4,i.e.the disk reaches the maximum displacement with respect to the mean position.

    Fig.4 B′versus β for the oscillating disk at KC=0.2,0.6 and 1.0

    As shown in Tab.2,the flow is approximately axisymmetric when β=8×102,and the vortical rings are formed due to the laminar vortex shedding.For the cases at β≥8×103,significant non-axisymmetric vortical structures are observed,and the flow is indeed turbulent.As it has been shown in Figs.3 and 4 that the variations of added mass and damping coefficients are not very sensitive to the variations of β,it appears that the effect of turbulent fluctuations on the disk is averaged over the surface of the disk.A similar turbulent fluctuation averaging effect is observed in the process of the thermal convection in a water tank with a freely floating plate[27].In other words,though the flow at high β numbers is actually turbulent,the hydrodynamic forces acting on the disk is equivalent to that at low β numbers where the flow is laminar and axisymmetric.Therefore,it means that one can obtain reliable force results by simplify the non-axisymmetric turbulent flow into an axisymmetric flow.This is of great significance in engineering applications that a simplified axisymmetric problem could be solved using twodimensional(2D)numerical simulations which requires much fewer computational resources compared with the three-dimensional(3D)computations.There have been some 2D numerical simulations carried out with success by using this simplification[14,16].However,it should be noted that great attentions should be paid while interpreting the flow features and vortex shedding/interaction modes,because flow around the structures at high β numbers are actually nonaxisymmetric and turbulent.

    Tab.2 Vortical structures of the cases with various KC and β numbers at t=T/4

    Continue 2

    5 Conclusions

    Three-dimensional numerical simulations for a thin circular disk oscillating sinusoidally along its axis in a fluid at rest have been performed with the large-eddy simulation method.Fifteen typical cases are investigated at KC=0.2,0.6,1.0 and β=8×102,8×103,8×104,8×105and 8×106,resulting a Reynolds number in the range of 1.6×102≤Re≤8×106.The effects of β(or Re)on the added mass coefficient,damping coefficient and the vortical structures are investigated.The main conclusions are summarized as follows:

    (a)Both added mass and damping coefficients increase as KC increases in the range of 0.2≤KC≤1.0.For a given KC number,the effects of β(or Re)on the added mass and damping coefficients are actually not significant.The scale effects are minimized in the case of heave damping plate and the heave damping plate in Spar platform could be scaled to model size simply following the geometric similarity law.

    (b)Flow around the disk is approximately axisymmetric at β=8×102,and the flow becomes non-axisymmetric and turbulent when β≥8×103.

    (c)The effects of turbulent fluctuations on the hydrodynamic forces on the disk are averaged over the disk surface,thus the hydrodynamic force coefficients on the circular disk at high Reynolds number could be calculated by solving the simplified problem based on the axisymmetric flow assumption.

    Overall,this paper presents a detailed investigation on the effect of Reynolds number on the hydrodynamic forces on the heave damping plate and flow features around the heave damping plate.These findings are of practical significance in both wave basin model tests and numerical simulations for heave damping plates.

    [1]Tao L,Dray D.Hydrodynamic performance of solid and porous heave plates[J].Ocean Engineering,2008,35(10):1006-1014.

    [2]Wang Y,Yang J,Hu Z,Xiao L.Theoretical research on hydrodynamics of a geometric spar in frequency-and time-domains[J].Journal of Hydrodynamics,Ser B,2008,20(1):30-38.

    [3]Downie M J,Graham J M R,Hall C,Incecik A,Nygaard I.An experimental investigation of motion control devices for truss spars[J].Marine Structures,2000,13(2):75-90.

    [4]Magee A,Sablok A,Maher J,Halkyard J,Finn L,Datta I.Heave plate effectiveness in the performance of truss spars[C]//In:Proceedings of ETCE/OMAE2000 Joint Conference Energy for the New Millenium,February 14-17 2000.New Orleans,LA:ASME,2000.

    [5]Zhang F.Concept design and research on hydrodynamics of Spar plateform[D].Shanghai:Shanghai Jiao Tong University,2008.

    [6]Gao Q,Zhou L.Numerical simulation of scale effect on ship stern flow and hydrodynamic performance[J].Journal of Hydrodynamics,Ser B,1995,3(1):56-64.

    [7]Prislin I,Blevins R D,Halkyard J E.Viscous damping and added mass of solid square plates[C]//In:17th International Conference on Offshore Mechanics and Artic Engineering.ASME,Lisbon,1998.

    [8]Lake M,He H,Troesch A W,Perlin M,Thiagarajan K P.Hydrodynamic coefficient estimation for TLP and Spar structures[J].Journal of Offshore Mechanics and Arctic Engineering,2000,122:118-124.

    [9]Thiagarajan K P,Datta I,Ran A Z,Tao L,Halkyard J E.Influence of heave plate geometry on the heave response of classic spars[C]//In:Proceedings of OMAE’02 21st International Conference on Offshore Mechanics and Artic Engineering,June 23-28 2002.Oslo,Norway:ASME,2002.

    [10]Thiagarajan K P,Troesch A W.Effects of appendages and small currents on the hydrodynamic heave damping of TLP columns[J].Journal of Offshore Mechanics and Arctic Engineering,1998,120:37-42.

    [11]He H.Hydrodynamics of thin plates[D].University of Michigan,USA,2003.

    [12]Holmes S,Bhat S,Beynet P,Sablok A,Prislin I.Heave plate design with computational fluid dynamics[J].Journal of Offshore Mechanics and Arctic Engineering,2001,123:22-28.

    [13]Molin B.On the added mass and damping of periodic arrays of fully or partially porous disks[J].Journal of Fluids and Structures,2001,15(2):275-290.

    [14]Tao L,Cai S.Heave motion suppression of a Spar with a heave plate[J].Ocean Engineering,2004,31(5-6):669-692.

    [15]Tao L,Molin B,Scolan Y M,Thiagarajan K.Spacing effects on hydrodynamics of heave plates on offshore structures[J].Journal of Fluids and Structures,2007,23(8):1119-1136.

    [16]Tao L,Thiagarajan K.Low KC flow regimes of oscillating sharp edges.II.Hydrodynamic forces[J].Applied Ocean Research,2003,25(2):53-62.

    [17]Tao L,Thiagarajan K.Low KC flow regimes of oscillating sharp edges I.Vortex shedding observation[J].Applied Ocean Research,2003,25(1):21-35.

    [18]Shen W,Tang Y,Liu L.Research on the hydrodynamic characteristics of heave plate structure with different form edges of a Spar platform[J].China Ocean Engineering,2012,26(1):177-184.

    [19]Wu W,Miao Q,Kuang X,Yang S,He Z.Research on hydrodynamic characteristics of forced oscillation heave damping plates of Spar platforms[J].Journal of Ship Mechanics,2009,13(001):27-33.

    [20]Sarpkaya T.Force on a circular cylinder in viscous oscillatory flow at low Keulegan-Carpenter numbers[J].Journal of Fluid Mechanics,1986,165(1):61-71.

    [21]Smagorinsky J.General circulation experiments with the primitive equations[J].Monthly Weather Review,1963,91(3):99-164.

    [22]Van Driest E R.On turbulent flow near a wall[J].Journal of Aerospace Science,1956,23:1007-1011.

    [23]Weller H G,Tabor G,Jasak H,Fureby C.A tensorial approach to computational continuum mechanics using object-oriented techniques[J].Computers in Physics,1998,12:620.

    [24]OPENFOAM:The Open Source CFD Toolbox,Programmer’s Guide,Version 1.6[M]:OpenCFD Limited,2009.

    [25]Sarpkaya T,Isaacson M,Isaacson M S Q.Mechanics of wave forces on offshore structures[M]:Van Nostrand Reinhold New York,1981.

    [26]Hunt J C R,Wray A A,Moin P.Eddies,streams,and convergence zones in turbulent flows[C].In:Center for Turbulence Research Report CTR-S88,1988:193-208.

    [27]Zhong J Q,Zhang J.Thermal convection with a freely moving top boundary[J].Physics of Fluids,2005,17:1-12.

    久久热精品热| 激情 狠狠 欧美| 国产免费视频播放在线视频| 亚洲精品中文字幕在线视频 | 久久久久国产精品人妻一区二区| 亚洲av中文字字幕乱码综合| 边亲边吃奶的免费视频| 久久久国产一区二区| 国产黄片视频在线免费观看| 成人二区视频| 看免费成人av毛片| 欧美精品一区二区免费开放| 久久久久人妻精品一区果冻| 欧美丝袜亚洲另类| 秋霞伦理黄片| 边亲边吃奶的免费视频| 狂野欧美激情性xxxx在线观看| 97热精品久久久久久| 国产乱来视频区| 性色avwww在线观看| 亚洲国产成人一精品久久久| 成人免费观看视频高清| av在线观看视频网站免费| 国产国拍精品亚洲av在线观看| 日韩免费高清中文字幕av| 国产无遮挡羞羞视频在线观看| 欧美日本视频| 少妇人妻一区二区三区视频| 成人18禁高潮啪啪吃奶动态图 | 国产成人精品婷婷| 黄色视频在线播放观看不卡| a级一级毛片免费在线观看| 国产免费福利视频在线观看| 有码 亚洲区| 国产在视频线精品| 日本欧美视频一区| 欧美精品一区二区大全| 久久影院123| 亚洲欧美一区二区三区国产| 久热这里只有精品99| 亚洲av日韩在线播放| 色吧在线观看| 国产淫片久久久久久久久| 亚洲av成人精品一区久久| 国产高清不卡午夜福利| 亚洲美女视频黄频| 国模一区二区三区四区视频| 亚洲人成网站高清观看| 亚洲av日韩在线播放| 在线观看三级黄色| 国产精品久久久久成人av| 涩涩av久久男人的天堂| 日本-黄色视频高清免费观看| 99久久中文字幕三级久久日本| 一区二区三区免费毛片| 一级爰片在线观看| 午夜福利高清视频| 午夜激情久久久久久久| 在现免费观看毛片| 午夜视频国产福利| 日韩一本色道免费dvd| 国产男女内射视频| 国产乱来视频区| 亚洲,欧美,日韩| 欧美精品一区二区免费开放| 色视频在线一区二区三区| 欧美丝袜亚洲另类| 波野结衣二区三区在线| 中国三级夫妇交换| 五月天丁香电影| 日韩电影二区| 亚洲精品日韩在线中文字幕| 成人特级av手机在线观看| 亚洲人与动物交配视频| 看免费成人av毛片| 亚洲伊人久久精品综合| 王馨瑶露胸无遮挡在线观看| 国产日韩欧美在线精品| 亚洲一区二区三区欧美精品| 人人妻人人添人人爽欧美一区卜 | 成人毛片60女人毛片免费| 国产男人的电影天堂91| 建设人人有责人人尽责人人享有的 | 黄色日韩在线| 自拍欧美九色日韩亚洲蝌蚪91 | 精品一品国产午夜福利视频| 国产一区二区三区av在线| 在线观看美女被高潮喷水网站| 欧美丝袜亚洲另类| av天堂中文字幕网| 国产成人精品婷婷| 99热这里只有是精品在线观看| 亚洲无线观看免费| 日本vs欧美在线观看视频 | 夜夜爽夜夜爽视频| 日韩av在线免费看完整版不卡| 99九九线精品视频在线观看视频| 男人狂女人下面高潮的视频| 亚洲av二区三区四区| 亚洲国产精品专区欧美| a 毛片基地| 国产淫语在线视频| 欧美精品一区二区免费开放| 王馨瑶露胸无遮挡在线观看| 国产日韩欧美在线精品| 中文欧美无线码| 天美传媒精品一区二区| 涩涩av久久男人的天堂| www.av在线官网国产| 2022亚洲国产成人精品| 麻豆国产97在线/欧美| 国产精品精品国产色婷婷| 久久99热6这里只有精品| 尾随美女入室| 国产成人91sexporn| 日韩欧美精品免费久久| 国产免费又黄又爽又色| 男女边摸边吃奶| 丰满迷人的少妇在线观看| 天堂俺去俺来也www色官网| 日韩欧美一区视频在线观看 | 欧美少妇被猛烈插入视频| 国产美女午夜福利| 国产欧美亚洲国产| 色吧在线观看| 亚洲精品成人av观看孕妇| 99re6热这里在线精品视频| 亚洲欧洲国产日韩| av女优亚洲男人天堂| 国产精品国产av在线观看| av播播在线观看一区| 91在线精品国自产拍蜜月| 国产爽快片一区二区三区| av.在线天堂| 丰满乱子伦码专区| 久久久久久人妻| 久久人妻熟女aⅴ| 国产精品免费大片| 中文字幕亚洲精品专区| 国产精品一区二区性色av| 欧美国产精品一级二级三级 | 色综合色国产| 欧美国产精品一级二级三级 | 国产在线免费精品| 一级片'在线观看视频| 99热6这里只有精品| 十八禁网站网址无遮挡 | 成人无遮挡网站| 夜夜爽夜夜爽视频| 亚洲av国产av综合av卡| 偷拍熟女少妇极品色| 纯流量卡能插随身wifi吗| 欧美区成人在线视频| 午夜激情久久久久久久| 午夜精品国产一区二区电影| 免费观看在线日韩| 亚洲,一卡二卡三卡| 极品少妇高潮喷水抽搐| 亚洲欧美精品专区久久| 免费观看的影片在线观看| 日韩一区二区视频免费看| 蜜臀久久99精品久久宅男| 日韩成人av中文字幕在线观看| 极品少妇高潮喷水抽搐| 亚洲美女黄色视频免费看| av卡一久久| 国产成人a区在线观看| 亚洲精品亚洲一区二区| 观看美女的网站| 精品亚洲成a人片在线观看 | av线在线观看网站| 亚洲激情五月婷婷啪啪| av国产久精品久网站免费入址| 成人综合一区亚洲| 黄片wwwwww| 日本一二三区视频观看| 一个人看视频在线观看www免费| 菩萨蛮人人尽说江南好唐韦庄| 2021少妇久久久久久久久久久| 尾随美女入室| 一边亲一边摸免费视频| 欧美3d第一页| av网站免费在线观看视频| 天堂8中文在线网| 久久久久久久久久久丰满| 久久热精品热| 亚洲va在线va天堂va国产| 国产在线男女| 亚洲综合色惰| 亚洲av综合色区一区| 国产av精品麻豆| 日本猛色少妇xxxxx猛交久久| 亚洲成人一二三区av| 久久国产精品大桥未久av | 午夜激情福利司机影院| 成人高潮视频无遮挡免费网站| 99久久精品热视频| 一级av片app| 国产精品久久久久久久电影| 久久久久久久精品精品| 一级毛片aaaaaa免费看小| 国产真实伦视频高清在线观看| 午夜老司机福利剧场| 午夜视频国产福利| 七月丁香在线播放| 嘟嘟电影网在线观看| 免费观看av网站的网址| 免费观看无遮挡的男女| 色5月婷婷丁香| 国产成人91sexporn| 久久久久性生活片| 精品熟女少妇av免费看| 欧美成人a在线观看| 午夜视频国产福利| 777米奇影视久久| 特大巨黑吊av在线直播| 国产爱豆传媒在线观看| 午夜老司机福利剧场| 熟女av电影| 菩萨蛮人人尽说江南好唐韦庄| 国产黄色视频一区二区在线观看| 欧美区成人在线视频| 久久综合国产亚洲精品| 在线观看免费视频网站a站| 美女主播在线视频| 97精品久久久久久久久久精品| 九草在线视频观看| 免费大片18禁| 日韩欧美一区视频在线观看 | 久久午夜福利片| 亚洲精华国产精华液的使用体验| 啦啦啦在线观看免费高清www| 国产精品久久久久久精品古装| 高清黄色对白视频在线免费看 | 亚洲国产欧美在线一区| 在线观看美女被高潮喷水网站| 韩国av在线不卡| videos熟女内射| 黄色一级大片看看| www.色视频.com| 午夜老司机福利剧场| 久久精品国产a三级三级三级| 最近中文字幕2019免费版| 亚洲国产av新网站| 久久青草综合色| 成人二区视频| 十八禁网站网址无遮挡 | 精品国产乱码久久久久久小说| 最近中文字幕高清免费大全6| 美女视频免费永久观看网站| 中国美白少妇内射xxxbb| 国产精品偷伦视频观看了| 日韩成人av中文字幕在线观看| 国产精品国产三级国产专区5o| 天堂中文最新版在线下载| 高清不卡的av网站| 日日摸夜夜添夜夜添av毛片| 日韩av免费高清视频| 九九爱精品视频在线观看| 欧美亚洲 丝袜 人妻 在线| 夜夜骑夜夜射夜夜干| 欧美激情国产日韩精品一区| 91久久精品国产一区二区三区| av黄色大香蕉| 久久久久精品久久久久真实原创| 秋霞在线观看毛片| 91午夜精品亚洲一区二区三区| 国产免费一区二区三区四区乱码| 色综合色国产| 亚洲,一卡二卡三卡| 少妇的逼水好多| 高清日韩中文字幕在线| 久久久久久久久久久丰满| 国产精品无大码| a 毛片基地| 高清午夜精品一区二区三区| 亚洲成人手机| 看十八女毛片水多多多| 国产黄片视频在线免费观看| 在线精品无人区一区二区三 | 欧美激情国产日韩精品一区| 成人漫画全彩无遮挡| 日韩电影二区| 777米奇影视久久| 99久久人妻综合| av播播在线观看一区| 精品人妻熟女av久视频| 国产免费福利视频在线观看| 国产精品久久久久成人av| h日本视频在线播放| 99九九线精品视频在线观看视频| 91精品一卡2卡3卡4卡| 国产亚洲欧美精品永久| 涩涩av久久男人的天堂| 久久久久久伊人网av| 免费看日本二区| 久久久亚洲精品成人影院| 亚洲综合精品二区| 老司机影院毛片| 国精品久久久久久国模美| 欧美高清成人免费视频www| 亚洲精品色激情综合| 国产在线一区二区三区精| 久久国产乱子免费精品| 国产69精品久久久久777片| 纵有疾风起免费观看全集完整版| 日本与韩国留学比较| 午夜免费鲁丝| 麻豆成人av视频| 亚洲欧洲日产国产| 免费人成在线观看视频色| 亚洲av男天堂| 中文字幕制服av| 国产真实伦视频高清在线观看| 51国产日韩欧美| 日本-黄色视频高清免费观看| 大片免费播放器 马上看| 欧美激情国产日韩精品一区| 午夜免费鲁丝| 日本黄色日本黄色录像| 国产av国产精品国产| 人妻一区二区av| 激情五月婷婷亚洲| av视频免费观看在线观看| 久久久久视频综合| 国产大屁股一区二区在线视频| 亚洲美女视频黄频| 亚洲不卡免费看| 一区在线观看完整版| 免费在线观看成人毛片| 亚洲一区二区三区欧美精品| 久久精品国产亚洲网站| 亚洲精品aⅴ在线观看| 亚洲四区av| 99精国产麻豆久久婷婷| 最近手机中文字幕大全| 国产熟女欧美一区二区| 日本一二三区视频观看| 国产免费福利视频在线观看| 成年人午夜在线观看视频| 欧美区成人在线视频| 王馨瑶露胸无遮挡在线观看| 欧美区成人在线视频| 王馨瑶露胸无遮挡在线观看| 美女脱内裤让男人舔精品视频| 亚洲成人手机| 熟女电影av网| 亚洲欧美清纯卡通| 欧美三级亚洲精品| 国产淫片久久久久久久久| 国产免费福利视频在线观看| 久久久久精品性色| 日本-黄色视频高清免费观看| 一级毛片我不卡| kizo精华| 日韩成人av中文字幕在线观看| 久久久久久久久久成人| 亚洲欧美日韩卡通动漫| 国产精品一区二区三区四区免费观看| 日韩成人av中文字幕在线观看| 国产精品99久久久久久久久| 天美传媒精品一区二区| 大香蕉久久网| 亚洲国产最新在线播放| 国产av码专区亚洲av| 亚洲高清免费不卡视频| 亚洲成人av在线免费| 欧美日韩国产mv在线观看视频 | 亚洲欧美日韩另类电影网站 | 插阴视频在线观看视频| 全区人妻精品视频| 一区二区三区乱码不卡18| 人人妻人人澡人人爽人人夜夜| 久久6这里有精品| 不卡视频在线观看欧美| 国产av国产精品国产| 精品酒店卫生间| 男男h啪啪无遮挡| 人妻制服诱惑在线中文字幕| 亚洲aⅴ乱码一区二区在线播放| 色综合色国产| 18禁裸乳无遮挡免费网站照片| 全区人妻精品视频| 亚洲国产精品成人久久小说| 亚洲一区二区三区欧美精品| 啦啦啦啦在线视频资源| 男女下面进入的视频免费午夜| 国产v大片淫在线免费观看| 国产精品无大码| 国产精品久久久久久久久免| 国产伦精品一区二区三区视频9| 伊人久久国产一区二区| 一本—道久久a久久精品蜜桃钙片| 国产一区有黄有色的免费视频| 精品久久久久久久久亚洲| 欧美成人精品欧美一级黄| 久久精品久久久久久噜噜老黄| 免费黄网站久久成人精品| 99热国产这里只有精品6| 在线亚洲精品国产二区图片欧美 | 亚洲欧美精品专区久久| 狠狠精品人妻久久久久久综合| 亚洲欧美成人综合另类久久久| 97在线人人人人妻| 亚洲精品色激情综合| 联通29元200g的流量卡| 男女国产视频网站| 亚洲在久久综合| 亚洲aⅴ乱码一区二区在线播放| 人人妻人人澡人人爽人人夜夜| 丰满少妇做爰视频| 国产女主播在线喷水免费视频网站| 中文乱码字字幕精品一区二区三区| 纵有疾风起免费观看全集完整版| 人妻系列 视频| 精品人妻视频免费看| 蜜桃亚洲精品一区二区三区| 少妇人妻 视频| 精品亚洲成国产av| 亚洲国产欧美人成| 色5月婷婷丁香| 免费大片18禁| 久久女婷五月综合色啪小说| 色婷婷久久久亚洲欧美| 欧美亚洲 丝袜 人妻 在线| 嘟嘟电影网在线观看| 亚洲欧洲国产日韩| 成人美女网站在线观看视频| 黑人猛操日本美女一级片| 男人添女人高潮全过程视频| 国产精品欧美亚洲77777| 欧美高清成人免费视频www| 人人妻人人添人人爽欧美一区卜 | 一级毛片久久久久久久久女| 大香蕉久久网| 2021少妇久久久久久久久久久| 三级国产精品欧美在线观看| 建设人人有责人人尽责人人享有的 | 我要看日韩黄色一级片| 大香蕉久久网| 卡戴珊不雅视频在线播放| 老司机影院毛片| 久久久色成人| 在线观看免费日韩欧美大片 | 成年免费大片在线观看| 精品国产乱码久久久久久小说| 国产日韩欧美亚洲二区| 一边亲一边摸免费视频| 国产精品99久久久久久久久| 欧美日韩国产mv在线观看视频 | 久热久热在线精品观看| 久久久成人免费电影| av黄色大香蕉| 爱豆传媒免费全集在线观看| kizo精华| 欧美成人a在线观看| 亚洲欧美一区二区三区黑人 | 高清视频免费观看一区二区| 一区二区三区免费毛片| 欧美精品人与动牲交sv欧美| 妹子高潮喷水视频| 亚洲怡红院男人天堂| 高清毛片免费看| 国产精品一及| 99久久精品一区二区三区| 在线观看国产h片| 少妇高潮的动态图| 国产老妇伦熟女老妇高清| 免费人妻精品一区二区三区视频| 亚洲美女搞黄在线观看| 少妇的逼好多水| 欧美日本视频| 精品久久久久久久末码| 日韩人妻高清精品专区| 亚洲精品456在线播放app| 国产成人免费观看mmmm| 国产精品国产av在线观看| 亚洲欧美日韩卡通动漫| 大话2 男鬼变身卡| 欧美3d第一页| 丰满人妻一区二区三区视频av| 在线观看免费视频网站a站| 人人妻人人添人人爽欧美一区卜 | 啦啦啦中文免费视频观看日本| 九九在线视频观看精品| 亚洲欧美日韩另类电影网站 | 亚洲欧美一区二区三区国产| 精华霜和精华液先用哪个| 最近最新中文字幕大全电影3| 一级a做视频免费观看| 国产成人一区二区在线| 王馨瑶露胸无遮挡在线观看| 久久精品人妻少妇| 九九爱精品视频在线观看| 一级片'在线观看视频| 欧美+日韩+精品| 18禁在线无遮挡免费观看视频| 男的添女的下面高潮视频| 91精品国产九色| 久久久久久伊人网av| 国产在线男女| 亚洲,一卡二卡三卡| 国产成人精品久久久久久| 性色av一级| 我的女老师完整版在线观看| 欧美老熟妇乱子伦牲交| 一级毛片我不卡| 婷婷色麻豆天堂久久| 午夜精品国产一区二区电影| 免费久久久久久久精品成人欧美视频 | 高清视频免费观看一区二区| 欧美性感艳星| 国产伦理片在线播放av一区| 舔av片在线| 中文资源天堂在线| 校园人妻丝袜中文字幕| 熟女av电影| 我要看日韩黄色一级片| 中文资源天堂在线| 国产精品精品国产色婷婷| 国产午夜精品一二区理论片| 伦理电影免费视频| 欧美日本视频| 久久综合国产亚洲精品| 久久精品国产亚洲av涩爱| 国产高清有码在线观看视频| 亚洲欧美日韩东京热| 国产免费视频播放在线视频| 亚洲av二区三区四区| 插阴视频在线观看视频| 天堂中文最新版在线下载| 国产老妇伦熟女老妇高清| 国产爱豆传媒在线观看| 国产老妇伦熟女老妇高清| 欧美精品人与动牲交sv欧美| 最近的中文字幕免费完整| 午夜日本视频在线| 性色av一级| 精品国产乱码久久久久久小说| 国产在线一区二区三区精| 18禁裸乳无遮挡动漫免费视频| 欧美一级a爱片免费观看看| 精品久久久久久久久av| 小蜜桃在线观看免费完整版高清| 久久影院123| 尾随美女入室| 欧美一区二区亚洲| 久久精品国产亚洲av涩爱| 嫩草影院新地址| 亚洲国产日韩一区二区| av卡一久久| 肉色欧美久久久久久久蜜桃| 国产精品嫩草影院av在线观看| 亚洲欧美一区二区三区黑人 | 国产精品欧美亚洲77777| 国产精品人妻久久久久久| 久久人人爽av亚洲精品天堂 | 女人十人毛片免费观看3o分钟| 亚洲色图av天堂| 亚洲欧美清纯卡通| 成人毛片a级毛片在线播放| 少妇 在线观看| 国产精品av视频在线免费观看| 18+在线观看网站| 成人无遮挡网站| 黄片无遮挡物在线观看| 男人添女人高潮全过程视频| 国产精品久久久久久av不卡| 国产精品国产三级专区第一集| 一个人免费看片子| 天美传媒精品一区二区| 男的添女的下面高潮视频| av线在线观看网站| 国产精品女同一区二区软件| av在线蜜桃| 成年av动漫网址| 搡老乐熟女国产| 天堂中文最新版在线下载| 久久久久久久国产电影| 免费av中文字幕在线| 人体艺术视频欧美日本| 国产亚洲一区二区精品| 国产成人精品婷婷| 国产精品一区二区在线观看99| 国产中年淑女户外野战色| 免费不卡的大黄色大毛片视频在线观看| 国产成人freesex在线| 乱系列少妇在线播放| 草草在线视频免费看| 久久久精品免费免费高清| 18禁在线无遮挡免费观看视频| 日本与韩国留学比较| 国产淫语在线视频| 成人无遮挡网站| 日本色播在线视频| 少妇的逼水好多| 毛片女人毛片| 成人国产麻豆网| 亚洲无线观看免费| 下体分泌物呈黄色| 国产精品av视频在线免费观看| 久久av网站| 老司机影院成人| 菩萨蛮人人尽说江南好唐韦庄| 欧美人与善性xxx| 欧美精品亚洲一区二区| 最近最新中文字幕免费大全7| 看免费成人av毛片| 亚洲人与动物交配视频| 亚洲精品乱久久久久久| 成人免费观看视频高清| 美女高潮的动态| 夫妻午夜视频| 亚洲第一区二区三区不卡| 亚洲美女搞黄在线观看|