許碧華 許琛 王麗姝 劉華鋒 劉偉敬 梁東
溶酶體由大量酸性囊泡(pH 4~5)持續(xù)融合和分裂構(gòu)成,它從高爾基體接受大量水解酶,并從細(xì)胞外(異噬)和細(xì)胞內(nèi)(自噬)獲得底物。細(xì)胞內(nèi)許多生物學(xué)功能包括大部分長壽命蛋白和所有器官的正常代謝都需要溶酶體參與,因此,維持其完整性就非常重要[1]。
過渡金屬鐵是地殼含量最豐富的金屬。細(xì)胞降解含鐵的大分子(如鐵蛋白和線粒體成分)、巨噬細(xì)胞內(nèi)吞紅細(xì)胞都將使溶酶體內(nèi)聚集大量的鐵。這些鐵能在不同的化學(xué)價(jià)間迅速轉(zhuǎn)化,主要是Fe(Ⅱ)和Fe(Ⅲ),這使其成為極佳的電子轉(zhuǎn)運(yùn)體并存在于許多酶和大分子物質(zhì)中。然而機(jī)體許多有害反應(yīng)都需要鐵參與,并發(fā)生在溶酶體內(nèi)。這是因?yàn)殍F在溶酶體內(nèi)通常以Fe(Ⅱ)形式 存在且具有強(qiáng)還原活性,能與彌散入溶酶體內(nèi)的過氧化氫一起導(dǎo)致芬頓反應(yīng),使溶酶體穩(wěn)態(tài)喪失或使溶酶體內(nèi)脂褐素異常沉積從而間接抑制自噬[2-3]。許多不同種類的細(xì)胞中,鐵在溶酶體內(nèi)的運(yùn)輸都相當(dāng)活躍。然而,溶酶體鐵處理的異常(或氧化應(yīng)激)能導(dǎo)致一系列疾病的發(fā)生,因此,理解溶酶體鐵代謝過程對理解及治療這些疾病可能起著至關(guān)重要的作用[4-5]。
1.1 鐵的攝取與代謝 一個(gè)健康人體內(nèi)鐵大部分都以血紅蛋白和肌紅蛋白的形式分別存在于紅細(xì)胞和肌肉細(xì)胞中[6]。由于人類缺乏有效的鐵外排機(jī)制,從食物攝入體內(nèi)的鐵被精密的調(diào)節(jié)和嚴(yán)格控制著,這也使得含鐵的大分子被降解后鐵能被高效的重復(fù)利用[7]。巨噬細(xì)胞能吞噬和降解衰老的紅細(xì)胞,釋放的鐵分泌至血液并與轉(zhuǎn)鐵蛋白結(jié)合運(yùn)輸以便鐵的再利用[8]。紅細(xì)胞和巨噬細(xì)胞的鐵被釋放入血液后,會(huì)與血漿轉(zhuǎn)鐵蛋白緊密結(jié)合,因而血循環(huán)中幾乎不存在游離性鐵和具潛在毒性的鐵[9]。循環(huán)內(nèi)結(jié)合鐵的轉(zhuǎn)鐵蛋白與細(xì)胞膜上的轉(zhuǎn)鐵蛋白受體1(TfR1)結(jié)合形成復(fù)合物,通過受體介導(dǎo)的內(nèi)吞作用進(jìn)入細(xì)胞內(nèi)。在晚期內(nèi)體逐漸降低的pH環(huán)境中,鐵從轉(zhuǎn)鐵蛋白上解離并被運(yùn)輸至胞漿的可變鐵池(LIP),同時(shí)轉(zhuǎn)鐵蛋白及其受體被運(yùn)回細(xì)胞膜反復(fù)利用??勺冭F池中的鐵很可能被低親和力的鐵螯合劑暫時(shí)結(jié)合,被用于合成含鐵蛋白質(zhì)或儲(chǔ)存在鐵蛋白內(nèi)。過量的鐵以鐵蛋白的形式儲(chǔ)存對防止鐵介導(dǎo)的氧化應(yīng)激至關(guān)重要,因而,鐵蛋白是一種非常重要的抗氧化劑[10-12]。
1.2 自噬與鐵代謝 自噬通過降解自身成分實(shí)現(xiàn)持續(xù)性生物更新,對細(xì)胞存活有重要作用[13-14]。胞漿蛋白質(zhì)和細(xì)胞器的更新主要依賴于蛋白酶體和溶酶體兩條途徑[15-16]。蛋白酶體主要降解短壽命的、氧化的和畸形的蛋白質(zhì),而溶酶體主要涉及自噬性降解長壽命蛋白質(zhì)和細(xì)胞器[17-18]。細(xì)胞內(nèi)鐵主要是以非還原型的Fe(Ⅲ)被轉(zhuǎn)運(yùn)和儲(chǔ)存在轉(zhuǎn)鐵蛋白和鐵蛋白內(nèi)。還原型鐵進(jìn)入胞漿進(jìn)行合成代謝或被儲(chǔ)存在鐵蛋白內(nèi)之前溶酶體似乎是其大量存在的唯一場所[19-20]。有研究表明,生物合成所需的鐵來源于鐵蛋白的自噬。溶酶體通過自噬降解鐵蛋白及含鐵豐富的線粒體蛋白將鐵釋放入胞漿,在溶酶體的酸性環(huán)境以及還原劑(如半胱氨酸和谷胱甘肽)的作用下,F(xiàn)e(Ⅲ)被轉(zhuǎn)化成Fe(Ⅱ)[21-23]。有研究發(fā)現(xiàn),用溶酶體酶抑制劑抑制細(xì)胞溶酶體后,鐵蛋白釋放的鐵明顯減少[22]。另一項(xiàng)研究發(fā)現(xiàn),予去鐵胺(DFO,能通過內(nèi)吞的方式轉(zhuǎn)移到溶酶體內(nèi))處理細(xì)胞,可導(dǎo)致胞漿內(nèi)游離鐵大幅度下降,因?yàn)镈FO能在溶酶體內(nèi)螯合鐵從而抑制鐵轉(zhuǎn)運(yùn)至胞漿[1,24]。以上研究表明,溶酶體降解鐵蛋白對維持正常鐵代謝的重要性。
持續(xù)性降解含鐵復(fù)合物例如鐵蛋白和線粒體復(fù)合物,使溶酶體內(nèi)含有豐富的低質(zhì)量鐵,而這些鐵主要以還原型二價(jià)鐵形式存在。這也是溶酶體比其他細(xì)胞器對氧化應(yīng)激損傷更敏感的原因[4-5]。螯合溶酶體內(nèi)過量還原性鐵可以在很大程度上減輕氧化應(yīng)激導(dǎo)致的細(xì)胞損傷[25]。因而,如果能夠降低或控制溶酶體內(nèi)“不穩(wěn)定鐵”的含量,細(xì)胞將明顯受益[26-28]。在此基礎(chǔ)上已有大量研究表明,鐵結(jié)合分子(如金屬硫蛋白和熱休克蛋白)通過自噬進(jìn)入溶酶體內(nèi)并與其內(nèi)的不穩(wěn)定鐵結(jié)合,能有效減輕其對細(xì)胞的損傷,從而起到保護(hù)細(xì)胞的作用[29-31]。
自噬-溶酶體降解過程在體內(nèi)每時(shí)每刻都在發(fā)生,溶酶體內(nèi)的鐵蛋白不斷被降解而進(jìn)入細(xì)胞漿從而使鐵蛋白在溶酶體和胞漿內(nèi)達(dá)到一個(gè)動(dòng)態(tài)平衡。決定溶酶體內(nèi)游離鐵濃度的因素有:自噬-溶酶體途徑產(chǎn)生的含鐵物質(zhì)的含量、胞漿內(nèi)鐵結(jié)合蛋白的含量(如鐵蛋白或金屬硫蛋白),以及這些蛋白的自噬的情況[1,32]。
鐵蛋白具有很強(qiáng)的結(jié)合鐵能力,鐵蛋白的自噬對溶酶體穩(wěn)定性的影響可能依賴其鐵負(fù)荷狀況[31]。如果鐵蛋白結(jié)合鐵的能力較強(qiáng),那么溶酶體還原性鐵將被抑制,這就能防止溶酶體膜透性改變。然而,鐵飽和鐵蛋白的自噬可以導(dǎo)致溶酶體內(nèi)還原性鐵含量升高。因?yàn)殍F蛋白在進(jìn)入溶酶體前已經(jīng)與鐵結(jié)合并達(dá)到飽和狀態(tài),它們就沒有多余能力來結(jié)合溶酶體內(nèi)的鐵;如果降解這種鐵蛋白,反而將進(jìn)一步提高溶酶體內(nèi)還原性鐵的水平,從而使溶酶體對氧化應(yīng)激更敏感[33]。因此,與含有較少鐵蛋白的細(xì)胞或含有較多鐵飽和鐵蛋白的細(xì)胞相比,含有豐富的鐵尚未飽和的鐵蛋白可以使細(xì)胞更能耐受氧化應(yīng)激[1,12]。
1.3 溶酶體膜通透性改變與鐵代謝 許多含鐵的大分子物質(zhì)在溶酶體內(nèi)降解,使鐵釋放入溶酶體。由于溶酶體內(nèi)含有大量還原劑,如谷胱甘肽、抗壞血酸、半胱氨酸等,故而這些鐵可能以Fe(II)形式存在,在接觸到過氧化氫則發(fā)生芬頓反應(yīng)產(chǎn)生氫氧自由基:Fe2++H2O2→Fe3++HO+OH-。羥氧自由基與自噬降解的生物分子反應(yīng),產(chǎn)生較強(qiáng)的氧化修飾作用[5]。在正常情況下,過氧化氫主要來源于線粒體,能被細(xì)胞的抗氧化屏障有效滅活。只有少部分的氧化劑彌散入溶酶體,發(fā)生芬頓反應(yīng)產(chǎn)生氫氧自由基,促使溶酶體出現(xiàn)氧化或過氧化反應(yīng)。某些與氧化產(chǎn)物聚合后會(huì)形成不能被降解的物質(zhì)(如脂褐質(zhì))聚集在心臟、肝臟、腎臟等細(xì)胞的溶酶體內(nèi)。在氧化應(yīng)激作用下,細(xì)胞內(nèi)抗氧化防御機(jī)制可能不堪重負(fù),這就使得大量過氧化氫彌散入溶酶體內(nèi),在增加氫氧自由基含量的同時(shí)也導(dǎo)致溶酶體膜的過氧化,繼而使溶酶體破裂并釋放具有危害的溶酶體酶[1,34]。
溶酶體的破裂伴隨裂解酶重新分布,根據(jù)這種變化程度的輕重細(xì)胞可發(fā)生凋亡或壞死[35]。因此,將溶酶體內(nèi)的還原性鐵維持在低濃度可使細(xì)胞對抗氧化應(yīng)激的能力增強(qiáng)。而將溶酶體內(nèi)鐵轉(zhuǎn)移至胞漿或使其以非還原形式鐵的形式存在可能是較為有效的方法[4,12]。
2.1 鐵的異常代謝與腎小管損傷 大量蛋白尿的患者,由于與鐵結(jié)合的轉(zhuǎn)鐵蛋白從尿中排泄增多,從而導(dǎo)致機(jī)體鐵代謝紊亂,使得鐵丟失增加并耗竭機(jī)體內(nèi)儲(chǔ)存的鐵。比如,在臨床上常常會(huì)發(fā)現(xiàn)腎病綜合征的患者伴有不同程度的缺鐵性貧血[36]。經(jīng)尿液丟失的轉(zhuǎn)鐵蛋白具有很強(qiáng)的毒性,游離的鐵能催化機(jī)體產(chǎn)生活性氧物質(zhì)。在尿液偏酸的環(huán)境下(pH<6.5),鐵從轉(zhuǎn)鐵蛋白中釋放而引發(fā)腎小管損傷[37]。靜脈注射鐵劑能導(dǎo)致腎小管上皮細(xì)胞氧化應(yīng)激增強(qiáng),并引起暫時(shí)性蛋白尿和酶尿[38-40]。Agarwal等發(fā)現(xiàn)靜脈注射不同的含鐵復(fù)合物將產(chǎn)生不同程度的小管損傷[41]。Wang等研究也提示,鐵在腎組織中儲(chǔ)集的含量可作為早期腎損傷的預(yù)示因子[42-43]。通過腹腔注射右旋糖酐鐵制造雄性大鼠的鐵超負(fù)荷模型后,發(fā)現(xiàn)腎臟鐵含量隨藥物劑量增加而增加。鐵主要沉積在溶酶體內(nèi),且引發(fā)了顯著的細(xì)胞器特性改變,表現(xiàn)為溶酶體密度增加及容易破裂。這種改變與鐵聚集的程度及其持續(xù)時(shí)間有關(guān),當(dāng)鐵負(fù)荷減輕后這種改變可能被逆轉(zhuǎn)[44]。
氧化應(yīng)激反應(yīng)在慢性腎臟疾病的進(jìn)展中發(fā)揮著重要作用,過量鐵的存在可能會(huì)加重氧化應(yīng)激[45-46]。靜脈注射蔗糖鐵能增加炎癥反應(yīng)趨化因子和單核細(xì)胞趨化蛋白,從而間接導(dǎo)致慢性腎臟疾病的進(jìn)展[47]。蔗糖鐵還可促使蛋白尿的出現(xiàn)和小管損傷的發(fā)生[48]。然而,盡管以上研究顯示鐵超負(fù)荷將可引起腎損害,但目前還沒有證據(jù)表明靜脈注射鐵與急性腎損傷有直接關(guān)系[49]。
2.2 鐵的異常代謝與糖尿病腎病 研究發(fā)現(xiàn),在鏈脲霉素誘導(dǎo)的糖尿病大鼠模型腎臟內(nèi),鐵聚集于近端腎小管次級溶酶體內(nèi)。更為有趣的是溶酶體內(nèi)這種鐵的儲(chǔ)集與腎小管損傷呈正相關(guān)。此外,在糖尿病患者體內(nèi)也發(fā)現(xiàn)腎臟近端小管溶酶體內(nèi)鐵沉積量增多,且這種情況與患者腎功能的喪失呈有高度相關(guān)性。這些結(jié)果提示,被濾過的鐵通過刷狀緣進(jìn)入腎臟近端小管上皮細(xì)胞溶酶體后,可引起腎小管損傷,在糖尿病腎病的進(jìn)展中發(fā)揮了重要作用,并其與糖尿病其他致病因素共同推動(dòng)著糖尿病腎病的進(jìn)展[50-51]。
2.3 鐵的異常代謝與CKD患者心血管并發(fā)癥 已有研究報(bào)道,在伴有蛋白尿的腎功能不全患者中,鐵推動(dòng)腎功能的惡化[52]。血清轉(zhuǎn)鐵蛋白水平下降,可導(dǎo)致血清中游離鐵含量上升,增加自由基介導(dǎo)的脂質(zhì)過氧化,進(jìn)而導(dǎo)致血管內(nèi)皮細(xì)胞損傷[53]。在細(xì)胞內(nèi)鐵以鐵蛋白的形式儲(chǔ)存,血清鐵蛋白水平反應(yīng)了機(jī)體鐵儲(chǔ)備情況。鐵蛋白水平增高可能是鐵超負(fù)荷的一個(gè)信號,例如血色素沉著病。當(dāng)前,游離性鐵介導(dǎo)的內(nèi)皮細(xì)胞損傷已越來越多受到學(xué)者的關(guān)注,血清鐵蛋白的水平已被認(rèn)為是冠狀動(dòng)脈疾病的預(yù)示因子[38]。
對于鐵缺乏的血液透析患者,靜脈給予鐵劑是治療貧血的重要手段之一。然而,大量研究表明,鐵和促紅細(xì)胞生成素都有潛在的誘導(dǎo)氧化應(yīng)激的能力[54]。近年的研究發(fā)現(xiàn),尿毒癥透析患者體內(nèi)含高水平活性氧[55-56]。靜脈注射蔗糖鐵會(huì)導(dǎo)致透析患者脂質(zhì)過氧化標(biāo)記物增多[57-58]。研究發(fā)現(xiàn)鐵蛋白基礎(chǔ)水平升高和靜脈給予鐵劑會(huì)加劇血透患者的氧化應(yīng)激反應(yīng)[59]。另一項(xiàng)研究證實(shí),靜脈給予鐵劑可導(dǎo)致明顯的轉(zhuǎn)鐵蛋白飽和度增高及血液中MDA水平增高[60]。因此,大量的學(xué)者已紛紛提出,長期給予鐵劑治療會(huì)使患者機(jī)體內(nèi)脂質(zhì)過氧化產(chǎn)物增多[61-62]。
透析患者比普通人群具有更高的發(fā)生心血管疾病的風(fēng)險(xiǎn)。終末期腎病患者長期處于氧化應(yīng)激狀態(tài)下[63-64],從而導(dǎo)致動(dòng)脈粥樣硬等心血管疾病,這也是此類患者因死亡的重要原因[65]。動(dòng)物實(shí)驗(yàn)證實(shí),慢性腎衰的大鼠靜脈注射右旋糖酐鐵能誘導(dǎo)氧化應(yīng)激[66]。與動(dòng)物實(shí)驗(yàn)結(jié)果一致,Zager等學(xué)者研究發(fā)現(xiàn),靜脈注射鐵劑在人類近端腎小管上皮細(xì)胞、內(nèi)皮細(xì)胞及體外培養(yǎng)細(xì)胞內(nèi)能引起大量脂質(zhì)過氧化、細(xì)胞損傷和細(xì)胞活力下降。靜脈注射鐵劑后,血液透析患者機(jī)體內(nèi)氧化應(yīng)激反應(yīng)明顯加劇,表現(xiàn)為血液中不飽和脂肪酸過氧化終產(chǎn)物(MDA)濃度增高[59]。Roob等[67]也發(fā)現(xiàn)靜脈注射鐵劑后,血透患者不但MDA生成增多,同時(shí)還原活性鐵含量也快速增高了。此外,Tovbin等[68]還發(fā)現(xiàn)靜脈注射鐵劑使血透患者蛋白質(zhì)氧化加劇。上述這些變化很可能是慢性腎臟疾病患者心血管疾病高發(fā)的主要原因之一。
[1] Kurz T,Terman A,Brunk U T.Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron[J].Arch Biochem Biophys,2007,462(2):220-230.
[2] Kurz T,Eaton J W,Brunk U T.Redox activity within the lysosomal compartment:implications for aging and apoptosis[J].Antioxid Redox Signal,2010,13(4):511-523.
[3] Terman A,Kurz T,Navratil M,et al.Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging[J].Antioxid Redox Signal,2010,12(4):503-535.
[4] Kurz T,Eaton J W,Brunk U T.The role of lysosomes in iron metabolism and recycling[J].Int J Biochem Cell Biol,2011,43(12):1686-1697.
[5] Terman A,Kurz T.Lysosomal Iron,Iron Chelation,and Cell Death[J].Antioxid Redox Signal,2013,18(8):888-898.
[6] Munoz M,Villar I,Garcia-Erce J A.An update on iron physiology[J].World J Gastroenterol,2009,15(37):4617-4626.
[7] Sharp P,Srai S K.Molecular mechanisms involved in intestinal iron absorption[J].World J Gastroenterol,2007,13(35):4716-4724,
[8] Dunn L L,Suryo Rahmanto Y,Richardson D R.Iron uptake and metabolism in the new millennium[J].Trends Cell Biol,2007,17(2):93-100.
[9] Anderson G J,Vulpe C D.Mammalian iron transport[J].Cell Mol Life Sci,2009,66(20):3241-3261.
[10] Arosio P,Ingrassia R,Cavadini P.Ferritins: a family of molecules for iron storage,antioxidation and more[J].Biochim Biophys Acta,2009,1790(7):589-599.
[11] Balla G,Jacob H S,Balla J,et al.Ferritin: a cytoprotective antioxidant strategem of endothelium[J].J Biol Chem,1992,267(25):18148-18153.
[12] Kurz T,Terman A,Gustafsson B,et al.Lysosomes in iron metabolism, ageing and apoptosis[J].Histochem Cell Biol,2008,129(1):389-406.
[13] Klionsky D J.Autophagy:from phenomenology to molecular understanding in less than a decade[J].Nat Rev Mol Cell Biol,2007,8(11):931-937.
[14] Suzuki K,Ohsumi Y.Molecular machinery of autophagosome formation in yeast.Saccharomyces cerevisiae[J].FEBS Lett,2007,581(11):2156-2161.
[15] Fuertes G,Villarroya A,Knecht E.Role of proteasomes in the degradation of short-lived proteins in human fibroblasts under various growth conditions[J].Int J Biochem Cell Biol,2003,35(5):651-664.
[16] Terman A,Sandberg S.Proteasome inhibition enhances lipofuscin formation[J].Ann N Y Acad Sci,2002,973(1):309-312.
[17] Kaushik S,Bandyopadhyay U,Sridhar S,et al.Chaperonemediated autophagy at a glance[J].J Cell Sci,2011,124(Pt 4):495-499.
[18] Yang Z, Klionsky D J.Mammalian autophagy: core molecular machinery and signaling regulation[J].Curr Opin Cell Biol,2010,22(2):124-131.
[19] Takagi H,Shi D,Ha Y,et al.Localized unfolding at the junction of three ferritin subunits.A mechanism for iron release[J].J Biol Chem,1998,273(30):18685-18688.
[20] Liu X,Jin W,Theil E C.Opening protein pores with chaotropes enhances Fe reduction and chelation of Fe from the ferritin biomineral[J].Proc Natl Acad Sci USA,2003,100(7):3653-3658.
[21] Kidane T Z, Sauble E, Linder M C.Release of iron from ferritin requires lysosomal activity[J].Am J Physiol Cell Physiol,2006,291(3):C445-455.
[22] Kwok J C,Richardson D R.Examination of the mechanism(s)involved in doxorubicin-mediated iron accumulation in ferritin:studies using metabolic inhibitors, protein synthesis inhibitors, and lysosomotropic agents[J].Mol Pharmacol,2004,65(1):181-195.
[23] Tenopoulou M,Doulias P T,Barbouti A,et al.Role of compartmentalized redox-active iron in hydrogen peroxide-induced DNA damage and apoptosis[J].Biochem J,2005,387(Pt 3):703-710.
[24] Kurz T,Gustafsson B,Brunk U T.Intralysosomal iron chelation protects against oxidative stress-induced cellular damage[J].FEBS J,2006,273(13):3106-3117.
[25] Terman A,Kurz T,Gustafsson B,et al.Lysosomal labilization[J].IUBMB Life,2006,58(9):531-539.
[26] Terman A,Gustafsson B,Brunk U T.Autophagy, organelles and ageing[J].J Pathol,2007,211(2):134-143.
[27] Yu Z,Persson H L,Eaton J W,et al.Intralysosomal iron: a major determinant of oxidant-induced cell death[J].Free Radic Biol Med,2003,34(10):1243-1252.
[28] Garner B,Roberg K,Brunk U T.Endogenous ferritin protects cells with iron-laden lysosomes against oxidative stress[J].Free Radic Res,1998,29(2):103-114.
[29] Garner B, Li W, Roberg K, et al.On the cytoprotective role of ferritin in macrophages and its ability to enhance lysosomal stability[J].Free Radic Res,1997,27(1):487-500.
[30] Baird S K,Kurz T,Brunk U T.Metallothionein protects against oxidative stress-induced lysosomal destabilization[J].Biochem J,2006,394(Pt 1):275-283.
[31] Kurz T,Brunk U T.Autophagy of HSP70 and chelation of lysosomal iron in a non-redox-active form[J].Autophagy,2009,5(1):93-95.
[32] Arosio P,Levi S.Ferritin, iron homeostasis, and oxidative damage[J].Free Radic Biol Med,2002,33(4):457-463.
[33] Kurz T,Gustafsson B,Brunk U T.Cell sensitivity to oxidative stress is influenced by ferritin autophagy[J].Free Radic Biol Med,2011,50(11):1647-1658.
[34] Persson H L, Nilsson K J, Brunk U T.Novel cellular defenses against iron and oxidation: ferritin and autophagocytosis preserve lysosomal stability in airway epithelium[J].Redox Rep,2001,6(1):57-63.
[35] Brunk U T,Terman A.Lipofuscin: mechanisms of age-related accumulation and influence on cell function[J].Free Radic Biol Med,2002,33(5):611-619.
[36] Ellis D.Anemia in the course of the nephrotic syndrome secondary to transferrin depletion[J].J Pediatr,1977,90(6):953-955.
[37] Branten A J, Swinkels D W, Klasen I S, et al.Serum ferritin levels are increased in patients with glomerular diseases and proteinuria[J].Nephrol Dial Transplant,2004,19(11):2754-2760.
[38] Zager R A.Parenteral iron treatment induces MCP-1 accumulation in plasma, normal kidneys, and in experimental nephropathy[J].Kidney Int,2005,68(4):1533-1542.
[39] Agarwal R,Vasavada N,Sachs N G,et al.Oxidative stress and renal injury with intravenous iron in patients with chronic kidney disease[J].Kidney Int,2004,65(6):2279-2289.
[40] Bishu K, Agarwal R.Acute injury with intravenous iron and concerns regarding long-term safety[J].Clin J Am Soc Nephrol,2006,1(S 1):19-23.
[41] Agarwal R,Leehey D J,Olsen S M,et al.Proteinuria induced by parenteral iron in chronic kidney disease-a comparative randomized controlled trial[J].Clin J Am Soc Nephrol,2011,6(1):114-121.
[42] Wang H, Nishiya K, Ito H,et al.Iron deposition in renal biopsy specimens from patients with kidney diseases[J].Am J Kidney Dis,2001,38(5):1038-1044.
[43] Tolouian R,Rajabi B,Boman D,et al.Iron infusion and deposition in the kidney[J].Clin Nephrol,2013,79(3):237-240.
[44] Dimitriou E, Kairis M, Sarafidou J, et al.Iron overload and kidney lysosomes[J].Biochim Biophys Acta,2000,1501(2-3):138-148.
[45] Ganguli A, Kohli H S, Khullar M, et al.Lipid peroxidation products formation with various intravenous iron preparations in chronic kidney disease[J].Ren Fail,2009,31(2):106-110.
[46] Puntarulo S.Iron, oxidative stress and human health[J].Mol Aspects Med,2005,26(4-5):299-312.
[47] Agarwal R.Proinflammatory effects of iron sucrose in chronic kidney disease[J].Kidney Int,2006,69(7):1259-1263.
[48] Agarwal R,Rizkala A R,Kaskas M O,et al.Iron sucrose causes greater proteinuria than ferric gluconate in non-dialysis chronic kidney disease[J].Kidney Int,2007,72(5):638-642.
[49] Singh N,Agarwal A K.Pumping iron: revisiting risks, benefits and strategies in treatment of iron deficiency in end-stage renal disease[J].Clin Nephrol,2012,77(3):188-194.
[50] Nankivell B J, Tay Y C, Boadle R A, et al.Lysosomal iron accumulation in diabetic nephropathy[J].Ren Fail,1994,16(3):367-381.
[51] Rabea Asleh,F(xiàn)arid M.Nakhoul.Poor lysosomal membrane integrity in proximal tubule cells of haptoglobin 2-2 genotype mice with diabetes mellitus[J].Free Radic Biol Med,2012,53(4):779-786.
[52] Alfrey A C.Toxicity of tubule fluid iron in the nephrotic syndrome[J].Am J Physiol,1992,263(4 Pt 2):F637-641.
[53] De Valk B,Marx J J.Iron ,atherosclerosis, and ischemic heart disease[J].Arch Intern Med,1999,159(14):1542-1548.
[54] Bailie G R,Johnson C A,Mason N A.Parenteral iron use in the managenment of anemia in endstage renal disease[J].Am J Kidney Dis,2000,35(1):1-12.
[55] Dakshina Mruty K V,Srinivasarao P V,Saibaba K S,et al.Antioxidant status in patients on maintenance haemodialysis[J].Indian J Nephrol,2002,12(1):77-80.
[56] Dakshina Murty K V,Srinivasarao P V,Saibaba K S,et al.Oxidative stress in hemodialysis post dialytic changes[J].Clin Lab,2003,49(5-6):255-261.
[57] Handelman G J,Walter M F,Adhikarla R,et al.Elevated plasma F2-isomerase in patients on long term hemodialysis[J].Kidney Int,2001,59(5):1960-1966.
[58] Salahudeen A K,Oliver B,Bower J D,et al.Increase in plasma esterified f2-isomerase following intravenous iron infusion in patients on hemodialysis[J].Kidney Int,2001,60(4):1525-1531.
[59] Lim P S,Wei Y H,Yu Y L,et al.Enhanced oxidative stress in haemodialysis patients receiving intravenous iron therapy[J].Nephrol Dial Transplant,1999,14(11):2680-2687.
[60] G.Swarnalatha,R.Ram,Prasad Neela,et al.Oxidative stress in hemodialysis patients receiving intravenous iron therapy and the role of N-acetylcysteine in preventing oxidative stress[J].Saudi J Kidney Dis Transpl,2010,21(5):852-858.
[61] Paul J P,Sall N D,Soni T,et al.Lipid peroxidation abnormalities in hemodialysed patients[J].Nephron,1993,64(1):106-109.
[62] Toborek M,Wasik T,Drozdz M,et al.Effect of hemodialysis on lipid peroxidation and antioxidant systems in patient with chronic renal failure[J].Metabolism,1992,41(11):1229-1232.
[63] Haugen E,Nath K A.The involvement of oxidative stress in the progression of renal injury[J].Blood Purif,1999,17(2-3):58-65.
[64] Himmelfarb J,Stenvinkel P,Ikizler T A,et al.The elephant in uremia: Oxidant stress as a unifying concept of cardiovascular disease in uremia[J].Kidney Int,2002,62(5):1524-1538.
[65] Kalkidan Bishu and Rajiv Agarwal.Acute injury with intravenous iron and concerns regarding long-term safety[J].Clin J Am Soc Nephrol,2006,1(Suppl 1):19-23.
[66] Lim C S,Vaziri N D.Iron and oxidative stress in renal insufficiency[J].Am J Nephrol,2004,24(6):569-575.
[67] Roob J M,Khoschsorur G,Tiran A,et al.Vitamin E attenuates oxidative stress induced by intravenous iron in patients on hemodialysis[J].J Am Soc Nephrol,2000,11(3):539-549.
[68] Tovbin D,Mazor D,Vorobiov M,et al.Induction of protein oxidation by intravenous iron in hemodialysis patients: Role of inflammation[J].Am J Kidney Dis,2002,40(5):1005-1012.