• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Antioxidant and anticancer activity of Artemisia princeps var.orientalis extract in HepG2 and Hep3B hepatocellular carcinoma cells

    2013-01-08 11:23:02EunJeongChoiGunHeeKim
    Chinese Journal of Cancer Research 2013年5期

    Eun-Jeong Choi,Gun-Hee Kim

    Plant Resources Research Institute,Duksung Women’s University,Seoul 132-714,South Korea

    Introduction

    An imbalance of oxidative stress could cause a condition in which cellular antioxidant defenses are insufficient to maintain the levels of oxidants below a risk threshold.An accumulation of reactive oxygen species (ROS) such as superoxide (O2.-,OOH.),hydroxyl (OH.),and peroxyl(ROOH.) radicals,reactive nitrogen species (RNS),and sulfur-centered radicals,can cause chronic diseases such as cancer,diabetes,and cardiovascular conditions.

    It has recently been suggested that antioxidative molecules,which are widely distributed in most of the plants,could be very beneficial to human health in many ways.Plant antioxidants limit oxidative stress by scavenging free radicals,inhibiting oxidation,and activating enzymes of the antioxidant defense system.Therefore,increased consumption of herb plants,which might play important roles in the prevention of oxidative stress associated disorders and the maintenance of good health,has been recommended.

    Artemisia princeps var.orientalisbelongs to the Asteraceae family of plants,which consists of more than 500 species that are widely distributed.

    Bioactive constituents ofArtemisiaspp.have been investigated in several studies,and some of them,such as terpenoids,flavonoids,coumarins,glycosides,sterols,and polyacetylenes,have been isolated fromA.princeps(1-3).Previous studies have shown that these bioactive constituents have antimalarial,antiviral,antioxidant,and anticancer effects (4,5).

    Although many people have broad experience in using traditional plant-derived product (drugs and supplements)for their health,the molecular mechanisms underlying the effects ofA.princeps var.orientalishave not been studied.AlthoughA.princeps var.orientalismay have great possibilities based on its use in home remedies,few studies have been reported (6).In the present study,we evaluated the antioxidant and anticancer activity ofArtemisia princepsin human hepatoma HepG2 and Hep3B cells.

    Materials and methods

    Cells cultures and preparation of plant methanol extract

    Hepatocellular cancer HepG2 and Hep3B cells were purchased from the Korean Cell Line Bank (KCLB,Korea)and routinely maintained in minimum essential medium[MEM,Invitrogen (Molecular Probes),Gibco,CA,USA],supplemented with 10% fetal bovine serum (FBS) and antibiotics (50 U/mL penicillin and 50 μg/mL streptomycin,Gibco) at 37 ℃ in a humidified atmosphere containing 5%CO2.

    Methanol extract ofA.princeps var.orientalis(APME)was supplied by Herbarium of the Korea Research Institute of Bioscience & Biotechnology (KRIBB).Taxonomical identification was confirmed by a botanist and voucher specimen (KRIB0000159) stored at the KRIBB Herbarium.APME was diluted in dimethyl sulfoxide (DMSO) to 10 mg/mL just before use.

    Determination of antioxidant activity

    To evaluate the antioxidant activity of APME,ROS and antioxidant enzymes,superoxide dismutase (SOD) and catalase were investigated in HepG2 cells exposed to APME(5,100,and 200 μg/mL) for 24,48,and 72 h.Cells were lysed by sonication and then centrifuged at 10,000 g for 30 min at 4 ℃.The supernatant was used to determine the enzyme activity.

    Detection of ROS

    Production of intracellular ROS was measured by the fluorescence dyes,dichlorodihydro-fluorescein diacetate(H2DCFDA) and dihydrorhodamine 123 (DHR123,Molecular Probes,Eugene,OR).H2DCFDA is rapidly oxidized to the highly fluorescent dichlorofluorescein(DCF) and DHR123 is oxidized intracellularly to form the fluorescent compound rhodamine 123 (RH123) in the presence of ROS.Following the treatment of hydrogen peroxide (H2O2),cells were incubated with H2DCFDA or DHR123 in the absence or presence of up to 200 μg/mL APME.Fluorescence was determined at excitation wavelength of 529 nm/536 nm and emission wavelength of 503 nm/500 nm for H2DCFDA or DHR123,respectively,on a spectrofluorometer (Molecular devices,spectra max geminiXS,CA,USA).

    Enzymes activities

    The catalase activity was assayed by the method of Aebi (7).Briefly,a 20 μL sample was added to 480 μL of 10 mmol/L H2O2in 20 mmol/L potassium phosphate buffer (pH 7.0)and incubated at 25 ℃ for 1.5 min.Initial reaction rate was measured from the decrease in absorbance at 240 nm.The catalase activity was calculated as nmol of H2O2decomposed/(min.mg protein).SOD activity was assayed according to the pyrogallol autoxidation method of Marklund and Marklund (8).Briefly,a 250 μL sample was added to 750 μL reaction solution [50 mmol/L Tris buffer,pH 8.2,containing 1 mmol/L diethylenetriaminepentaacetic acid (DTPA),10 μmol/L catalase and 200 μmol/L pyrogallol].The change in absorbance at 420 nm was measured at 25 ℃ every 30 s for 5 min.SOD activity was defined as the quantity of enzyme that inhibited auto-oxidation of pyrogallol by 50%under experimental conditions.Protein concentration was determined by Bradford protein assay kit II (Bio-rad,Laboratories,CA,USA).

    Determination of anticancerigen activity in hepatocarcinoma cells

    Antiproliferative avtivity was investigated in HepG2 and Hep3B cells exposed to APME at a range of 5-200 μg/mL for 24,48,and 72 h.Then,cell cycle distribution and apoptosis induction were also observed in these cell lines.

    Antiproliferative activity

    Cell proliferation was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.HepG2 and Hep3B cells were plated at a density of (2.5-5) ×105cells/well in 96-well tissue culture plate (Corning,NY,USA),and incubated at 37 ℃ for 24 h.Plated cells were treated with APME ranging from 5 to 200 μg/mL.After incubation for 24,48,and 72 h,plated cells were incubated with MTT (Sigma-Aldrich Co.,LLC.,CA,USA,0.5 mg/mL fi nal concentration) for 4 h at 37 ℃.After discarding the medium from the plates,100 μL of DMSO was added to each well.The plates were placed for 5 min at room temperature with shaking,so that complete dissolution of formazan was achieved.The absorbance of the MTT formazan was determined at 540 nm by a UV/VIS spectrophotometric plate reader (Emax; MolecularDevices).The IC50value,the concentration of the extract required to inhibit cancer cell growth by 50% of the control level,was estimated from the plot.

    Cell cycle distribution

    Cells were then harvested,washed with cold PBS,and processed for cell cycle analysis.Briefly,the cells were fi xed in absolute ethanol and stored at -20 ℃ for later analysis.The fi xed cells were centrifuged at 1,000 r/min and washed with cold PBS twice.RNase A (20 μg/mL final concentration)and propidium iodide staining solution (50 μg/mL final concentration) were added to the cells and incubated for 30 min at 37 ℃ in the dark.The cells were analyzed by a FACS Calibur instrument (BD Biosciences,San Jose,CA,USA) equipped with CellQuest 3.3 software.ModFit LT 3.1 trial cell cycle analysis software was used to determine the percentage of cells in the different phases of the cell cycle.

    Apoptotic features

    Apoptotic features of HepG2 and Hep3B cells exposed to APME were observed using a Nikon inverse phase contrast microscope (Nikon TMS,Nikon,Japan) equipped with an objective (Plan 10/0.30DL/Ph1,Nikon) of ×100 magnification.

    P53,Bcl-2 and Bax expression

    Protein expression was determined by Western blotting.Briefly,cells were lysed in RIPA buffer (1% NP-40,150 mmol/L NaCl,0.05% DOC,1% SDS,50 mmol/L Tris,pH 7.5) containing protease inhibitor for 1 h at 4 ℃.The supernatant was separated by centrifugation,and protein concentration was determined by Bradford protein assay kit II (Bio-rad Laboratories,CA,USA).For detection of cytochrome c release,cytosolic fraction was sedimented from post-nuclear supernatant by centrifugation at 100,000 g for 30 min at 4 ℃.Proteins (25 μg/well) denatured with sample buffer were separated by 10% SDS-polyacrylamide gel (Bio-rad Laboratories,CA,USA).Proteins were transferred onto nitrocellulose membranes (0.45 μm).The membranes were blocked with 1% bovine serum albumin (BSA) solution for 1.5 h and washed twice with PBS containing 0.2% Tween-20,and incubated with the respective primary antibodies P53,Bcl-2,Bax,and β-actin(Cell Signaling Technology,Inc.,Danvers,CA,USA)overnight at 4 ℃.The next day,the immunoreaction was continued with the secondary goat anti-rabbit horseradishperoxidase-conjugated antibody (Santa Cruz Biotechnology,Inc.,CA,USA) after washing for 2 h at room temperature.The specific protein bands were detected by Opti-4CN Substrate kit (Bio-rad Laboratories,CA,USA).

    Statistical analyses

    All of the experiments were repeated four times.The data are presented as the(n=4-7).The ROS scavenging and antiproliferative activity data are expressed as percentage compared with vehicle-treated control cells,which were arbitrarily assigned 100%.Data were analyzed by oneway analysis of variance followed by Dunnett’s multiple comparison tests (SigmaStat,Jandel,San Rafael,CA,USA).For all comparisons,differences were considered statistically significant at P<0.05.

    Results

    Antioxidant activity of APME

    To investigate the antioxidant activity of APMEin vitro,the HepG2 cell line,which was derived from a hepatocellular carcinoma,was used because it retains many of the characteristics of normal hepatocytes including phase I,phase II,and the expression of antioxidant enzymes (9-11).APME showed a ROS scavenging ability in HepG2 cells (Figure 1).ROS generation was significantly increasedin HepG2 cells in the presence of H2O2as compared with control levels (2.6- and 2.0-fold for DHR123 and H2DCFDA,respectively,Figure 1A).At a concentration of 200 μg/mL,APME reduced the generation of ROS compared with the control group (by 53.7% and 49.4%for DHR123 and H2DCFDA,respectively).Additionally,APME scavenged ROS in all treatment groups in the absence of H2O2(10-15% decrease,Figure 1B),but the difference was not statistically significant.

    Figure 1 ROS scavenging activity of APME.HepG2 cells were exposed to APME (5,100 and 200 μg/mL) for 72 h.(A) To investigate the ability of APME to scavenge ROS,cells were treated with 250 mmol/L H2O2 for 30 min; (B) ROS generation was determined by H2DCFH and DHR123 in cells exposed to APME alone.All data are reported as the percentage change in comparison with the vehicle-treated group(APME concentration = “0”).*,P<0.05,significantly different from the vehicle-only group.

    Figure 2 Activation of catalase and SOD activity by APME.HepG2 cells were exposed to APME (5,100 and 200 μg/mL) for 72 h.*,P<0.05,significantly different from the vehicle-treated group.

    APME significantly increased the activity of antioxidant enzymes SOD and catalase at higher concentrations (Figure 2).APME increased catalase activity by 18.0% and 23.7%at concentrations of 100 and 200 μg/mL,respectively,compared with control levels.Total SOD activity was increased by 21.7% in cells treated with 200 μg/mL APME.

    Anticancer activity of APME

    The antiproliferative effect of APME in HepG2 and Hep3B cells exposed to various concentrations of APME (5,10,25,50,75,100,125,150,and 200 μg/mL) for 24,48,and 72 h was determined by MTT assay (Figure 3).APME reduced cell proliferation in a dose- and time-dependent manner(P<0.05).Inhibition increased significantly after 48 and 72 h in both HepG2 and Hep3B cells.HepG2 cells were more sensitive to APME treatment; a high concentration of APME (200 μg/mL) inhibited the proliferation of HepG2 and Hep3B cells by 36.5% and 26.2%,respectively,compared with control levels.

    Figure 3 Antiproliferative activity of APME.HepG2 and Hep3B cell lines were exposed to APME (1-200 μg/mL) for 24,48 and 72 h.All data are reported as the percentage change in comparison with the vehicle-treated group (APME concentration = “0”).

    Next,HepG2 and Hep3B cells were treated with 50,150,and 200 μg/mL APME for 72 h and analyzed for DNA synthesis arrest by fluorescence activated cell sorting(FACS) analysis (Figure 4).APME induced cell cycle arrest at the G1/S and G2/M phases in both cell lines in a dosedependent manner.After exposure of HepG2 and Hep3B cells to a higher concentration of APME (200 μg/mL),the proportion of G1 phase cells increased by 28.9% and 14.6%,respectively,compared with control levels,and the proportion of G2/M phase cells decreased by 57.8%and 54.9%,respectively.APME also induced well-known apoptotic morphological features including membrane blebbing (Figure 5A,B).

    Moreover,the exposure of HepG2 cells to APME (5-100 μmol/L) for 72 h induced P53 expression of HepG2 cells in a dose-dependent manner (Figure 6A).In addition,Bcl-2 decreased while Bax increased in both HepG2 and Hep3B cells after exposure to APME (Figure 6A,B).

    Discussion

    The antioxidant activities of natural herb plants were thoroughly investigated long ago.Also,their crucial effects on the pathophysiology associated with cancers have recently received special attention.Due to many epidemiological reports suggesting that high consumption of antioxidant-rich plants significantly reduces the risk of many cancers (12,13),consumption of food supplement prepared from natural plants,has been highly recommended.Although numerousArtemisiaspecies are used in folk medicine and pharmacies,scientific evidence of their effects is needed.

    Figure 4 Cell cycle arrest by APME.HepG2 and Hep3B cell lines were exposed to APME (5,100 and 200 μg/mL) for 72 h.Values are expressed as percentage of the cell population in G1,S and G1/M phases of cell cycle.*,P<0.05,significantly different from the vehicle-only group.

    In the present study,the potential of APME as an antioxidant and anticancerigen preparation was evaluated.APME dose-dependently reduced ROS generation in the presence of hydrogen peroxide in HepG2 cells.Oxidative stress leads to an increase of ROS levels and a decrease of the levels of antioxidant molecules and enzymes.Cellular oxidative stress has been implicated in the etiology and pathology of many diseases.Additionally,we have demonstrated that high concentration of APME increases catalase and SOD activity by more than 20%.Among the antioxidant defense systems,SOD is the first and most important line of enzymatic defence against oxidative stress,particularly oxygen radicals.SOD scavenges superoxide by converting it to peroxide.Peroxide,in turn,is destroyed by catalase,which is widely distributed in all animal tissues.SOD and catalase act in a mutually supportive way with antioxidant enzymes to protect against ROS.This fi nding is in agreement with the results of previous studies,which found that the antioxidant effects ofArtemisiaspecies include free radical scavenging and promotion of cellular defense activity (14,15).Thus,APME may act as an antioxidant in HepG2 cells by scavenging ROS and stimulating catalase and SOD activity.

    Figure 5 Apoptotic feature.Apoptotic feature observed in HepG2 (A) and Hep3B (B) cell lines exposed to APME (5,100 and 200 μg/mL)for 72 h.

    Figure 6 Induction of P53,Bcl-2 and Bax expression by APME.HepG2 (A) and Hep3B (B) cell lines were exposed to APME (5,100 and 200 μg/mL) for 72 h.

    Unfortunately,ourin vitrostudy did not include positive controls.However,we tested several classical antioxidant,such as Trolox (a derivative of α-tocopherol),in our preliminary study.When cells were exposed to 0.1-10 μmol/L Trolox in the presence of H2O2,Trolox scavenged significant amounts of ROS,even at 0.1 μmol/L(approximately 24% reduction to compare control levels).In the 10 μmol/L Trolox treatment,the ROS induction by H2O2was nearly reduced to normal levels.Although APME had weak ROS scavenging activity compared with classical antioxidant Trolox,different functions of APME,such as its anticancer activity,may make up for this.

    In both HepG2 (wildp53) and Hep3B (p53null) cells,APME significantly inhibited cell proliferation in a doseand time-dependent manner,but at concentrations lower than 100 μg/mL,the inhibition was less dose-dependent than time-dependent.

    The antiproliferative activity of APME was stronger in HepG2 cells,which express functional P53.Generally,HepG2 cells are highly susceptible to chemical agent and drugs,while Hep3B cells are more resistant because ofp53deficiency (16,17).APME also increased P53 expression of HepG2 in a dose-dependent manner,and this is consistent with reports stating thatArtemisiaspp.showed induction of P53-mediated G1 phase arrest in A172 human neuroblastoma cells (18).However,APME decreased the Bcl-2 expression,while increasing Bax in both HepG2 and Hep3B cells.Members of the Bcl-2 family of proteins are critical regulators of the apoptotic pathway and include the major anti-apoptotic family members Bcl-2 and Bcl-X(L)and the major pro-apoptotic proteins Bax and Bak.Thus,the anticancer mechanism of APME may involve both P53-dependent and -independent pathways.To further scrutinize these results,we analyzed the cell cycle distribution using FACS and observed features of apoptosis in HepG2 and Hep3B cells exposed to 5,100,and 200 μg/mL APME for 72 h.Cell cycle arrest was not induced in cells exposed to low concentration of APME,but significant G1 and G2/M phase arrest was induced at higher APME concentrations(100 and 200 μg/mL).Cell cycle arrest plays a pivotal role in tumor progression.Many reports indicate that various phytochemicals induce cell cycle arrest in human cancer cells,and thatArtemisiaspecies inhibit the cell cycle at the G1 or G2/M phase in various types of human cancer cells(19-23).Thus,APME may act as an anticancer preparation in HepG2 and Hep3B cells by inhibiting cell growth and arresting the cell cycle.

    The use of products fromArtemisiaspecies,as important medicines for human health,illustrates the health potential of natural plants.In the present study,APME showed significant antioxidant and anticancer activity in hepatocarcinoma cell lines.

    Acknowledgements

    This work was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (NRF-2009-0094017 and 2011-0017017).Disclosure:The authors declare no conflict of interest.

    1.Kim SH,Kim SH,Lee SD,et al.Determination of a new antiulcer agent,eupatilin,in rat plasma,bile,urine,and liver homogenate by high-performance liquid chromatography.Res Commun Mol Pathol Pharmacol 1997;97:165-70.

    2.Ryu SY,Kim JO,Choi SU.Cytotoxic components of Artemisia princeps.Planta Med 1997;63:384-5.

    3.Wink M.Production and application of phytochemicals from an agricultural perspective.In: vanBeek TA,Breteler H.eds.Phytochemistry and Agriculture.Oxford:Clarendon,1993;171-213.

    4.Tan RX,Zheng WF,Tang HQ.Biologically active substances from the genus Artemisia.Planta Med 1998;64:295-302.

    5.Huang CF,Lin SS,Liao PH,et al.The immunopharmaceutical effects and mechanisms of herb medicine.Cell Mol Immunol 2008;5:23-31.

    6.Sarath VJ,So CS,Won YD,et al.Artemisia princeps var orientalis induces apoptosis in human breast cancer MCF-7 cells.Anticancer Res 2007;27:3891-8.

    7.Aebi H.Catalase in vitro.Methods Enzymol 1984;105:121-6.

    8.Marklund S,Marklund G.Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase.Eur J Biochem 1974;47:469-74.

    9.Zhang R,Sun J,Ma L,et al.Induction of cytochromes P450 1A1 and 1A2 by tanshinones in human HepG2 hepatoma cell line.Toxicol Appl Pharmacol 2011;252:18-27.

    10.Knasmüller S,Mersch-Sundermann V,Kevekordes S,et al.Use of human-derived liver cell lines for the detection of environmental and dietary genotoxicants; current state of knowledge.Toxicology 2004;198:315-28.

    11.Zhu XG,Ort DR,Whitmarsh J,et al.The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis.J Exp Bot 2004;55:1167-75.

    12.Lee IM.Antioxidant vitamins in the prevention of cancer.Proc Assoc Am Physicians 1999;111:10-5.

    13.Machlin LJ.Critical assessment of the epidemiological data concerning the impact of antioxidant nutrients on cancer and cardiovascular disease.Crit Rev Food Sci Nutr 1995;35:41-50.

    14.Bora KS,Sharma A.Evaluation of antioxidant and freeradical scavenging potential of Artemisia absinthium.Pharm Biol 2011;49:1216-23.

    15.Kim KS,Lee S,Lee YS,et al.Anti-oxidant activities of the extracts from the herbs of Artemisia apiacea.J Ethnopharmacol 2003;85:69-72.

    16.Chi TY,Chen GG,Lai PB.Eicosapentaenoic acid induces Fas-mediated apoptosis through a p53-dependent pathway in hepatoma cells.Cancer J 2004;10:190-200.

    17.Murakami Y,Hayashi K,Hirohashi S,et al.Aberrations of the tumor suppressor p53 and retinoblastoma genes in human hepatocellular carcinomas.Cancer Res 1991;51:5520-25.

    18.Park EY,Lee KW,Lee HW,et al.The ethanol extract from Artemisia princeps Pampanini induces p53-mediated G1 phase arrest in A172 human neuroblastoma cells.J Med Food 2008;11:237-45.

    19.Cha JD,Moon SE,Kim HY,et al.Essential oil of Artemisia capillaris induces apoptosis in KB cells via mitochondrial stress and caspase activation mediated by MAPK-stimulated signaling pathway.J Food Sci 2009;74:T75-81.

    20.Hu YQ,Tan RX,Chu MY,et al.Apoptosis in human hepatoma cell line SMMC-7721 induced by water-soluble macromolecular components of Artemisia capillaris Thunberg.Jpn J Cancer Res 2000;91:113-7.

    21.Park EY,Lee KW,Lee HW,et al.The ethanol extract from Artemisia princeps Pampanini induces p53-mediated G1 phase arrest in A172 human neuroblastoma cells.J Med Food 2008;11:237-45.

    22.Koo HN,Hong SH,Jeong HJ,et al.Inhibitory effect of Artemisia capillaris on ethanol-induced cytokines(TNF-alpha,IL-1alpha) secretion in Hep G2 cells.Immunopharmacol Immunotoxicol 2002;24:441-53.

    23.Hong JH,Lee IS.Cytoprotective effect of Artemisia capillaris fractions on oxidative stress-induced apoptosis in V79 cells.Biofactors 2009;35:380-8.

    一区二区三区四区激情视频| 久久国产乱子免费精品| 亚洲精品自拍成人| 少妇被粗大猛烈的视频| 久久精品夜夜夜夜夜久久蜜豆| 七月丁香在线播放| av又黄又爽大尺度在线免费看 | 亚洲欧美日韩无卡精品| 蜜桃亚洲精品一区二区三区| 亚洲高清免费不卡视频| 国产伦精品一区二区三区视频9| 国产 一区 欧美 日韩| 欧美xxxx性猛交bbbb| 日本猛色少妇xxxxx猛交久久| videos熟女内射| 少妇猛男粗大的猛烈进出视频 | 欧美丝袜亚洲另类| 乱系列少妇在线播放| 18禁裸乳无遮挡免费网站照片| 欧美激情在线99| 国产黄片视频在线免费观看| 最近视频中文字幕2019在线8| 长腿黑丝高跟| 淫秽高清视频在线观看| 精品无人区乱码1区二区| 国产日韩欧美在线精品| 成人亚洲欧美一区二区av| 亚洲av中文av极速乱| 99热网站在线观看| 青青草视频在线视频观看| 午夜精品在线福利| 中文字幕制服av| 少妇的逼水好多| 小说图片视频综合网站| 只有这里有精品99| 国产男人的电影天堂91| 一区二区三区四区激情视频| 国产麻豆成人av免费视频| 别揉我奶头 嗯啊视频| 国产91av在线免费观看| 少妇人妻精品综合一区二区| 国产老妇女一区| 最近2019中文字幕mv第一页| 男女下面进入的视频免费午夜| 欧美日韩在线观看h| 亚洲精品日韩av片在线观看| 婷婷色综合大香蕉| 国产一区二区在线观看日韩| 国产真实伦视频高清在线观看| 少妇人妻一区二区三区视频| 日本与韩国留学比较| 亚洲乱码一区二区免费版| 人人妻人人澡欧美一区二区| 久久国产乱子免费精品| 久久久精品94久久精品| 性色avwww在线观看| 免费看日本二区| 国产伦精品一区二区三区四那| 欧美区成人在线视频| 3wmmmm亚洲av在线观看| 丰满乱子伦码专区| 亚洲va在线va天堂va国产| 国产v大片淫在线免费观看| 成人一区二区视频在线观看| av福利片在线观看| 亚洲欧美日韩无卡精品| 九九热线精品视视频播放| 国产亚洲精品久久久com| 亚洲av不卡在线观看| 看黄色毛片网站| 免费观看在线日韩| 日韩制服骚丝袜av| 校园人妻丝袜中文字幕| 精品一区二区三区视频在线| 中文在线观看免费www的网站| 国产成人freesex在线| 久久欧美精品欧美久久欧美| 国产一区亚洲一区在线观看| 国产成人a∨麻豆精品| 美女高潮的动态| 99久久精品一区二区三区| 欧美区成人在线视频| 国内揄拍国产精品人妻在线| 18禁在线播放成人免费| 非洲黑人性xxxx精品又粗又长| 可以在线观看毛片的网站| 人妻夜夜爽99麻豆av| 亚洲怡红院男人天堂| 国产高清有码在线观看视频| 久久久久性生活片| 免费观看精品视频网站| 亚洲成人av在线免费| 精华霜和精华液先用哪个| 中文字幕熟女人妻在线| 国内精品宾馆在线| 观看免费一级毛片| 亚洲色图av天堂| 亚洲自拍偷在线| 亚洲最大成人av| 亚洲国产精品成人久久小说| 99热这里只有是精品50| 欧美最新免费一区二区三区| 欧美日韩在线观看h| 九九热线精品视视频播放| 99在线视频只有这里精品首页| 又爽又黄无遮挡网站| 精品99又大又爽又粗少妇毛片| 免费看日本二区| 精品久久久久久久久久久久久| 18+在线观看网站| 人妻夜夜爽99麻豆av| 国产精品一及| 一个人观看的视频www高清免费观看| 国产视频内射| 国产成人a区在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 日韩成人伦理影院| 麻豆一二三区av精品| 亚洲国产日韩欧美精品在线观看| 日韩精品有码人妻一区| 在线观看av片永久免费下载| 亚洲精品乱码久久久久久按摩| 哪个播放器可以免费观看大片| 久久精品久久久久久噜噜老黄 | 欧美一区二区亚洲| 免费搜索国产男女视频| 精品一区二区三区视频在线| 韩国av在线不卡| 国产91av在线免费观看| 中文字幕久久专区| 亚洲国产日韩欧美精品在线观看| 国产免费一级a男人的天堂| 亚洲国产精品专区欧美| 免费搜索国产男女视频| 免费看日本二区| 久久久久免费精品人妻一区二区| 亚洲av日韩在线播放| 国产av不卡久久| 国产片特级美女逼逼视频| 欧美97在线视频| 亚洲第一区二区三区不卡| 亚洲精品乱久久久久久| 日韩高清综合在线| 国产午夜精品一二区理论片| 男女下面进入的视频免费午夜| 男人的好看免费观看在线视频| 精品国内亚洲2022精品成人| 日本色播在线视频| 日本欧美国产在线视频| 午夜免费男女啪啪视频观看| 草草在线视频免费看| 免费搜索国产男女视频| 尤物成人国产欧美一区二区三区| 欧美区成人在线视频| 亚州av有码| av女优亚洲男人天堂| 欧美变态另类bdsm刘玥| 日本五十路高清| 久久综合国产亚洲精品| 欧美3d第一页| 国产精品综合久久久久久久免费| 亚洲国产欧洲综合997久久,| 国产片特级美女逼逼视频| 成人午夜精彩视频在线观看| 日产精品乱码卡一卡2卡三| 免费大片18禁| 99久国产av精品| 国产精品一区二区三区四区免费观看| 搡女人真爽免费视频火全软件| 精品久久久久久久末码| 高清在线视频一区二区三区 | 国产高清有码在线观看视频| 色尼玛亚洲综合影院| 精品国产一区二区三区久久久樱花 | 亚洲美女视频黄频| 国语对白做爰xxxⅹ性视频网站| 国产色爽女视频免费观看| 麻豆久久精品国产亚洲av| 男女边吃奶边做爰视频| 久久精品国产亚洲网站| 亚洲,欧美,日韩| 男女下面进入的视频免费午夜| 最后的刺客免费高清国语| 国产成人精品一,二区| 一区二区三区高清视频在线| 久久久久久久午夜电影| 国产淫片久久久久久久久| 亚洲精品乱码久久久v下载方式| 午夜精品国产一区二区电影 | 一级毛片我不卡| 99九九线精品视频在线观看视频| 能在线免费看毛片的网站| 麻豆乱淫一区二区| 国产精品一区www在线观看| 国产中年淑女户外野战色| videossex国产| 极品教师在线视频| 国语自产精品视频在线第100页| 欧美日韩一区二区视频在线观看视频在线 | 黑人高潮一二区| 亚洲内射少妇av| 麻豆精品久久久久久蜜桃| 啦啦啦观看免费观看视频高清| 国产黄片美女视频| 久久久午夜欧美精品| 爱豆传媒免费全集在线观看| 女人十人毛片免费观看3o分钟| 午夜激情福利司机影院| 午夜精品一区二区三区免费看| 晚上一个人看的免费电影| 国产单亲对白刺激| 国产亚洲一区二区精品| 婷婷色av中文字幕| 如何舔出高潮| 亚洲欧美精品综合久久99| 一级毛片我不卡| 日日干狠狠操夜夜爽| 色吧在线观看| 亚洲av.av天堂| 丰满人妻一区二区三区视频av| 一级毛片久久久久久久久女| 丝袜美腿在线中文| 亚洲欧美清纯卡通| 乱系列少妇在线播放| 国产精品蜜桃在线观看| 成年av动漫网址| 国产又黄又爽又无遮挡在线| 亚洲三级黄色毛片| 亚洲三级黄色毛片| 免费观看精品视频网站| 国产av一区在线观看免费| 五月玫瑰六月丁香| 亚洲精华国产精华液的使用体验| 高清在线视频一区二区三区 | 99国产精品一区二区蜜桃av| 亚洲av成人av| 国产男人的电影天堂91| 综合色av麻豆| 少妇丰满av| 黄片wwwwww| 日本免费一区二区三区高清不卡| 只有这里有精品99| 国产伦精品一区二区三区视频9| 久久国产乱子免费精品| av免费在线看不卡| 69av精品久久久久久| 久久久国产成人精品二区| 91精品一卡2卡3卡4卡| 日韩精品青青久久久久久| 久久久久久国产a免费观看| 1024手机看黄色片| 欧美极品一区二区三区四区| 麻豆乱淫一区二区| 成人三级黄色视频| 精品久久久久久久久久久久久| 一个人观看的视频www高清免费观看| 欧美激情在线99| 美女cb高潮喷水在线观看| 99热6这里只有精品| 老司机福利观看| 亚洲在线自拍视频| 国产精品野战在线观看| 国产av一区在线观看免费| 国产精品电影一区二区三区| 亚洲,欧美,日韩| 波野结衣二区三区在线| 一边亲一边摸免费视频| 亚洲欧美中文字幕日韩二区| 亚洲在线观看片| 色网站视频免费| 国产探花极品一区二区| 国产成人freesex在线| 久久久久国产网址| 大香蕉久久网| 欧美最新免费一区二区三区| 精品少妇黑人巨大在线播放 | 真实男女啪啪啪动态图| av专区在线播放| 成年版毛片免费区| 中文字幕av成人在线电影| 少妇的逼好多水| 一个人免费在线观看电影| 成人鲁丝片一二三区免费| 国产色爽女视频免费观看| 精品少妇黑人巨大在线播放 | 免费观看的影片在线观看| 精品久久久久久久久久久久久| 日日啪夜夜撸| 最近视频中文字幕2019在线8| 色视频www国产| 国产精品不卡视频一区二区| 七月丁香在线播放| 国产精品嫩草影院av在线观看| 99热这里只有是精品50| 亚洲成人中文字幕在线播放| 欧美zozozo另类| 亚洲av电影不卡..在线观看| 亚洲在久久综合| 日本色播在线视频| 午夜爱爱视频在线播放| 欧美日本视频| 亚洲成人精品中文字幕电影| 一夜夜www| 又爽又黄无遮挡网站| 我的老师免费观看完整版| 色综合站精品国产| 最近2019中文字幕mv第一页| 人人妻人人看人人澡| 精品人妻偷拍中文字幕| 校园人妻丝袜中文字幕| 久久久久久久亚洲中文字幕| 高清日韩中文字幕在线| 亚洲欧美日韩高清专用| 国产午夜精品一二区理论片| 亚洲真实伦在线观看| 青青草视频在线视频观看| 青春草国产在线视频| 夜夜看夜夜爽夜夜摸| 亚洲国产精品专区欧美| 亚洲综合精品二区| 国产麻豆成人av免费视频| 尤物成人国产欧美一区二区三区| h日本视频在线播放| 26uuu在线亚洲综合色| 一二三四中文在线观看免费高清| 免费看日本二区| 国产精品.久久久| eeuss影院久久| 搡女人真爽免费视频火全软件| 久久精品久久精品一区二区三区| 亚洲在线观看片| 久久热精品热| 国产亚洲最大av| 女人被狂操c到高潮| 精品少妇黑人巨大在线播放 | 久久99热6这里只有精品| 中文字幕av在线有码专区| 日韩欧美三级三区| 亚洲国产精品成人久久小说| 中国美白少妇内射xxxbb| 亚洲精品成人久久久久久| or卡值多少钱| 国产69精品久久久久777片| 夜夜看夜夜爽夜夜摸| 国产一区二区在线av高清观看| 午夜激情欧美在线| 欧美日本视频| 亚洲av中文av极速乱| 亚洲av一区综合| 亚洲av中文字字幕乱码综合| 熟女电影av网| 97在线视频观看| 久久人人爽人人片av| 国产探花极品一区二区| www.色视频.com| 老司机福利观看| 欧美区成人在线视频| 亚洲欧洲日产国产| 国产精品伦人一区二区| 久久久久久久久久久免费av| 久久精品夜夜夜夜夜久久蜜豆| 18禁裸乳无遮挡免费网站照片| 国产探花在线观看一区二区| 汤姆久久久久久久影院中文字幕 | 日本色播在线视频| 久久午夜福利片| 免费观看精品视频网站| 亚洲精品,欧美精品| 午夜精品在线福利| 久久久欧美国产精品| 91aial.com中文字幕在线观看| 久久6这里有精品| 亚洲图色成人| 国产成人一区二区在线| 淫秽高清视频在线观看| 三级国产精品片| 亚洲最大成人中文| 国产精品一及| 精品欧美国产一区二区三| 国产老妇女一区| 又粗又硬又长又爽又黄的视频| 午夜激情福利司机影院| 看免费成人av毛片| 免费看光身美女| 亚洲欧洲日产国产| 蜜桃久久精品国产亚洲av| 自拍偷自拍亚洲精品老妇| 岛国在线免费视频观看| 精品久久久久久久久久久久久| 国产免费一级a男人的天堂| 国产亚洲最大av| 国产av一区在线观看免费| 日本黄大片高清| 国产精品精品国产色婷婷| av专区在线播放| 欧美人与善性xxx| www.色视频.com| 中文字幕精品亚洲无线码一区| 亚洲在久久综合| av免费在线看不卡| 国产麻豆成人av免费视频| 国产高潮美女av| 久久综合国产亚洲精品| 精品99又大又爽又粗少妇毛片| 精品熟女少妇av免费看| videossex国产| 久久久久久久久中文| 五月伊人婷婷丁香| 免费观看的影片在线观看| 国产伦一二天堂av在线观看| 99在线人妻在线中文字幕| 亚洲久久久久久中文字幕| 亚洲中文字幕一区二区三区有码在线看| 久久久久久国产a免费观看| 欧美成人免费av一区二区三区| 国产午夜福利久久久久久| 噜噜噜噜噜久久久久久91| 秋霞伦理黄片| 久久99热这里只有精品18| 欧美色视频一区免费| 日本黄大片高清| 狠狠狠狠99中文字幕| 伊人久久精品亚洲午夜| 婷婷色麻豆天堂久久 | 免费av观看视频| 亚洲精品成人久久久久久| 欧美成人精品欧美一级黄| 午夜福利在线观看免费完整高清在| 午夜福利视频1000在线观看| 中文资源天堂在线| 免费av毛片视频| 天堂影院成人在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲成av人片在线播放无| 亚洲欧洲日产国产| 国产又黄又爽又无遮挡在线| 国产一区二区在线av高清观看| 久久久久久久久久久丰满| av免费观看日本| 桃色一区二区三区在线观看| 亚洲av日韩在线播放| 久久久久网色| 日韩国内少妇激情av| 亚洲乱码一区二区免费版| 啦啦啦啦在线视频资源| 中文亚洲av片在线观看爽| 五月玫瑰六月丁香| 国产色爽女视频免费观看| 免费观看a级毛片全部| 亚洲精品国产av成人精品| 人体艺术视频欧美日本| 久久久精品欧美日韩精品| 少妇的逼水好多| 爱豆传媒免费全集在线观看| 男人狂女人下面高潮的视频| 亚洲成人中文字幕在线播放| 精品人妻熟女av久视频| 国产爱豆传媒在线观看| 青青草视频在线视频观看| 成人二区视频| 亚洲精品aⅴ在线观看| 精品人妻熟女av久视频| 成人亚洲欧美一区二区av| av国产久精品久网站免费入址| 国产精品人妻久久久久久| 九九久久精品国产亚洲av麻豆| 精品久久久久久成人av| 久久久午夜欧美精品| 国产精品久久视频播放| 国产白丝娇喘喷水9色精品| 九九热线精品视视频播放| 少妇的逼水好多| 色吧在线观看| 啦啦啦啦在线视频资源| av国产免费在线观看| 国产人妻一区二区三区在| 久久欧美精品欧美久久欧美| 久久久久九九精品影院| 欧美日韩一区二区视频在线观看视频在线 | 美女xxoo啪啪120秒动态图| 久久精品国产99精品国产亚洲性色| 精华霜和精华液先用哪个| 亚洲人与动物交配视频| 亚洲av中文av极速乱| 欧美色视频一区免费| 黄色一级大片看看| 男女视频在线观看网站免费| 国产精品人妻久久久久久| 激情 狠狠 欧美| 午夜精品一区二区三区免费看| 看非洲黑人一级黄片| 高清毛片免费看| 国产av在哪里看| 在线免费十八禁| 黄色日韩在线| 国产亚洲精品久久久com| 欧美不卡视频在线免费观看| 日韩强制内射视频| 国产色爽女视频免费观看| 少妇的逼好多水| 国产亚洲av片在线观看秒播厂 | 天天躁夜夜躁狠狠久久av| 亚洲国产最新在线播放| 中国美白少妇内射xxxbb| av视频在线观看入口| 看黄色毛片网站| 一个人免费在线观看电影| 国产午夜精品一二区理论片| 日本免费a在线| 秋霞伦理黄片| 久久久久久久久大av| 久久久久久久亚洲中文字幕| 精品久久久久久电影网 | 最新中文字幕久久久久| 国产精品久久久久久精品电影小说 | 亚洲中文字幕一区二区三区有码在线看| 国产精品久久久久久av不卡| 亚洲天堂国产精品一区在线| 少妇的逼好多水| 丝袜喷水一区| 国产成人福利小说| 最近最新中文字幕大全电影3| 国产三级中文精品| 午夜激情欧美在线| 国产成人一区二区在线| 男女视频在线观看网站免费| 两性午夜刺激爽爽歪歪视频在线观看| 欧美3d第一页| 久久久久久久久久久丰满| 久久久精品94久久精品| 欧美最新免费一区二区三区| 性插视频无遮挡在线免费观看| 国产淫语在线视频| 国产一区二区在线av高清观看| 秋霞伦理黄片| 一个人观看的视频www高清免费观看| 亚洲色图av天堂| 中文字幕熟女人妻在线| 大香蕉久久网| 国产黄色小视频在线观看| 国产色婷婷99| 九九热线精品视视频播放| 国产免费男女视频| 亚洲欧洲日产国产| 国产探花极品一区二区| 午夜老司机福利剧场| 国产毛片a区久久久久| 久久国内精品自在自线图片| 在线a可以看的网站| 天天躁日日操中文字幕| 内射极品少妇av片p| 一级毛片我不卡| 一个人看的www免费观看视频| 亚洲国产最新在线播放| 亚洲人成网站高清观看| 国产一区二区在线av高清观看| 日韩视频在线欧美| 国产精品女同一区二区软件| 日韩在线高清观看一区二区三区| 99久久无色码亚洲精品果冻| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av男天堂| 中文字幕av在线有码专区| 国产精品三级大全| 国产免费男女视频| 超碰av人人做人人爽久久| 在线a可以看的网站| 亚洲高清免费不卡视频| 亚洲av日韩在线播放| 一边摸一边抽搐一进一小说| 国产乱人视频| 国产淫片久久久久久久久| 日本与韩国留学比较| 国产69精品久久久久777片| 日本五十路高清| 女的被弄到高潮叫床怎么办| 3wmmmm亚洲av在线观看| 赤兔流量卡办理| 国产视频首页在线观看| 小说图片视频综合网站| 欧美成人一区二区免费高清观看| 亚洲欧美精品专区久久| 亚洲国产成人一精品久久久| 亚洲18禁久久av| 白带黄色成豆腐渣| 嫩草影院入口| 国产高潮美女av| 麻豆成人午夜福利视频| 日本午夜av视频| 国产在视频线精品| 2021天堂中文幕一二区在线观| 99热全是精品| 看非洲黑人一级黄片| 国产亚洲一区二区精品| 日本五十路高清| 老司机影院成人| 精品人妻偷拍中文字幕| 特大巨黑吊av在线直播| 日韩制服骚丝袜av| 99久久精品一区二区三区| 91久久精品国产一区二区三区| 又黄又爽又刺激的免费视频.| 狂野欧美激情性xxxx在线观看| 一级毛片aaaaaa免费看小| 校园人妻丝袜中文字幕| 国产精品乱码一区二三区的特点| 男人的好看免费观看在线视频| .国产精品久久| 国产成人aa在线观看| 久久久亚洲精品成人影院| 欧美高清性xxxxhd video| 亚洲成人中文字幕在线播放| 嫩草影院入口| 国产三级中文精品| 欧美3d第一页|