• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on development of urban taxi supply based on influence factors classification

    2013-01-08 11:46:46ChenJingxuWangWeiChenXuewuShenJinshi

    Chen Jingxu Wang Wei Chen Xuewu Shen Jinshi

    (School of Transportation,Southeast University,Nanjing 210096, China)

    The taxi is gradually becoming a supplement to public transport due to its convenience, flexibility and door-to-door services. A number of studies have been conducted on different kinds of regulations with respect to the taxi market[1-4]and the development of taxi fleet size[5-7]. However, most of the current literature about the regulation of the taxi market comes from developed areas whose environments are quite different from those of mainland China. In China, entry regulation came into effect in the late 1990s. Despite limiting entry to the taxi industry, the government may artificially increase several hundred new taxis in one year as a result of the necessity of the urban development plans or for some occasional events (like holding an international sporting event). Such a particular year is described as a policy year for the taxi industry.

    The development of taxi supply is also influenced by many non-policy factors, which can be divided into four parts, namely socioeconomic indices, scale and layout indices, other trip mode indices and tourism indices. But some newly-added number of taxis by the government as mentioned above cannot be explained by these factors. Thus, influence factors relevant to taxi supply involve two aspects: policy factor and non-policy factors (see Fig.1).

    This paper concentrates on the analysis of the relationship between the taxi supply and influence factors. It utilizes an improved back-propagation neural network model. The model attempts to find out the policy years of the taxi industry and then investigate the relationship between the taxi supply and non-policy factors. A case study of Nanjing city is performed.

    1 Modeling

    A back-propagation (BP) neural network has advantages of self-learning, self-adapting and robustness. A three-layered BP neural network can be used to simulate nonlinear functions[8]. However, it has a poor speed of constringency, and it is easy to get stuck in a locally optimal solution. In order to overcome such disadvantages, a method combining the genetic algorithm (GA) with a BP neural network is used[9]. As a heuristic stochastic search algorithm, the GA does well in global searching, which can optimize the weights and thresholds in the BP neural network. Based on the improved BP neural network, this paper focuses on the identification of policy years and the relationship between the taxi supply and the influence factors. The process of the model is described below.

    1.1 Normalization of data

    Fifteen non-policy factors are scaled to the same range between 0 and 1 as

    (1)

    whereXijis the value of thej-th factor in thei-th year; max(Xj) is the maximum in the data set of the input sectorXj; and min(Xj) is the minimum in the data set of the input sectorXj.

    The normalization of the taxi supply, which makes the value in a fixed interval [0,1], is given by

    (2)

    Fig.1 Influence factors relevant to the taxi supply

    whereNiis the taxi supply of thei-th year;N0is the taxi supply of one year when the taxi market is in a free entry condition; andNmaxis the maximum taxi quantity based on the logistic model[10].

    1.2 Model description

    Fig.2 depicts the parallel distributed network which consists of three parts: an input layer, one hidden layer and an output layer.

    In the input layer, fifteen non-policy factors after normalization procedures {μi1,μi2,…,μi15} are put into the input layer. The input layer has 15 nodes. In the hidden layer, thek-th hidden nodeνikis expressed as

    (3)

    (4)

    The optimization of weights and thresholds based on the GA is as follows:

    Step2Evaluate the fitness of all chromosomes by constructing the corresponding neural network. The objective function is described as

    Fig.2 Basic architecture of the neural network used in this study

    (5)

    Step3Conduct the selection operation. We use the roulette wheel selection based on the ranking algorithm. After conducting the selection operator, the intermediate population is created by extracting chromosomes from the current population. The selection probability for the individualmis

    (6)

    whereMis the number of chromosomes andfmis the fitness of individualm.

    Step4Execute the crossover operation. According to the crossover probabilitypc(Assume thatpc=0.7), the parent individuals produce a new generation through linear crossovers. The chromosomesamandalconducting the crossover process athis expressed as

    (7)

    wherebis the random number located in the interval (0,1).

    Step5Implement the mutation operation. The mutation parent individuals are randomly chosen based on the mutation probabilitypm(Assume thatpm=0.01). The variation process for the geneamhis given as

    (8)

    whereamaxis the upper limit ofamh;aminis the lower limit ofamh;ris the random number located in the interval (0,1);f(g)=r(1-g/Gmax);gis the current number of iterations; andGmaxis the maximum number of generations.

    Step6Examine whether the fitness degree exceeds the given precision requirement (It is set to be 108) or the number of generations attains the presumed maximum value. If it does not satisfy, repeat step 2 to step 5 until the terminal condition is met.

    The learning process of the optimum BP neural network is as follows:

    Step1The BP neural network weights and threshold values are initialized as the chromosome of the best fitness population member based on the GA.

    Step2Calculate the values of the hidden layer and the output layer as presented in Eqs.(3) and (4).

    Step3The mean square error function is adopted as the error function, which is defined as

    (9)

    Step4The error in the output layer is propagated backward to hidden layer neurons, and then to input layer neurons revising the weights and threshold values by the Levenberg-Marquardt method.

    Step5Repeat step 2 to step 4 until the error is reduced to a predetermined convergence tolerance or the iteration number attains the maximum iteration number (Assume that the target error is 10-6and the maximum iteration number is 104).

    2 Case Study

    Nanjing is selected as the study area, and the data source in this paper comes from the statistical yearbook of Nanjing[11].

    2.1 Identification of policy years of taxi industry

    Nanjing began to implement entry regulations in 1997, and in the later three years there were no big events or exigent requirements for an expansion of the taxi market. Thus, it is assumed that there is no policy year of the taxi industry from 1997 to 1999. The identification procedure is as follows:

    Step1Data from the yeart-3,t-2,t-1 is put into the improved neural network model for training, and the data from the yeartis used for identifying whether the yeartis a policy year (The year 2000 is the first testing year). If the relative error between the desired output and the actual output exceeds 5%, the yeartis identified as a policy year of the taxi industry and go to step 2; if not, go directly to step 3.

    Step2The difference value between the desired output and the actual output can be seen as the newly-added taxi quantity in one policy year. As the local government may artificially put several hundred taxis one-off or in batches[3-4], the newly-added number is rectified as

    (10)

    Step3Examine the yeart. If the yeartis the last testing year, 2011, the process of identification is over; if not, lett=t+1 and return to step 1.

    Tab.1 shows the results of the identification of the policy years. The years 2001 and 2007 are the policy years of the taxi industry. Referring to the five-year plan of China and the local government reports about the taxi industry, it is noteworthy that the results of identification are basically in accordance with these development plans.

    Tab.1 Indentification of the policy years of taxi industry in Nanjing

    At the beginning of 2001, according to the 10th five-year plan (2001—2005), the local government of Nanjing decided to prioritize the tourism industry and encourage Nanjing to be an international tourism city. When tourists (especially foreigners) are in an unfamiliar tourist city, they may choose taxis as their main trip mode. Besides, the statistical yearbook of Nanjing indicates that the number of tourists ascended visibly during the 10th five-year plan. Therefore, it is reasonable that the local government put 500 new taxis into the taxi market in 2001, and 2001 should be a policy year. When it comes to the 11th five-year plan (2006—2010), the major plan of local government was primarily to develop two rural areas (Jiangning District and Pukou District), which are expected to become centers of technological research and innovative startups. But these two districts lag behind in transport infrastructure, and it may be a reason for the government to add 700 new taxis in 2007, and 2007 can be regarded as a policy year. The adjusted values of the taxi quantity, excluding the political influence, are presented in the last column of Tab.1.

    2.2 Interactionbetweentaxisupplyandnon-policy factors

    After subtracting the political influence, it is more accurate to get the interplay between the development of the adjusted taxi supply and the non-policy factors based on the established model once again.

    The normalized data from 1997 to 2008 constitute the training set and the remaining normalized data (from 2009 to 2011) are used in the testing phase. The input vector is represented by fifteen normalized non-policy factors. Accordingly, the output vector represents the normalized values for the adjusted taxi quantity. The training parameters are as follows: The population sizeNis 50; the number of evolution generation is 200; the crossover probabilitypcis 0.7; the mutation probabilitypmis 0.01; and the training precision is 10-6. The outputs and relative errors of the testing data are shown in Tab.2.

    Tab.2 Simulation results and errors of testing data

    In Tab.2, based on the trained neural network model, the actual output simulated with the testing input data shows good agreement with the adjusted taxi quantity. Compared with the original BP neural network and the ARMA time series forecasting method[12](The average errors are 1.46% and 2.99%, respectively.), the model developed in this paper has a better performance in finding the relationship between adjusted taxi quantity and non-policy factors.

    Besides, the model can be utilized to calculate the predicted values of 15 non-policy factors from 2012 to 2015, and then forecast the taxi supply of Nanjing. The predicted values of the taxi supply in the next four years (2012—2015) are 10 763, 10 842, 10 895 and 10 847, respectively. Overall, future taxi supply will continually experience a slow increase trend, while fluctuating within a narrow range. It is just in accordance with the characteristics of the taxi market in Nanjing under strict entry regulation.

    3 Conclusions and Future Work

    Since the late 1990s, the majority of Chinese cities have regulated their taxi markets. Meanwhile, the local government still artificially adds some new taxis for the necessity of the urban development plans. In this paper, an improved neural network model is utilized, and a case study of Nanjing city is performed. First, the model is applied to identify the policy years of the taxi industry and then adjust the taxi quantity to exclude the political influence. The identified results are in accordance with the five-year plan of China and the local government reports about the taxi market. Thus, 2001 and 2007 can be seen as policy years of the Nanjing taxi market. Then the interactions between the adjusted taxi supply and non-policy factors are studied based on the model once again. The simulation results exhibit that the model has a good performance in finding the relationship between the adjusted taxi supply and non-policy factors. In the future, we will establish a demand model of the taxi market and explore the demand-supply relationship in the taxi industry, and try to predict potential policy years of the taxi industry.

    [1]Flores-Guri D. An economic analysis of regulated taxicab markets [J].ReviewofIndustrialOrganization, 2003,23(3):255-266.

    [2]Schaller B. Entry controls in taxi regulation: implications of US and Canadian experience for taxi regulation and deregulation [J].TransportPolicy, 2007,14(6): 490-506.

    [3]Yao Zhigang, Cheng Gao. Clustering taxi quantity regulatory levels of Chinese capital cities[J].JournalofTransportationSystemsEngineeringandInformationTechnology, 2012,12(5):1-6.

    [4]Tian W J. Investigating the regulations of the taxicab market in Chinese large cities [D]. Wuhan: Zhongnan University of Economics and Law, 2010. (in Chinese)

    [5]Xu J M, Wong S C, Yang H, et al. Modeling level of urban taxi services using neural network [J].JournalofTransportationEngineering, 1999,125(3): 216-223.

    [6]Yang H, Lau Y W, Wong S C, et al. A macroscopic taxi model for passenger demand, taxi utilization and level of services [J].Transportation, 2000,27(3): 317-340.

    [7]Salanova J M, Estrada M, Aifadopoulou G, et al. A review of the modeling of taxi services [J].Procedia—SocialandBehavioralSciences, 2011,20: 150-161.

    [8]Whitley D, Starkweather T, Bogart C. Genetic algorithms and neural networks: optimizing connections and connectivity [J].ParallelComputing, 1990,14(3): 347-361.

    [9]Wen X L, Song A G, Duan J H, et al. Evolving neural networks using an improved genetic algorithm [J].JournalofSoutheastUniversity:EnglishEdition, 2002,18(4):367-369.

    [10]Miranda L C, Lima C A. On the logistic modeling and forecasting of evolutionary processes: application to human population dynamics [J].TechnologicalForecastingandSocialChange, 2010,77(5): 699-711.

    [11]National Bureau of Statistics of China.ThestatisticalyearbookofNanjing[M]. Beijing: China Statistics Press, 1995—2012.

    [12]Box G E P, Jenkins G M.Timeseriesanalysis:forecastingandcontrol[M]. San Francisco, CA, USA: Holden Day, 1978.

    直男gayav资源| 99久久中文字幕三级久久日本| 99热6这里只有精品| 男女视频在线观看网站免费| 99九九线精品视频在线观看视频| 日韩强制内射视频| av又黄又爽大尺度在线免费看 | 成人午夜高清在线视频| 久久久精品欧美日韩精品| 精品久久久久久久久亚洲| 免费av不卡在线播放| 日韩视频在线欧美| 校园春色视频在线观看| 极品教师在线视频| 晚上一个人看的免费电影| 国产亚洲欧美98| 午夜爱爱视频在线播放| 久久久色成人| 国内精品宾馆在线| 男人和女人高潮做爰伦理| 国产亚洲av嫩草精品影院| 亚洲四区av| 亚洲av免费高清在线观看| 久久久久九九精品影院| av在线播放精品| 欧美激情在线99| 一个人观看的视频www高清免费观看| 女人十人毛片免费观看3o分钟| 性插视频无遮挡在线免费观看| 夜夜爽天天搞| 禁无遮挡网站| 麻豆国产av国片精品| 国内精品宾馆在线| 午夜激情福利司机影院| 国产69精品久久久久777片| 国产亚洲欧美98| 青春草国产在线视频 | 久久人妻av系列| 欧美最黄视频在线播放免费| 啦啦啦观看免费观看视频高清| 成人美女网站在线观看视频| 国产日韩欧美在线精品| 99精品在免费线老司机午夜| 欧美高清成人免费视频www| 一个人看视频在线观看www免费| 久久久欧美国产精品| www.av在线官网国产| www.av在线官网国产| 国产亚洲精品久久久久久毛片| 麻豆久久精品国产亚洲av| 一进一出抽搐gif免费好疼| 欧美日韩在线观看h| 亚洲美女视频黄频| 久久久久久久久大av| 亚洲国产欧洲综合997久久,| 丰满乱子伦码专区| 超碰av人人做人人爽久久| 狠狠狠狠99中文字幕| 日韩高清综合在线| 国产成人aa在线观看| 女人被狂操c到高潮| 蜜桃久久精品国产亚洲av| 一本精品99久久精品77| 免费观看精品视频网站| 在线播放无遮挡| 亚洲,欧美,日韩| 国产成人freesex在线| av专区在线播放| 久久久久免费精品人妻一区二区| 国产午夜精品一二区理论片| 中国美白少妇内射xxxbb| 国产精品乱码一区二三区的特点| 美女xxoo啪啪120秒动态图| 日韩欧美精品v在线| 男人舔女人下体高潮全视频| 亚洲欧美成人综合另类久久久 | 菩萨蛮人人尽说江南好唐韦庄 | 白带黄色成豆腐渣| 亚洲第一区二区三区不卡| 欧美3d第一页| 午夜精品国产一区二区电影 | 美女高潮的动态| 精品99又大又爽又粗少妇毛片| 亚洲国产精品国产精品| 国产av麻豆久久久久久久| 伦精品一区二区三区| 欧美激情久久久久久爽电影| 夜夜看夜夜爽夜夜摸| 午夜福利在线在线| 欧美bdsm另类| 波多野结衣高清作品| 搡老妇女老女人老熟妇| 亚洲精品影视一区二区三区av| 乱系列少妇在线播放| 亚洲精品乱码久久久v下载方式| 中文字幕av在线有码专区| 国产熟女欧美一区二区| 一区二区三区高清视频在线| 免费看a级黄色片| 99热网站在线观看| 黄色视频,在线免费观看| 亚洲高清免费不卡视频| 日韩欧美精品免费久久| 中文字幕精品亚洲无线码一区| 国产一级毛片在线| 中文字幕人妻熟人妻熟丝袜美| 国产在线男女| 婷婷亚洲欧美| 一区二区三区高清视频在线| 五月伊人婷婷丁香| 国产精品,欧美在线| 亚洲精品国产成人久久av| 欧美在线一区亚洲| 亚洲欧美中文字幕日韩二区| 日本在线视频免费播放| 美女被艹到高潮喷水动态| 伦理电影大哥的女人| 久久人人精品亚洲av| 波多野结衣高清作品| 国产精品久久久久久av不卡| 久久久久网色| 晚上一个人看的免费电影| 人人妻人人看人人澡| 麻豆一二三区av精品| 一级黄色大片毛片| 亚洲欧美精品专区久久| 一边亲一边摸免费视频| 岛国在线免费视频观看| 亚洲最大成人手机在线| 人妻系列 视频| 日韩欧美国产在线观看| 午夜免费男女啪啪视频观看| av天堂中文字幕网| 黄片无遮挡物在线观看| 久久精品国产自在天天线| 亚洲18禁久久av| 中文字幕熟女人妻在线| 午夜福利视频1000在线观看| 色视频www国产| 观看免费一级毛片| 亚洲色图av天堂| 亚洲成人精品中文字幕电影| 中文精品一卡2卡3卡4更新| 插阴视频在线观看视频| 久久精品国产亚洲av天美| 日韩,欧美,国产一区二区三区 | 国产精品一区二区在线观看99 | 亚洲av免费在线观看| 免费大片18禁| 久久午夜亚洲精品久久| 校园春色视频在线观看| 成人一区二区视频在线观看| 国内精品一区二区在线观看| 神马国产精品三级电影在线观看| 久久精品国产清高在天天线| 免费观看人在逋| 国产成人aa在线观看| 国产乱人偷精品视频| 亚洲精华国产精华液的使用体验 | 亚洲aⅴ乱码一区二区在线播放| 国产美女午夜福利| 如何舔出高潮| 亚洲精华国产精华液的使用体验 | 美女cb高潮喷水在线观看| 久久草成人影院| 波多野结衣巨乳人妻| 国产一级毛片七仙女欲春2| 最新中文字幕久久久久| 日韩中字成人| 日本与韩国留学比较| 18禁黄网站禁片免费观看直播| АⅤ资源中文在线天堂| 国产精品久久久久久av不卡| 97热精品久久久久久| 久久人人爽人人片av| 国产大屁股一区二区在线视频| 亚洲无线观看免费| 亚洲一区二区三区色噜噜| 精华霜和精华液先用哪个| 长腿黑丝高跟| 好男人视频免费观看在线| 久久99热6这里只有精品| 直男gayav资源| 九草在线视频观看| h日本视频在线播放| av在线观看视频网站免费| АⅤ资源中文在线天堂| 狂野欧美白嫩少妇大欣赏| 啦啦啦韩国在线观看视频| 三级男女做爰猛烈吃奶摸视频| av国产免费在线观看| 久久久久久久午夜电影| 亚洲七黄色美女视频| 99热6这里只有精品| 精品久久久噜噜| 成人亚洲欧美一区二区av| 亚洲欧美日韩无卡精品| 亚洲一级一片aⅴ在线观看| 91久久精品国产一区二区成人| 麻豆乱淫一区二区| 精品久久久噜噜| 色综合色国产| 寂寞人妻少妇视频99o| 日日撸夜夜添| av在线播放精品| 麻豆乱淫一区二区| 成人一区二区视频在线观看| 国产精品国产高清国产av| 久久精品人妻少妇| 日韩三级伦理在线观看| 免费搜索国产男女视频| 99热全是精品| 青春草视频在线免费观看| 日本成人三级电影网站| 国产精品一区二区在线观看99 | 精品久久久久久久久亚洲| 此物有八面人人有两片| 亚洲精品色激情综合| 日日撸夜夜添| 成人漫画全彩无遮挡| 99热6这里只有精品| 免费av观看视频| 成人毛片60女人毛片免费| av免费在线看不卡| 欧美zozozo另类| 禁无遮挡网站| 日韩欧美国产在线观看| 网址你懂的国产日韩在线| av免费观看日本| av在线天堂中文字幕| 国产真实乱freesex| 99热这里只有是精品50| 婷婷亚洲欧美| 91av网一区二区| 我要看日韩黄色一级片| 能在线免费观看的黄片| 黄色欧美视频在线观看| 成人亚洲欧美一区二区av| 最新中文字幕久久久久| 一级毛片久久久久久久久女| 能在线免费观看的黄片| 老女人水多毛片| 少妇高潮的动态图| 天天躁夜夜躁狠狠久久av| 一级毛片电影观看 | 国产精品爽爽va在线观看网站| 国产片特级美女逼逼视频| 欧美一级a爱片免费观看看| 人体艺术视频欧美日本| 久久久久久久久大av| 欧美成人a在线观看| 99久国产av精品| 亚洲第一电影网av| 大又大粗又爽又黄少妇毛片口| 婷婷精品国产亚洲av| 久久精品国产亚洲av香蕉五月| 精品免费久久久久久久清纯| 精品无人区乱码1区二区| 看黄色毛片网站| 国产一级毛片七仙女欲春2| 国产私拍福利视频在线观看| 美女cb高潮喷水在线观看| 国产综合懂色| 成年女人看的毛片在线观看| 天堂√8在线中文| 国产精品美女特级片免费视频播放器| 亚洲欧美日韩高清在线视频| 不卡一级毛片| 中文精品一卡2卡3卡4更新| 久久久国产成人免费| 美女被艹到高潮喷水动态| 天天躁夜夜躁狠狠久久av| 欧美一区二区国产精品久久精品| 干丝袜人妻中文字幕| 色综合色国产| 我的女老师完整版在线观看| 在现免费观看毛片| 欧美一级a爱片免费观看看| 两个人的视频大全免费| 亚洲精品粉嫩美女一区| 久久精品久久久久久久性| 特级一级黄色大片| 亚洲真实伦在线观看| 亚洲av一区综合| 亚洲精品456在线播放app| 国产成人一区二区在线| 国产午夜精品久久久久久一区二区三区| 日韩成人av中文字幕在线观看| 亚洲不卡免费看| 全区人妻精品视频| 久久精品影院6| 成人性生交大片免费视频hd| 国产伦精品一区二区三区四那| 少妇人妻一区二区三区视频| 免费观看人在逋| 午夜精品国产一区二区电影 | 最近最新中文字幕大全电影3| 色哟哟哟哟哟哟| 床上黄色一级片| 中文字幕精品亚洲无线码一区| 久久亚洲国产成人精品v| 91av网一区二区| 亚洲五月天丁香| 十八禁国产超污无遮挡网站| 天堂中文最新版在线下载 | 一进一出抽搐gif免费好疼| 国产成年人精品一区二区| 久久久国产成人免费| 18+在线观看网站| 婷婷色综合大香蕉| 夜夜爽天天搞| 国产精品麻豆人妻色哟哟久久 | 日本撒尿小便嘘嘘汇集6| 亚洲无线观看免费| 18禁黄网站禁片免费观看直播| 亚洲七黄色美女视频| 国产av一区在线观看免费| 99视频精品全部免费 在线| 久久精品影院6| 亚洲人与动物交配视频| 午夜免费男女啪啪视频观看| 精品人妻视频免费看| 中国美女看黄片| 国产欧美日韩精品一区二区| 欧美+亚洲+日韩+国产| 久久综合国产亚洲精品| 中文在线观看免费www的网站| 日韩欧美 国产精品| 青春草亚洲视频在线观看| 亚洲人成网站在线播| 你懂的网址亚洲精品在线观看 | 69人妻影院| 尤物成人国产欧美一区二区三区| 欧美一区二区精品小视频在线| 噜噜噜噜噜久久久久久91| 亚洲av电影不卡..在线观看| 国产女主播在线喷水免费视频网站 | 婷婷色综合大香蕉| 高清毛片免费观看视频网站| 久久久欧美国产精品| 少妇丰满av| 久久久色成人| 特级一级黄色大片| 日韩欧美精品v在线| 最新中文字幕久久久久| 99久久九九国产精品国产免费| 男女那种视频在线观看| 中国国产av一级| 99热网站在线观看| 国产精品.久久久| 国产综合懂色| 亚洲人成网站在线观看播放| 亚洲成人久久性| 最近视频中文字幕2019在线8| 九九爱精品视频在线观看| 网址你懂的国产日韩在线| 亚洲一级一片aⅴ在线观看| 国产视频内射| 国产精品.久久久| 国产成人福利小说| 如何舔出高潮| 国产老妇女一区| or卡值多少钱| 婷婷色av中文字幕| 成人亚洲欧美一区二区av| 国产一区二区亚洲精品在线观看| 久久精品夜色国产| 亚洲人成网站在线播放欧美日韩| 国产高清视频在线观看网站| 国产精品一区www在线观看| 天天一区二区日本电影三级| 久久久久久伊人网av| 狂野欧美白嫩少妇大欣赏| 国产成人freesex在线| av又黄又爽大尺度在线免费看 | 99九九线精品视频在线观看视频| 日本三级黄在线观看| 亚洲精品亚洲一区二区| 久久午夜福利片| 亚洲人成网站在线观看播放| 在线观看一区二区三区| 国产亚洲av嫩草精品影院| 尾随美女入室| 亚洲av男天堂| 桃色一区二区三区在线观看| 国产精品.久久久| 国产一区二区激情短视频| 成人亚洲精品av一区二区| 国产乱人视频| 在线观看午夜福利视频| 色5月婷婷丁香| 久久久成人免费电影| 日本撒尿小便嘘嘘汇集6| 亚洲人成网站在线播放欧美日韩| 欧美性感艳星| 久久人妻av系列| 亚洲欧美精品专区久久| 国产亚洲精品久久久com| 久久久久久久久久成人| 色综合亚洲欧美另类图片| av女优亚洲男人天堂| 欧美不卡视频在线免费观看| 国产精品三级大全| 精品日产1卡2卡| 国产一级毛片七仙女欲春2| 校园人妻丝袜中文字幕| 日韩视频在线欧美| 成人国产麻豆网| 少妇熟女欧美另类| 岛国毛片在线播放| 色哟哟·www| 99久久人妻综合| 黄色视频,在线免费观看| 日韩成人av中文字幕在线观看| 国产成人a区在线观看| 久久久久久九九精品二区国产| 国产精品久久久久久av不卡| 欧美变态另类bdsm刘玥| 国产私拍福利视频在线观看| 国产亚洲欧美98| 日本-黄色视频高清免费观看| 美女xxoo啪啪120秒动态图| 精品久久久久久成人av| 麻豆久久精品国产亚洲av| 日日摸夜夜添夜夜爱| 波多野结衣巨乳人妻| 97超视频在线观看视频| 干丝袜人妻中文字幕| 国产精品一区二区性色av| 亚洲最大成人av| 精品人妻一区二区三区麻豆| 2021天堂中文幕一二区在线观| 97热精品久久久久久| 国产免费男女视频| 麻豆国产97在线/欧美| 国内少妇人妻偷人精品xxx网站| videossex国产| 国产成人freesex在线| 国产一区二区激情短视频| 十八禁国产超污无遮挡网站| 精品久久久久久久久亚洲| 美女 人体艺术 gogo| 国产极品精品免费视频能看的| 18禁在线播放成人免费| 精品久久久噜噜| 国产精品久久久久久精品电影| 国产成人aa在线观看| 插逼视频在线观看| 日本爱情动作片www.在线观看| 欧美极品一区二区三区四区| 久久欧美精品欧美久久欧美| 亚洲精品国产av成人精品| 黄色配什么色好看| 久久久久久久午夜电影| 日韩欧美国产在线观看| 婷婷色综合大香蕉| 久久6这里有精品| kizo精华| 欧美精品国产亚洲| 99久久人妻综合| 国产三级中文精品| 国产亚洲av嫩草精品影院| 色综合色国产| 日韩成人av中文字幕在线观看| 久久久欧美国产精品| 亚洲18禁久久av| 久久精品国产鲁丝片午夜精品| av免费观看日本| 精品无人区乱码1区二区| 身体一侧抽搐| 国产成人影院久久av| 国产精品乱码一区二三区的特点| 成年女人永久免费观看视频| 天堂影院成人在线观看| 黄片wwwwww| 美女高潮的动态| 久久久午夜欧美精品| 成人av在线播放网站| 欧美三级亚洲精品| 欧美xxxx黑人xx丫x性爽| 国产精品国产高清国产av| 亚洲中文字幕一区二区三区有码在线看| 午夜a级毛片| 少妇猛男粗大的猛烈进出视频 | 亚洲自偷自拍三级| 在线观看午夜福利视频| 高清毛片免费观看视频网站| 成人午夜精彩视频在线观看| 精品久久久久久久久av| 老女人水多毛片| 久久婷婷人人爽人人干人人爱| 亚洲精品乱码久久久v下载方式| www日本黄色视频网| 精品日产1卡2卡| 男女下面进入的视频免费午夜| 精品久久久久久成人av| 五月伊人婷婷丁香| 成人鲁丝片一二三区免费| 91aial.com中文字幕在线观看| 99热全是精品| 蜜臀久久99精品久久宅男| 成年免费大片在线观看| 国产av在哪里看| 麻豆av噜噜一区二区三区| 黄片无遮挡物在线观看| 一级av片app| 黄片无遮挡物在线观看| 非洲黑人性xxxx精品又粗又长| 国产三级中文精品| 国产黄色视频一区二区在线观看 | 精品少妇黑人巨大在线播放 | 在线免费观看的www视频| 美女高潮的动态| 三级国产精品欧美在线观看| 美女xxoo啪啪120秒动态图| 丝袜喷水一区| 日韩中字成人| 午夜激情福利司机影院| 中文亚洲av片在线观看爽| 欧美一区二区亚洲| 亚洲在线自拍视频| 亚洲av.av天堂| 国产 一区 欧美 日韩| 草草在线视频免费看| 特大巨黑吊av在线直播| 3wmmmm亚洲av在线观看| 蜜桃久久精品国产亚洲av| 热99在线观看视频| 国产精品精品国产色婷婷| 日本黄色片子视频| av在线观看视频网站免费| 欧美色欧美亚洲另类二区| 日本与韩国留学比较| 日本黄色片子视频| 国产精品福利在线免费观看| 一级黄片播放器| 边亲边吃奶的免费视频| 在现免费观看毛片| 人妻夜夜爽99麻豆av| 男人和女人高潮做爰伦理| av.在线天堂| 男插女下体视频免费在线播放| 女同久久另类99精品国产91| 18禁在线无遮挡免费观看视频| 成人永久免费在线观看视频| 狂野欧美激情性xxxx在线观看| kizo精华| 免费观看人在逋| 免费看光身美女| 亚洲av熟女| 人人妻人人澡人人爽人人夜夜 | 亚洲久久久久久中文字幕| 搡女人真爽免费视频火全软件| 亚洲图色成人| www.色视频.com| 国产在视频线在精品| 国产精品,欧美在线| 国内久久婷婷六月综合欲色啪| 亚洲av.av天堂| 观看免费一级毛片| 国产成人精品婷婷| 亚洲av成人精品一区久久| 国产精品人妻久久久影院| 亚洲三级黄色毛片| 哪里可以看免费的av片| 国产成人午夜福利电影在线观看| 欧美性猛交黑人性爽| 日日摸夜夜添夜夜添av毛片| 日韩强制内射视频| 亚洲人成网站在线观看播放| 黄色视频,在线免费观看| 成人三级黄色视频| 熟女人妻精品中文字幕| 亚洲精品乱码久久久久久按摩| 麻豆精品久久久久久蜜桃| 自拍偷自拍亚洲精品老妇| 嘟嘟电影网在线观看| 一区福利在线观看| 亚洲精品乱码久久久v下载方式| 亚洲欧美成人综合另类久久久 | 男女那种视频在线观看| 亚洲18禁久久av| 日韩一区二区视频免费看| 亚洲最大成人av| 精品少妇黑人巨大在线播放 | 成人午夜高清在线视频| 人人妻人人澡人人爽人人夜夜 | kizo精华| 搡老妇女老女人老熟妇| 国产精品.久久久| 午夜福利在线观看吧| 亚洲电影在线观看av| 国产片特级美女逼逼视频| 国产精品久久久久久亚洲av鲁大| 99热全是精品| 成人三级黄色视频| 九九爱精品视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产又黄又爽又无遮挡在线| 中文精品一卡2卡3卡4更新| 成人欧美大片| 噜噜噜噜噜久久久久久91| 日韩国内少妇激情av| 男女视频在线观看网站免费| 全区人妻精品视频| 国产成人aa在线观看| 村上凉子中文字幕在线| 校园春色视频在线观看| 色综合亚洲欧美另类图片| 成人综合一区亚洲| 乱人视频在线观看| 亚洲色图av天堂| 亚洲四区av| 日本五十路高清| 午夜精品国产一区二区电影 |