• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Scheduling method for single-arm cluster toolsof wafer fabrications with residency and continuous reentrancy

    2013-01-08 11:46:45ZhouBinghaiWangZhuChenJia

    Zhou Binghai Wang Zhu Chen Jia

    (School of Mechanical Engineering, Tongji University, Shanghai 201804, China)

    With the rapid development of the semiconductor manufacturing technology, especially the diameter of wafers expanding to 300 mm, cluster tools are adopted widely in the modern semiconductor industry. Cluster tools have diverse scheduling requirements such as complex wafer flow patterns, wafer residency time constraints, and resource constraints, etc. It is difficult to solve their scheduling problems. How to improve the scheduling performance is of great significance to reduce cost and shorten the cycle time of semiconductor wafer fabrications.

    Venkatesh et al.[1]studied how to schedule robotic tasks of single-arm cluster tools, but their methods are based on the assumption of wafer processing without residency time constraints. Currently, there is some related literature on scheduling problems of single-arm cluster tools with residency time constraints. Lee et al.[2-3]studied the scheduling problem of the minimum period under the steady state and established an algorithm to search for the minimum period, but the calculation is too complex. Rostami et al.[4-5]studied the schedulability problem of cluster tools and considered residency time constraints.They presented a linear programming-based method to find an optimal periodic schedule with a buffer module. However, the method only considered the scheduling problem of a single wafer product type. Yoon and Lee[6]established a scheduling model with residency time constraints and put forward a kind of online scheduling algorithm with different product types. The literature mentioned above has not considered continuous reentrant processing requirements.

    Perkinson et al.[7]presented an analysis model of the effect of redundant processing chambers and chamber reentrant process sequences on steady-state throughput. Lee et al.[8]used Petri net models to develop deadlock avoidance conditions and built a mixed integer programming model. However, the mathematical method is not suitable for solving large-scale scheduling problems with reentrant wafer flows. Zuberek et al.[9-10]developed timed Petri nets to model and analyze scheduling problems of cluster tools with chamber reentrancy. Nevertheless, only the static scheduling problem of robot operations is considered. Jung et al.[11]proposed a mixed integer programming model to minimize the cycle time of timed Petri net models of cluster tools with various scheduling requirements. Wu et al.[12-13]developed resource-oriented Petri net models with colors and time introduced to describe the operations of cluster tools. Kim et al.[14]determined the cycle time of a cluster tool with the timed event graph model. Wu et al.[15]developed a formal Petri net model to address the real-time operational problem with residency time constraints. These methods are applicable to various reentrant processing types, but none addresses residency time constraints.

    The methods mentioned above cannot fully adapt to the practical applications when residency time and reentrancy constraints are separately considered to study the scheduling problem of single-arm cluster tools. At present, there are only a few works on scheduling problems of single-arm cluster tools with residence time and reentrancy constraints. In this paper, the scheduling problem of single-arm cluster tools is explored with residency time constraints, continuous reentrancy constraints and diverse wafer product types.

    1 Problem Formulations

    A single-arm cluster tool consists of several process modules (PMs), a transport module (TM), and loadlocks (LLs). The logic chart is shown in Fig.1. The PMs execute wafer processes. The LLs are used for storing the unprocessed and processed wafers. The TM unloads a wafer from one LL to the PM, loads it back to the other LL, and moves the wafer from one PM to another PM.

    Fig.1 Single-arm cluster tool logic chart

    To effectively formulate a scheduling problem domain, the following assumptions are given:

    1) The TM is a single-arm robot, which can pick, place or transport only one wafer at a time; the time of loading, unloading and transporting a wafer among different PMs and LLs can be variable.

    2) Each PM only processes one wafer at a time.

    3) There exists the phenomenon of consecutive reentrant processing between two adjacent PMs, i.e., the same wafer returning to the same two consecutive PMs.

    4) There are residency time constraints for wafers in PMs. The time interval of residency in PMs is (a,b), and (0,∞) in the LLs. If the actual residency time of a wafer exceeds the upper limit of the time interval, the wafers should be considered as being of bad quality.

    5) Residency time and processing time for each wafer within each PM can be different.

    6) A wafer lot is scheduled at the moment of arriving at the LL.

    7) There is no buffer among PMs. A cluster tool of three PMs is considered in this paper.

    (1)

    (2)

    (3)

    According to assumption 2), a PM only processes one wafer at a time such that the PM must be free before a new wafer is inserted. Namely,

    (4)

    As mentioned above, this paper addresses the scheduling with continuous reentrancy. Two adjacent PMs which process a wafer more than one time should satisfy the following requirements:

    (5)

    (6)

    (7)

    (8)

    To make full use of the equipment, the processing operation begins once a wafer is loaded in the PM. The details are described as

    (9)

    (10)

    (11)

    According to assumption 3), two PMs processing each wafer with continuous reentrancy must satisfy the following equation:

    (12)

    Fig.2 Wafer reentrant flow pattern

    LetLibe thei-th TM operation path, andZibe the state of each PM under periodic scheduling when pathLiis adopted,Zi={L1,L2,…,Ln}. Thei-th PM has two statesΟandΘ.ΟandΘdenote that the PM is empty and occupied, respectively. A set of five TM operational paths under the steady period isZi={L1,Θ,…,L5}. They areL1=(R1→R2→R3→R4→R5→R6),L2=(R1→R6→R2→R4→R3→R5),L3=(R6→R1→R2→R4→R3→R5),L4=(R1→R6→R2→R3→R4→R5),L5=(R1→R2→R3→R4→R6→R5).

    (13)

    Consequently, the scheduling problem contains the objective function (13) and the constraints (1) to (12).

    2 Scheduling Algorithm

    The core of the proposed scheduling algorithm is to adopt the pull strategy[1]. Due to many kinds of deadlocks caused by reentrant processes, all the possible TM paths satisfying reentrancy constraints must be listed so that feasible paths can be found out. The task of processing a wafer lot both in the initial state and the intermediate state must satisfy residency time and reentrancy constraints. The makespan of the feasible scheduling solution is calculated. Finally, the minimal makespan solution is determined.

    The proposed path search scheduling method includes the following two parts: The first part is to find out each scheduling pathLiwhich can satisfy all residency time and reentrancy constraints during each wafer’s operations in turn; the second part is to calculate the corresponding makespan and obtain an optimal scheduling path. The algorithm procedure is described in details as follows:

    Step1Determine whetherL2is a feasible sequence path or not. If the path meets the constraints, calculate the system makespan, otherwise determine the next path.

    1) Leti=1;j=0.

    (14)

    (15)

    (16)

    (17)

    (18)

    (19)

    (20)

    (21)

    (22)

    (23)

    (24)

    (25)

    (26)

    (27)

    (28)

    Step2Determine whetherL3is a feasible sequence path or not. If the path meets the constraints, calculate the system makespan, otherwise determine the next path.

    1) Leti=i+1 andk=0.

    (29)

    (30)

    (31)

    (32)

    Step3Determine whetherL4is a feasible sequence path. If the path meets the constraints, calculate the system makespan, otherwise determine the next path.

    1) Leti=i+1 andk=0.

    (33)

    (34)

    (35)

    (36)

    (37)

    Step4Determine whetherL5is a feasible sequence path or not. If the path meets the constraints, calculate the system makespan, otherwise determine the next path.

    1) Leti=i+1 andk=0.

    (38)

    (39)

    (40)

    (41)

    (42)

    (43)

    (44)

    (45)

    Step5Calculate the makespan by scheduling pathL1, and find out the best scheduling path in all the possible sequence paths:

    (46)

    Step6The algorithm ends.

    3 Example Analysis

    Fig.3 Gantt chart for L5

    Fig.3 shows that the reentrancy of the third process module makes other two process modules’ utilization reduced, but the phenomena will not cause deadlocks. Meanwhile, pathL5can make residency time that is spent in the third process module very short, only 1 s, and also make other process modules have no residency. The example indicates that we can find out an optimal robot scheduling path with the proposed algorithm.

    4 Simulation and Analyses

    To effectively evaluate the system performance of the proposed approach, some variables are defined as follows:

    We program the heuristic scheduling algorithm in Visual C++ language and run it on a computer. Based on the experimental results, the following analyses are given.

    4.1 Analysis of general running time of the algorithm

    Fig.4 Running time of the algorithm vs. number of wafers

    Fig.4 indicates that the running time of the algorithm increases along with the increase in the number of wafers. But it is obvious that the running time of our algorithm is very short. The running time is 45 ms when the number of wafers is 100. The proposed algorithm is suitable for carrying out a real-time scheduling of the wafers.

    4.2 Algorithm performance under impact of BR

    Fig.5 BR vs. Rs

    Fig.5 indicates that the makespan calculated by the proposed algorithm becomes smaller, andRskeeps improving. When the standard deviation of the residency time increases, the general variation tendency ofRsis very small. The standard deviation of the residency time has little influence on the performance of the proposed algorithm. The curve ofRsbecomes smooth afterBRis greater than 2, namely, the performance becomes relatively steady. In practice, the transport time is always very small relative to the maximum processing time, and the proposed algorithm is feasible and valid to schedule cluster tools with residency time and continuous reentrancy constraints.

    4.3 Impact of T on algorithm performance

    Fig.6 Rx vs. number of wafers and processing time AVG

    Fig.6 shows that under the constraints of residence,Rxchanges within a small range from 25% to 40% when the average processing timeE(T) changes. AndRxbecomes small and regressive along with the increasing number of wafers. It is an expected and perfect result. When the wafer numberiis more than 20, theRxvalue tends to stabilize.

    4.4 Impact of size of wafer batch on algorithm performance

    As shown in Fig.7,Rsincreases with the enlarging number of wafers. Although floating exists,Rsstill ranges from 20% to 30%.Rxdeclines but tends to be stable around 35%. And the FP is closer to the ideal FP. In practice, the number of wafers equals the result obtained by using the proposed algorithm, so our algorithm performs well in application.

    Fig.7 Rx/Rs vs. number of wafers

    5 Conclusion

    1) The proposed algorithm can effectively solve the scheduling problem of multiple wafer types and single-arm clusters with the conflicts and deadlocks generated by residency time and continuous reentrancy constraints.

    2) The feasibility and availability of the developed heuristic scheduling algorithm are verified in Visual C++language. Due to the short running time of the algorithm, the proposed algorithm can solve a real-time scheduling problem of the wafers.

    3) Compared with the swap policy algorithm, the experimental results indicate that the proposed algorithm has good performance.

    [1]Venkatesh S, Davenport R, Foxhoven P, et al. A steady-state throughput analysis of cluster tools: dual-blade versus single-blade robots[J].IEEETransactionsonSemiconductorManufacturing, 1997,10(4): 418-424.

    [2]Lee T E, Park S H. An extended event graph with negative places and tokens for timed window constraints[J].IEEETransactionsonAutomationScienceandEngineering, 2005,2(4): 319-332.

    [3]Kim J H, Lee T E, Park D B, et al. Scheduling analysis of time-constrained dual-armed cluster tools [J].IEEETransactionsonSemiconductorManufacturing, 2003,16(3): 521-534.

    [4]Rostami S, Hamidzadeh B. An optimal periodic scheduler for dual-arm robots in cluster tools with residency constraints[J].IEEETransactionsonRoboticsandAutomation, 2001,17(5): 609-618.

    [5]Rostami S, Hamidzadeh B. An optimal residency-aware scheduling technique for cluster tools with buffer module[J].IEEETransactionsonSemiconductorManufacturing, 2004,17(1): 68-73.

    [6]Yoon H J, Lee D Y. On-line scheduling of integrated single wafer processing tools with temporal constraints[J].IEEETransactionsonSemiconductorManufacturing, 2006,18(3): 390-398.

    [7]Perkinson T L, Gyurcsik R S, McLarty P K. Single-wafer cluster tool performance: an analysis of the effects of redundant chambers and revisitation sequences on throughput[J].IEEETransactionsonSemiconductorManufacturing, 1996,9(3): 384-400.

    [8]Lee H Y, Lee T E. Scheduling single-arm cluster tools with reentrant wafer flows[J].IEEETransactionsonSemiconductorManufacturing, 2006,19(2): 226-240.

    [9]Zuberek W M. Cluster tools with chamber revisiting-modeling and analysis using timed Petri nets[J].IEEETransactionsonSemiconductorManufacturing, 2004,17(3): 333-344.

    [10]Zuberek W M. Petri net modeling and performance analysis of cluster tools with chamber revisiting[C]//The8thInternationalConferenceonEmergingTechnologiesandFactoryAutomation. Antibes-Juan les Pins, France, 2001,2: 105-112.

    [11]Jung C Y, Lee T E. An efficient mixed integer programming model based on timed Petri nets for diverse complex cluster tool scheduling problems[J].IEEETransactionsonSemiconductorManufacturing, 2012,25(2): 186-199.

    [12]Wu N Q, Chu F, Chu C B, et al. Petri net-based scheduling of single-arm cluster tools with reentrant atomic layer deposition processes[J].IEEETransactionsonAutomationScienceandEngineering, 2011,8(1): 42-55.

    [13]Wu N Q, Chu F, Chu C B, et al. Petri net-based cycle time analysis of dual-arm cluster tools with wafer revisiting and swapping strategy[C]//2011IEEEInternationalConferenceonRoboticsandAutomation. Shanghai, China, 2011: 5499-5504.

    [14]Kim D K, Jung C Y, Lee T E, et al. Cyclic scheduling of cluster tools with non-identical chamber access times[C]//Proceedingsofthe2011WinterSimulationConference. Phoenix, AZ, USA, 2011: 2068-2079.

    [15]Wu N Q, Zhou M C. Schedulability analysis and optimal scheduling of dual-armed cluster tools with residency time constraint and activity time variation[J].IEEETransactionsonAutomationScienceandEngineering, 2012,9(1): 203-209.

    欧美bdsm另类| 久久久精品大字幕| 真人一进一出gif抽搐免费| 两个人视频免费观看高清| 日韩欧美三级三区| 久久精品夜夜夜夜夜久久蜜豆| 黄色日韩在线| 9191精品国产免费久久| 波多野结衣巨乳人妻| 精品国内亚洲2022精品成人| 亚洲国产精品久久男人天堂| 免费看日本二区| 久久久久性生活片| 久99久视频精品免费| 久久久色成人| 1024手机看黄色片| 国产精华一区二区三区| 日本 欧美在线| 真人一进一出gif抽搐免费| 一区二区三区免费毛片| 嫁个100分男人电影在线观看| 欧美在线一区亚洲| 性色av乱码一区二区三区2| 99国产综合亚洲精品| 欧美性猛交╳xxx乱大交人| 偷拍熟女少妇极品色| 成人特级av手机在线观看| 欧美一区二区亚洲| 国内毛片毛片毛片毛片毛片| 亚洲av电影在线进入| 国产精品久久久久久精品电影| 美女大奶头视频| 欧美一区二区精品小视频在线| 亚洲专区中文字幕在线| 亚洲成人久久性| 在线a可以看的网站| 日本熟妇午夜| 成人永久免费在线观看视频| 老司机深夜福利视频在线观看| 亚洲中文日韩欧美视频| 一区二区三区国产精品乱码| 亚洲欧美日韩高清在线视频| 亚洲天堂国产精品一区在线| 国产单亲对白刺激| 51国产日韩欧美| 国产精品嫩草影院av在线观看 | 波多野结衣高清无吗| 国产av一区在线观看免费| 欧美激情在线99| 免费av毛片视频| 欧美乱色亚洲激情| 少妇的丰满在线观看| 99国产综合亚洲精品| 日韩欧美精品v在线| 一个人看视频在线观看www免费 | 亚洲一区二区三区不卡视频| 桃色一区二区三区在线观看| 少妇人妻精品综合一区二区 | 国产精品久久久久久久电影 | 国产黄色小视频在线观看| 丰满乱子伦码专区| 国产国拍精品亚洲av在线观看 | 亚洲精品久久国产高清桃花| 91在线精品国自产拍蜜月 | 国内精品久久久久精免费| 中文字幕久久专区| 亚洲无线观看免费| 欧美不卡视频在线免费观看| 国产精品亚洲一级av第二区| 九九在线视频观看精品| 不卡一级毛片| 国产一区二区三区视频了| 91久久精品电影网| 久久精品人妻少妇| 久久精品国产自在天天线| 国产真人三级小视频在线观看| av欧美777| 在线观看一区二区三区| 国产高清激情床上av| 久久精品国产自在天天线| 美女黄网站色视频| 哪里可以看免费的av片| 国产av不卡久久| 亚洲精品美女久久久久99蜜臀| 19禁男女啪啪无遮挡网站| 舔av片在线| 制服丝袜大香蕉在线| 午夜亚洲福利在线播放| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美一区二区三区黑人| 欧美成人性av电影在线观看| 亚洲av一区综合| 嫁个100分男人电影在线观看| 麻豆国产av国片精品| 成人性生交大片免费视频hd| 无人区码免费观看不卡| 色综合欧美亚洲国产小说| 色尼玛亚洲综合影院| 美女被艹到高潮喷水动态| 久久精品国产亚洲av涩爱 | 18禁裸乳无遮挡免费网站照片| 美女cb高潮喷水在线观看| 麻豆成人午夜福利视频| 在线观看免费午夜福利视频| 一进一出抽搐动态| 色尼玛亚洲综合影院| 国产 一区 欧美 日韩| 最新美女视频免费是黄的| 啦啦啦观看免费观看视频高清| 亚洲av中文字字幕乱码综合| 国产成+人综合+亚洲专区| 国产精品1区2区在线观看.| 国产99白浆流出| 亚洲精品一区av在线观看| 亚洲国产精品sss在线观看| 高清日韩中文字幕在线| 中文字幕人妻丝袜一区二区| 精品久久久久久久毛片微露脸| 岛国在线免费视频观看| 午夜免费激情av| 黄色片一级片一级黄色片| 老司机午夜福利在线观看视频| 精品99又大又爽又粗少妇毛片 | 男女做爰动态图高潮gif福利片| 国产精品一区二区三区四区久久| 18禁在线播放成人免费| 国产精品久久视频播放| av女优亚洲男人天堂| 精品无人区乱码1区二区| 亚洲人成网站在线播| 天堂影院成人在线观看| 丰满人妻熟妇乱又伦精品不卡| 啦啦啦韩国在线观看视频| 少妇熟女aⅴ在线视频| 中文亚洲av片在线观看爽| 人人妻,人人澡人人爽秒播| av国产免费在线观看| 久久中文看片网| 免费观看人在逋| 午夜免费激情av| 久久精品国产99精品国产亚洲性色| 两个人看的免费小视频| 亚洲午夜理论影院| 99视频精品全部免费 在线| 2021天堂中文幕一二区在线观| 色噜噜av男人的天堂激情| 日韩欧美一区二区三区在线观看| 哪里可以看免费的av片| 日日干狠狠操夜夜爽| 亚洲人成伊人成综合网2020| 亚洲天堂国产精品一区在线| 91在线观看av| 精品一区二区三区视频在线观看免费| 久久欧美精品欧美久久欧美| www.色视频.com| 日本五十路高清| 久久婷婷人人爽人人干人人爱| 久久精品综合一区二区三区| av视频在线观看入口| 在线观看免费午夜福利视频| 色av中文字幕| 可以在线观看毛片的网站| 欧美最新免费一区二区三区 | 天天一区二区日本电影三级| 99视频精品全部免费 在线| 最好的美女福利视频网| 色吧在线观看| 久久久国产精品麻豆| 一边摸一边抽搐一进一小说| xxxwww97欧美| 精品一区二区三区av网在线观看| 国产免费男女视频| 成人av一区二区三区在线看| 成人三级黄色视频| 99热只有精品国产| 欧美日韩乱码在线| 桃红色精品国产亚洲av| 很黄的视频免费| av黄色大香蕉| 欧美乱色亚洲激情| 精品一区二区三区人妻视频| 亚洲精品日韩av片在线观看 | 99精品久久久久人妻精品| aaaaa片日本免费| 亚洲av成人精品一区久久| 久久国产精品人妻蜜桃| 可以在线观看的亚洲视频| 亚洲狠狠婷婷综合久久图片| 老司机在亚洲福利影院| 在线观看免费午夜福利视频| 国产91精品成人一区二区三区| 亚洲av二区三区四区| 欧美绝顶高潮抽搐喷水| 亚洲国产精品合色在线| 国产爱豆传媒在线观看| 国产高清激情床上av| 麻豆国产97在线/欧美| 桃红色精品国产亚洲av| 老司机福利观看| 国产av麻豆久久久久久久| av福利片在线观看| 亚洲自拍偷在线| 一二三四社区在线视频社区8| 欧美成人性av电影在线观看| 99精品久久久久人妻精品| 亚洲av不卡在线观看| 亚洲一区二区三区不卡视频| 日韩人妻高清精品专区| 九九久久精品国产亚洲av麻豆| 淫秽高清视频在线观看| 真人一进一出gif抽搐免费| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品久久久久久久末码| 又爽又黄无遮挡网站| 成人欧美大片| 国产精品亚洲一级av第二区| 国产不卡一卡二| 乱人视频在线观看| 成人av在线播放网站| 成人亚洲精品av一区二区| 一级毛片女人18水好多| 午夜福利在线观看免费完整高清在 | 久久欧美精品欧美久久欧美| 国产欧美日韩精品亚洲av| 天天躁日日操中文字幕| 少妇的丰满在线观看| 欧美高清成人免费视频www| 欧美成人一区二区免费高清观看| 国产亚洲欧美98| 欧美高清成人免费视频www| 精品一区二区三区人妻视频| 黄色女人牲交| 女人十人毛片免费观看3o分钟| 久久久久性生活片| 美女被艹到高潮喷水动态| 精品国产超薄肉色丝袜足j| 热99在线观看视频| 九九热线精品视视频播放| 成人av在线播放网站| 美女被艹到高潮喷水动态| 好男人电影高清在线观看| 亚洲精品美女久久久久99蜜臀| 给我免费播放毛片高清在线观看| 久久久久性生活片| 欧美最黄视频在线播放免费| 99久久九九国产精品国产免费| 亚洲成人中文字幕在线播放| 极品教师在线免费播放| 久久久久性生活片| 国产探花在线观看一区二区| 午夜两性在线视频| 国产不卡一卡二| 免费观看人在逋| 两人在一起打扑克的视频| 欧美国产日韩亚洲一区| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美 国产精品| 他把我摸到了高潮在线观看| 色播亚洲综合网| 99riav亚洲国产免费| 成人鲁丝片一二三区免费| 久久久久久久久中文| 色哟哟哟哟哟哟| 欧美黄色片欧美黄色片| 一个人观看的视频www高清免费观看| 久久久久性生活片| 人人妻人人看人人澡| 久久久久久人人人人人| 香蕉av资源在线| 在线观看午夜福利视频| svipshipincom国产片| 免费看光身美女| 午夜福利在线在线| 国产av不卡久久| 亚洲欧美日韩高清专用| 精品人妻一区二区三区麻豆 | 午夜福利成人在线免费观看| 好看av亚洲va欧美ⅴa在| 在线观看av片永久免费下载| 99在线人妻在线中文字幕| 一本一本综合久久| 国产精品一区二区免费欧美| 在线天堂最新版资源| 美女高潮喷水抽搐中文字幕| 久久久久九九精品影院| 日本三级黄在线观看| 婷婷亚洲欧美| 成人三级黄色视频| 欧美日韩乱码在线| 国产日本99.免费观看| 中文资源天堂在线| 午夜福利高清视频| 国产91精品成人一区二区三区| 18美女黄网站色大片免费观看| 亚洲男人的天堂狠狠| 精品福利观看| 国内揄拍国产精品人妻在线| 中亚洲国语对白在线视频| 黄色丝袜av网址大全| 亚洲av五月六月丁香网| avwww免费| 嫩草影院入口| 精品久久久久久久久久久久久| 女同久久另类99精品国产91| 18禁国产床啪视频网站| 久久久久九九精品影院| 午夜久久久久精精品| 国产精品亚洲一级av第二区| 久久婷婷人人爽人人干人人爱| 51午夜福利影视在线观看| 午夜福利成人在线免费观看| 亚洲av二区三区四区| 91麻豆精品激情在线观看国产| 18美女黄网站色大片免费观看| 色av中文字幕| 白带黄色成豆腐渣| 久久精品国产自在天天线| 免费搜索国产男女视频| 99热这里只有精品一区| 日本成人三级电影网站| 国产私拍福利视频在线观看| 午夜免费激情av| 黑人欧美特级aaaaaa片| 女同久久另类99精品国产91| 高清日韩中文字幕在线| 成年人黄色毛片网站| 精品国内亚洲2022精品成人| 日韩欧美 国产精品| 国产亚洲欧美在线一区二区| 欧美色欧美亚洲另类二区| 欧美乱码精品一区二区三区| 日本与韩国留学比较| 观看美女的网站| 欧美黄色淫秽网站| 欧美精品啪啪一区二区三区| 欧美在线黄色| 国产精品久久视频播放| av黄色大香蕉| 免费av不卡在线播放| 免费电影在线观看免费观看| 日韩有码中文字幕| 成人永久免费在线观看视频| 午夜福利欧美成人| 最后的刺客免费高清国语| 一级毛片女人18水好多| 97碰自拍视频| 最近视频中文字幕2019在线8| 精品日产1卡2卡| 亚洲色图av天堂| 久久久成人免费电影| 亚洲精品久久国产高清桃花| xxx96com| 亚洲 国产 在线| 一个人免费在线观看的高清视频| 成人av在线播放网站| 麻豆一二三区av精品| 婷婷精品国产亚洲av在线| 99国产综合亚洲精品| 欧美另类亚洲清纯唯美| 亚洲最大成人中文| 99在线人妻在线中文字幕| 国产成人av教育| 国产欧美日韩精品一区二区| 久久精品人妻少妇| or卡值多少钱| 老司机午夜福利在线观看视频| h日本视频在线播放| 精品国产美女av久久久久小说| 日韩欧美精品免费久久 | 成熟少妇高潮喷水视频| 精品不卡国产一区二区三区| 久久香蕉国产精品| 97超级碰碰碰精品色视频在线观看| 国内精品一区二区在线观看| 草草在线视频免费看| 青草久久国产| 看片在线看免费视频| 最好的美女福利视频网| 亚洲欧美日韩卡通动漫| 国产精品一区二区免费欧美| 久久久久久人人人人人| 国内毛片毛片毛片毛片毛片| 亚洲av不卡在线观看| 亚洲中文字幕日韩| 露出奶头的视频| 亚洲第一欧美日韩一区二区三区| 网址你懂的国产日韩在线| 国产高清视频在线观看网站| 国产成人av教育| 久久精品国产亚洲av涩爱 | 精品久久久久久久末码| 午夜精品一区二区三区免费看| 身体一侧抽搐| 深爱激情五月婷婷| 亚洲国产精品久久男人天堂| 不卡一级毛片| 超碰av人人做人人爽久久 | 波野结衣二区三区在线 | 国产美女午夜福利| 又黄又爽又免费观看的视频| 精品乱码久久久久久99久播| 99精品久久久久人妻精品| 国产亚洲精品一区二区www| 欧美在线黄色| 青草久久国产| 欧美+日韩+精品| 精品国产美女av久久久久小说| 午夜激情欧美在线| 国产毛片a区久久久久| 国产高清视频在线观看网站| 美女高潮的动态| 精品国产超薄肉色丝袜足j| 亚洲性夜色夜夜综合| 精品人妻一区二区三区麻豆 | 国产亚洲精品av在线| 久久这里只有精品中国| av女优亚洲男人天堂| 国产精品乱码一区二三区的特点| 欧美午夜高清在线| av片东京热男人的天堂| 久久国产精品影院| 亚洲av电影在线进入| 亚洲国产精品久久男人天堂| 在线观看av片永久免费下载| 久久精品91无色码中文字幕| 小蜜桃在线观看免费完整版高清| 国内揄拍国产精品人妻在线| 久久久色成人| 99国产精品一区二区三区| 男人舔奶头视频| 亚洲欧美日韩卡通动漫| 日韩大尺度精品在线看网址| 无遮挡黄片免费观看| 日本一二三区视频观看| 欧美乱色亚洲激情| 欧美黄色片欧美黄色片| 久久久国产成人精品二区| 国内精品美女久久久久久| 亚洲欧美一区二区三区黑人| 人妻丰满熟妇av一区二区三区| 亚洲欧美激情综合另类| 99久久久亚洲精品蜜臀av| 狠狠狠狠99中文字幕| 脱女人内裤的视频| 少妇丰满av| 午夜福利在线观看吧| 久久久久免费精品人妻一区二区| 亚洲,欧美精品.| 亚洲avbb在线观看| 人人妻人人澡欧美一区二区| 国产欧美日韩一区二区精品| 国产乱人伦免费视频| 亚洲性夜色夜夜综合| 国产精品永久免费网站| 色综合婷婷激情| 美女黄网站色视频| 亚洲精品乱码久久久v下载方式 | 久久久久九九精品影院| 激情在线观看视频在线高清| 制服丝袜大香蕉在线| 99久久99久久久精品蜜桃| 国产黄a三级三级三级人| 国产精品一区二区免费欧美| 国产精品久久久久久精品电影| 老司机福利观看| av天堂在线播放| 国产麻豆成人av免费视频| 12—13女人毛片做爰片一| 性色avwww在线观看| 黄色日韩在线| 丝袜美腿在线中文| 亚洲最大成人中文| 少妇裸体淫交视频免费看高清| 人人妻人人看人人澡| 成人特级av手机在线观看| 日日摸夜夜添夜夜添小说| 宅男免费午夜| www.熟女人妻精品国产| 五月伊人婷婷丁香| 成年女人毛片免费观看观看9| 美女免费视频网站| 亚洲久久久久久中文字幕| 国产主播在线观看一区二区| 精品久久久久久成人av| 国产不卡一卡二| 欧洲精品卡2卡3卡4卡5卡区| 天堂√8在线中文| 欧美乱码精品一区二区三区| 18美女黄网站色大片免费观看| 久久久久久人人人人人| 老司机福利观看| 国产成年人精品一区二区| 欧美日本视频| 欧美成人一区二区免费高清观看| 国产视频一区二区在线看| 午夜免费激情av| 老汉色∧v一级毛片| 男人和女人高潮做爰伦理| 日本黄大片高清| 久久久国产成人免费| 成人av一区二区三区在线看| 欧美色视频一区免费| 午夜福利在线在线| 国产av一区在线观看免费| 久久久久久国产a免费观看| www日本在线高清视频| 久久久久九九精品影院| 最好的美女福利视频网| 国产aⅴ精品一区二区三区波| 淫秽高清视频在线观看| 国产精品1区2区在线观看.| 亚洲成人久久爱视频| 一a级毛片在线观看| 高潮久久久久久久久久久不卡| 偷拍熟女少妇极品色| 欧美区成人在线视频| 一级黄片播放器| 婷婷六月久久综合丁香| 国产精品野战在线观看| 一个人观看的视频www高清免费观看| 一区二区三区高清视频在线| 久久草成人影院| 国产高清视频在线观看网站| 两性午夜刺激爽爽歪歪视频在线观看| 一本久久中文字幕| 精品人妻1区二区| www.熟女人妻精品国产| 中文字幕熟女人妻在线| 亚洲专区国产一区二区| 亚洲欧美激情综合另类| 免费电影在线观看免费观看| 一本综合久久免费| 久久九九热精品免费| 日本与韩国留学比较| 国产 一区 欧美 日韩| or卡值多少钱| 亚洲成人免费电影在线观看| 成人鲁丝片一二三区免费| 99热只有精品国产| 一个人看视频在线观看www免费 | 色在线成人网| 淫妇啪啪啪对白视频| 国产伦人伦偷精品视频| 免费在线观看影片大全网站| 特大巨黑吊av在线直播| 国产一区二区在线av高清观看| 国产毛片a区久久久久| 亚洲人成电影免费在线| 男女做爰动态图高潮gif福利片| 看黄色毛片网站| 亚洲精品久久国产高清桃花| 日本与韩国留学比较| 亚洲人成网站高清观看| 69人妻影院| 12—13女人毛片做爰片一| 99热这里只有精品一区| 国产精品爽爽va在线观看网站| 在线观看免费视频日本深夜| e午夜精品久久久久久久| 丰满人妻一区二区三区视频av | 国产精品三级大全| 国语自产精品视频在线第100页| 午夜激情福利司机影院| 国产私拍福利视频在线观看| 搞女人的毛片| 国产欧美日韩一区二区精品| 国内揄拍国产精品人妻在线| 日韩欧美在线乱码| 18禁裸乳无遮挡免费网站照片| 色在线成人网| 99热精品在线国产| 夜夜爽天天搞| 日韩免费av在线播放| 欧洲精品卡2卡3卡4卡5卡区| 亚洲性夜色夜夜综合| 国产极品精品免费视频能看的| 亚洲av不卡在线观看| 成人特级av手机在线观看| 久久香蕉精品热| 蜜桃亚洲精品一区二区三区| 少妇的逼好多水| 免费av不卡在线播放| 国产亚洲欧美98| 老汉色av国产亚洲站长工具| 黄色日韩在线| 亚洲一区高清亚洲精品| 十八禁网站免费在线| 国语自产精品视频在线第100页| 日本撒尿小便嘘嘘汇集6| 欧美黄色片欧美黄色片| 国产精品国产高清国产av| 国产中年淑女户外野战色| 宅男免费午夜| 岛国在线观看网站| 免费在线观看亚洲国产| 国产精品一区二区三区四区久久| 99久久九九国产精品国产免费| 老司机午夜十八禁免费视频| 亚洲av免费在线观看| 99久久九九国产精品国产免费| 亚洲人成电影免费在线| 久久精品国产清高在天天线| 欧美精品啪啪一区二区三区| 中文字幕精品亚洲无线码一区| 色吧在线观看| 国产毛片a区久久久久| 老司机午夜十八禁免费视频| 亚洲精品美女久久久久99蜜臀| 波野结衣二区三区在线 | 伊人久久大香线蕉亚洲五| 最近最新中文字幕大全电影3| 一夜夜www| 亚洲av成人不卡在线观看播放网| 国产精品一区二区免费欧美| 母亲3免费完整高清在线观看|