• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strengthening effects of BFRP on reinforced concrete beams

    2013-01-08 11:46:45HuangLihuaLiYujingWangYuefang

    Huang Lihua Li Yujing Wang Yuefang

    (School of Civil Engineering, Dalian University of Technology, Dalian 116023, China)

    The fiber reinforced polymer (FRP) has been considered as a kind of highly efficient material for structural upgrading and retrofitting due to its lightweight, corrosion resistance, nonmagnetic property and easy constructability. The carbon fiber reinforced polymer (CFRP) and the glass fiber reinforced polymer (GFRP) have been extensively applied in the rehabilitation of deteriorated concrete structures since the 1970s, and their strengthening behaviors have been widely investigated in past decades[1-2]. In spite of the well demonstrated advantages of these strengthening methods, their drawbacks, such as high cost, low fireproofing, incompatibility of resins and substrate materials, and the strict requirements of strengthening surfaces and temperatures, are obvious. The strengthening performance of the basalt fiber reinforced polymer (BFRP) has drawn attention in recent years. The basalt fiber is made from melted basalt rocks formed by natural volcanic molten magma and has the properties of large strength-to-weight ratio and high durability[3-4]. BFRP costs less than other FRPs since the raw materials are rich in reserve, easily obtained and energy saving in production[5]. It is known that the strength of the basalt fiber is about 30% of the carbon fiber and 60% of the glass fiber, respectively. In addition, the basalt fiber has the advantages in terms of insulation and resistance to oxidation, abrasion, acid, alkali, and to low and high temperatures. It also has a unique property of short time resistance to high temperature over 1000℃ and it can be exposed to a temperature of 760℃ with only a 10% loss of strength[6], making itself an ideal strengthening material in thermal environments.

    As its properties have been gradually understood, the BFRP is found to be more efficient in rehabilitation of concrete structures than the conventional FRPs[6-8]. Generally, the high tensile strengths of CFRP and GFRP cannot be completely used due to the frequent happenings of interfacial debonding for FRP strengthened beams. In this case, different ultimate tensile strengths of CFRP, GFRP and BFRP have little effect on the yielding strength of the strengthened beam. Furthermore, BFRP reinforcement possesses a higher ratio of performance-to-cost than other FRPs, which effectively reduces the budget of structural rehabilitation. The strengthening performance of the BFRP on reinforced concrete (RC) beams is experimentally investigated in this paper. The research indicates that the upgraded strength and the ductility of the strengthened beam with BFRP are both between those with CFRP and GFRP. Strengthening of two plies of BFRP on pre-cracked RC beams performs the most efficiently among the test specimens. Most of the failures of the strengthened beams with BFRP are caused by interfacial debonding induced by flexural cracks. Clamping of U-wraps along the strengthened beam is efficient in preventing debonding failure, but a lower ultimate strength of the beam is obtained than that with endpoint anchorage. The debonding strain of the BFRP can be predicted through the formulae presented in the guidelines, where all the formulae are based on CFRP, and a conservative estimation is obtained.

    1 Experimental Program

    An experiment is carried out to investigate the contribution of the BFRP on the enhancement of the RC beam. A total of nine simply-supported 2 m long RC-beams are constructed. The profile of the specimen is shown in Fig.1. The longitudinal reinforcement consists of twoφ14 mm deformed steel bars with a yielding strength of 335MPa. The average compressive strength of the concrete is 26.8 MPa. RC beams externally bonded with one and two plies of BFRP, CFRP and GFRP have been tested. For understanding the interfacial bonding of the BFRP on the substrate, two schemes of transverse anchorages are set up: one along the beam and the other at the endpoint of the BFRP sheet. The mechanical properties of the FRPs used in the experiment are displayed in Tab.1. Araldite epoxy of XH180A and XH180B are laid between the FRPs and the concrete. Pre-cracked beams strengthened with the BFRP are also tested .

    Fig.1 Profile of the specimen (unit:mm)

    Tab.1 Material properties of FRPs used in the experiment

    2 Experimental Results

    The experiment is conducted by using a YAW-10000F hydraulic machine with an increasing load step of 5 kN. The cracking load of concretefcr, the yielding load of steel reinforcementfy, and the ultimate load of beamfuare recorded and presented in Tab.2. The ductility of each beam is measured by the deflection of the beam, the FRP strain and the strains of steel reinforcement and concrete. The yielding deflectionwy, the ultimate deflectionwuof each beam and the detailed strengthening schemes are also listed in Tab.2. For evaluating the enhancement of each FRP, the ratios of strength and ductility of the strengthened beam to those of the control beam, i.e.,ρsandρd, are calculated and shown in Tab.2.

    The failure mode is mainly governed by the yielding of the steel reinforcement, the crushing of the concrete and the debonding of FRP from the substrate. The propagation of cracks on the control beam is shown in Fig.2. The debonding failure shape and crack propagation of one of the strengthened beams are illustrated in Fig.3. It can be clearly seen that the pattern of concrete cracks is ameliorated by strengthening of the BFRP. There is little difference in inhibiting concrete cracking among the strengthened beams with the three FRPs. Although most failures of the strengthened beams are caused by debonding of FRP laminates induced by flexural cracks, abrupt fracture of strengthening laminates and U-wraps also occurs in the experiment.

    Fig.2 Crack pattern of the control beam

    Fig.3 Crack pattern of the strengthened beam

    The experimental study shows that clamping of U-wraps along the whole beam cannot work more effectively in upgrading ultimate strength than that at endpoints. The compatibility of interfacial strain is restricted by close placement of U-wraps along the whole beam, leading to high strain concentration in BFRP laminates near concrete cracks and early brittle fracture of BFRP between two U-wraps, as shown in Fig.4.

    Tab.2 Strengthening schemes and records of experimental data

    Fig.4 U-wraps clamping along whole beam

    3 Discussion

    3.1 Upgrading performance of strengthened beams with BFRP

    The effects of the BFRP layer number on the strengthened beam are investigated in the experiment. The results show that the strength and ductility of the strengthened beams are obviously improved with increasing the number of layers. Strengthening of two plies of the BFRP is more effective for upgrading the loading capacity of the strengthened beam than one ply of the BFRP, as shown in Fig.5. The yielding load, the ultimate load and the ductility of the beam strengthened with two plies of BFRP are increased by 18%, 17% and 22% compared with the control beam, respectively.

    Fig.5 Beams with different plies of BFRP

    To find the retrofitting performance of BFRP on pre-damaged beams, two beams are loaded by 80% of the loading capacity before being strengthened. For B-1B-b, the pre-damaged beam reinforced with one ply of BFRP, the ultimate load is little improved even though the cracking load is much higher than that of the control beam. As for B-2B-b, the pre-damaged beam reinforced with two plies of BFRP, the increments of the yielding load, the ultimate load and the ductility are 24%, 21% and 18%, respectively, as shown in Fig.6. The behavior of the BFRP strengthened beam is not affected by pre-damage, and the strengthening effects of the BFRP on the pre-damaged beam are more remarkable than those on the intact beam.

    Interfacial debonding is the most common mode of failure in the experiment which restricts the strengthened beam to reach its ultimate loading capacity. For preventing the interfacial separation, many schemes of transverse anchorages have been studied in previous researches. Following the experimental results in Refs.[9-10], the reinforced beam B-2B-c is laterally anchored with U-wraps of 60 mm in width and 50 mm in space along the beam. It is found that clamping BFRP with close placement of U-wraps along the whole beam is less efficient than clamping at two endpoints with respect to upgrading ultimate strength, as shown in Fig.7. The ultimate strength and ductility of this scheme are increased by 13% and 23% compared with the control beam B-1, but 3% and 6% less than the beam B-2B-a of endpoint anchorages, respectively. Although interfacial debonding is avoided, the tensile stress of the BFRP is distributed unevenly in a longitudinal direction due to the constraints of the close placement of U-wraps. Consequently, the interfacial compatibility of strain cannot be realized, and local concentration of high strain is generated near flexural cracks of the concrete, which causes BFRP to partially rupture. Overall, the reinforcement of two plies of BFRP with endpoint anchorage is more effective in improving the performance of strengthened beams than that of other strengthening schemes.

    Fig.6 Enhancement of pre-cracked beams

    Fig.7 Effect of different anchorages

    3.2 Comparative study of BFRP to CFRP and GFRP

    A comparative study is carried out to investigate the strengthening effects of RC beams enhanced with the BFRP, CFRP and GFRP. Cracking of concrete can be effectively inhibited by external bonding of the three FRPs. The similar failure of debonding occurs for each FRP strengthening. The improvement of the load capacity of beams bonded with two plies of FRPs is more noticeable than that with one ply. The cracking strengths of beams bonded with two layers of the three FRPs are almost the same. The yielding strength of the beam bonded with BFRP is 3% lower than that with CFRP, and 14% higher than that with GFRP. The contributions of BFRP, CFRP and GFRP to upgrading the strength of RC beams are 18%, 25% and 20%, respectively, as illustrated in Fig.8. It is concluded that the total performances of the strengthened beams bonded with the BFRP lie between those with the CFRP and the GFRP.

    Fig.8 Reinforcement of various FRPs

    4 Predicted Debonding Strain of BFRP vs. Its Actual Value

    Many models have been developed to predict the upgrading strength of RC beams externally bonded with CFRP since the 1990s[11]. The models that are used to compute debonding strain presented in the guidelines[12-17]are listed in Tab.3. All the models are based on laboratory and field data obtained from CFRP strengthening, and hence cannot be directly applied to other strengthening materials even though the same computational principles are adopted. To investigate the debonding strain of BFRP, the models in the guidelines are extended and the comparative results of predicted-to-experimental (P-E) debonding strains of CFRP and BFRP are summarized in the right two columns of Tab.3.

    Tab.3 Models of predicted debonding strain and ratios of P-E

    Conservative estimates about 50% of the actual values of debonding strains are obtained based on the formulae presented in the guidelines. The debonding strain determined by CECS146 is much greater than others since it assumes an ideal failure that the yielding of steel reinforcement, crushing of concrete and rupture of FRP occur at the same time. The ratio of the predicted-to-experimental values rises 10% when the formulae given by the guidelines are extended to determine the debonding strain of BFRP. That is to say, the predicted debonding strain accounts for about 60% of the actual values, and it is safe in the application of BFRP. Since the upgrading of the strengthened beam is affected by many factors including occurrences of uncertain failures, an unduly conservative estimation is needed throughout the design procedures.

    5 Conclusion

    BFRP can be applied in strengthening RC beams, whose overall performance lies between those of the CFRP and the GFRP. Cracking of concrete can be effectively inhibited by external bonding of BFRP. The upgrading strength and ductility of strengthened beams with two plies of the BFRP are more remarkable than those with one ply. Little difference is found for the intact beam and the pre-cracked beam strengthened with BFRP. Clamping BFRP near endpoints is more efficient than that along the whole beam with the upgrading ultimate load. The debonding strain of the BFRP can be predicted through the formulae presented in the guidelines, which gives a conservative estimation. Since the BFRP owns a higher ratio of performance to cost, eco-friendly quality and unique high temperature resistance than the CFRP and the GFRP, it can be a superior option as a strengthening material.

    [1]Yao J. Research advance in FRP-strengthened RC structures [J].BulletinofScienceandTechnology, 2004,20(3):216-22.

    [2]CRC Construction Innovation. Review of strengthening techniques using externally bonded fiber reinforced polymer composites [R]. Brisbane, Australia: CRC Construction Innovation, 2002.

    [3]Xi R G, Li Z Y. Application prospect of basalt fiber [J].FiberComposites, 2003,17(3):17-20.

    [4]Ouyang L J, Ding B, Lu Z D. BFRP and its application review in structural strengthening [J].FiberReinforcedPlastics/Composites, 2010,27(2):1-5. (in Chinese)

    [5]Zhang X Y, Zou G P, Shen Z Q. Experimental research on continuous basalt fiber and basalt fibers reinforced polymers [C]//ProceedingsofSPIE—TheInternationalSocietyforOpticalEngineering. Nanjing, China, 2008: 73756C.

    [6]Sim J S, Park C, Moon D Y. Characteristics of basalt fiber as a strengthening material for concrete structures [J].Composites,PartB:Engineering, 2005,36(6/7):504-512.

    [7]Ludovico M D, Prota A, Manfredi G. Structural upgrade using basalt fibers for concrete externally bonding [J].JournalofCompositeforConstruction, 2010,14(5):541-552.

    [8]Ouyang Y, Wang P, Li X. Experimental study on flexural RC beams strengthened with BFRP sheets [J].BuildingStructure, 2008,38(11):74-78. (in Chinese)

    [9]Ye L P, Fang T Q, Yang Y X. Experimental research of flexural debonding performances about RC beams strengthened with CFRP sheets [J].BuildingStructure, 2003,33(2):61-65. (in Chinese)

    [10]Choi H T, West J S, Soudki K A. Analysis of the flexural behavior of partially bonded FRP strengthened concrete beams [J].JournalofCompositesforConstruction, 2008,12(4):375-386.

    [11]Saxena P, Toutanji H, Noumowe A. Failure analysis of FRP-strengthened RC beams [J].JournalofCompositesforConstruction, 2008,12(1): 2-14.

    [12]China Construction Standardization Association. CECS146—2003 The technical specification for strengthening concrete structure with carbon fiber reinforced polymer laminates [S]. Beijing: China Planning Press, 2007. (in Chinese)

    [13]ACI Committee. ACI440.2R Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures [S]. Farmington Hills, USA: American Concrete Institute Committee, 2008.

    [14]The Concrete Society. Technical Report No.55 Design guidance for strengthening concrete structures using fiber composite materials[R]. Berkshire: The Concrete Society, 2000.

    [15]Japan Society of Civil Engineering. Recommendations for upgrading of concrete structures with use of continuous fiber sheets [S]. Tokyo, Japan: Japan Society of Civil Engineering, 2000.

    [16]International Federation for Structural Concrete (fib). Bulletin No.14 Externally bonded FRP reinforcement for RC structures [R]. Lausanne, Switzerland: International Federation for Structural Concrete Technical Report, 2001.

    [17]Chen J F, Teng J G. Anchorage strength models for FRP and steel plates bonded to concrete [J].JournalofStructuralEngineering, 2001,127(7):784-79

    videos熟女内射| 日韩欧美精品免费久久| 欧美bdsm另类| 亚洲精品乱码久久久久久按摩| h日本视频在线播放| 看黄色毛片网站| 又爽又黄a免费视频| 在线免费十八禁| 午夜免费激情av| 亚洲婷婷狠狠爱综合网| 日韩强制内射视频| 国产一区二区亚洲精品在线观看| av免费在线看不卡| 男人舔女人下体高潮全视频| 久久99精品国语久久久| 午夜日本视频在线| 亚洲真实伦在线观看| 午夜福利在线在线| 91久久精品电影网| av天堂中文字幕网| 99re6热这里在线精品视频| 免费看不卡的av| 国产成人a区在线观看| av在线老鸭窝| 99久久人妻综合| 亚洲天堂国产精品一区在线| 精品亚洲乱码少妇综合久久| 丝瓜视频免费看黄片| 熟妇人妻不卡中文字幕| 国产一级毛片在线| 国产乱来视频区| 午夜激情欧美在线| 好男人在线观看高清免费视频| 美女cb高潮喷水在线观看| 欧美成人一区二区免费高清观看| 免费观看性生交大片5| 视频中文字幕在线观看| 观看美女的网站| 亚洲精品久久午夜乱码| 校园人妻丝袜中文字幕| 国产精品精品国产色婷婷| 又粗又硬又长又爽又黄的视频| 七月丁香在线播放| 七月丁香在线播放| 一级毛片 在线播放| 国产 亚洲一区二区三区 | 中文欧美无线码| 国产一区二区三区av在线| 91aial.com中文字幕在线观看| 亚洲精品日韩在线中文字幕| 在线天堂最新版资源| 国产亚洲精品av在线| 欧美日本视频| 天天一区二区日本电影三级| 精品不卡国产一区二区三区| 欧美激情国产日韩精品一区| 欧美高清成人免费视频www| 老师上课跳d突然被开到最大视频| 高清毛片免费看| 国产久久久一区二区三区| 亚洲久久久久久中文字幕| 超碰97精品在线观看| 国产精品一二三区在线看| 国产中年淑女户外野战色| 在线免费观看不下载黄p国产| av女优亚洲男人天堂| 国产老妇伦熟女老妇高清| 国内精品宾馆在线| 好男人在线观看高清免费视频| 一本一本综合久久| 能在线免费观看的黄片| 午夜激情欧美在线| 欧美成人精品欧美一级黄| 中文字幕制服av| 欧美成人精品欧美一级黄| 婷婷色av中文字幕| 干丝袜人妻中文字幕| 国产v大片淫在线免费观看| 国产单亲对白刺激| 免费看日本二区| 久久精品久久久久久久性| 婷婷色av中文字幕| 精品99又大又爽又粗少妇毛片| 亚洲久久久久久中文字幕| 中文字幕亚洲精品专区| 午夜精品国产一区二区电影 | 亚洲av国产av综合av卡| av在线蜜桃| 日本免费在线观看一区| 你懂的网址亚洲精品在线观看| 亚洲av二区三区四区| 大香蕉久久网| 精品少妇黑人巨大在线播放| 可以在线观看毛片的网站| 久久久久久久亚洲中文字幕| 联通29元200g的流量卡| 天堂av国产一区二区熟女人妻| 精品少妇黑人巨大在线播放| 亚洲在线观看片| 精品久久久久久久久久久久久| 在线观看人妻少妇| 久久精品国产亚洲av天美| 欧美 日韩 精品 国产| 日韩 亚洲 欧美在线| 视频中文字幕在线观看| 我的女老师完整版在线观看| 国产不卡一卡二| 男人舔女人下体高潮全视频| 黄片无遮挡物在线观看| 亚洲精品成人久久久久久| 九九久久精品国产亚洲av麻豆| 又大又黄又爽视频免费| 99热网站在线观看| 国产成年人精品一区二区| 又粗又硬又长又爽又黄的视频| 夫妻午夜视频| 偷拍熟女少妇极品色| 最近中文字幕高清免费大全6| 久久97久久精品| 91久久精品国产一区二区成人| 777米奇影视久久| 伊人久久国产一区二区| 精品不卡国产一区二区三区| 夫妻午夜视频| 中文字幕人妻熟人妻熟丝袜美| 久久久久网色| 嫩草影院入口| 久久久色成人| 男人爽女人下面视频在线观看| 一级黄片播放器| 欧美日韩亚洲高清精品| av线在线观看网站| 丰满人妻一区二区三区视频av| 纵有疾风起免费观看全集完整版 | 午夜日本视频在线| 日产精品乱码卡一卡2卡三| 久久国产乱子免费精品| 成人国产麻豆网| 国内揄拍国产精品人妻在线| 亚洲av.av天堂| 国产亚洲午夜精品一区二区久久 | 激情五月婷婷亚洲| 日本猛色少妇xxxxx猛交久久| 亚洲av一区综合| 一区二区三区乱码不卡18| 国产乱来视频区| 丝袜喷水一区| 精品久久久久久成人av| 国产高清三级在线| 成年女人在线观看亚洲视频 | 黄色欧美视频在线观看| 国产色爽女视频免费观看| 欧美变态另类bdsm刘玥| 久久鲁丝午夜福利片| av天堂中文字幕网| 91久久精品电影网| 精品人妻偷拍中文字幕| 中文欧美无线码| 99热网站在线观看| 床上黄色一级片| 欧美性感艳星| videossex国产| 97精品久久久久久久久久精品| 亚洲av不卡在线观看| 又黄又爽又刺激的免费视频.| av福利片在线观看| 亚洲欧洲国产日韩| 日日干狠狠操夜夜爽| 亚洲精品456在线播放app| 伦精品一区二区三区| 三级男女做爰猛烈吃奶摸视频| 欧美最新免费一区二区三区| av在线蜜桃| 日韩伦理黄色片| 在线免费观看的www视频| 色综合站精品国产| 免费观看性生交大片5| 2021少妇久久久久久久久久久| 免费看av在线观看网站| av线在线观看网站| 久久久久免费精品人妻一区二区| 成年版毛片免费区| 亚洲精品aⅴ在线观看| 久久国产乱子免费精品| 成人国产麻豆网| 一级片'在线观看视频| 国产亚洲午夜精品一区二区久久 | 国产欧美另类精品又又久久亚洲欧美| 久久久精品94久久精品| 少妇裸体淫交视频免费看高清| 女人十人毛片免费观看3o分钟| 精品久久久精品久久久| 国产精品一二三区在线看| 亚洲18禁久久av| 亚州av有码| 欧美日韩视频高清一区二区三区二| 91久久精品国产一区二区成人| 日本欧美国产在线视频| 亚洲一区高清亚洲精品| 精品久久久噜噜| 久久久久免费精品人妻一区二区| 欧美日韩一区二区视频在线观看视频在线 | 欧美bdsm另类| 国产精品一及| 一级毛片久久久久久久久女| 久久久久网色| 青春草国产在线视频| 极品少妇高潮喷水抽搐| 国产一级毛片在线| 久久久久久久大尺度免费视频| 国产色爽女视频免费观看| 国产一区二区三区综合在线观看 | 国产白丝娇喘喷水9色精品| 99视频精品全部免费 在线| 亚洲自拍偷在线| 国产欧美另类精品又又久久亚洲欧美| 激情 狠狠 欧美| 午夜福利在线观看吧| 啦啦啦啦在线视频资源| 日韩电影二区| 精品国产露脸久久av麻豆 | 精品国产三级普通话版| 日韩强制内射视频| 国产亚洲精品久久久com| 亚洲美女搞黄在线观看| 亚洲,欧美,日韩| 人人妻人人澡人人爽人人夜夜 | 免费不卡的大黄色大毛片视频在线观看 | 女人十人毛片免费观看3o分钟| 最近2019中文字幕mv第一页| 伊人久久国产一区二区| 色综合色国产| 亚洲欧美精品专区久久| 久久久久久久久久黄片| 午夜免费激情av| 午夜精品国产一区二区电影 | 成人鲁丝片一二三区免费| 亚洲三级黄色毛片| 网址你懂的国产日韩在线| 美女主播在线视频| 超碰av人人做人人爽久久| 在线免费十八禁| videos熟女内射| 欧美最新免费一区二区三区| 五月伊人婷婷丁香| 搡老妇女老女人老熟妇| 久久人人爽人人片av| 亚洲精品国产av蜜桃| 久久久a久久爽久久v久久| 99久久九九国产精品国产免费| 黄片无遮挡物在线观看| 国产亚洲午夜精品一区二区久久 | 午夜老司机福利剧场| a级毛色黄片| 成年女人在线观看亚洲视频 | 一个人看的www免费观看视频| 亚洲精品日韩av片在线观看| 精品一区在线观看国产| 国产片特级美女逼逼视频| 亚洲天堂国产精品一区在线| 伦精品一区二区三区| 国产高潮美女av| 久久99热这里只有精品18| 18禁在线播放成人免费| 亚洲欧美清纯卡通| 久久精品夜色国产| 日日啪夜夜爽| 色综合色国产| 国产一区二区三区av在线| 国产亚洲午夜精品一区二区久久 | 91在线精品国自产拍蜜月| 亚洲精品成人av观看孕妇| 久久精品熟女亚洲av麻豆精品 | 日本色播在线视频| 国产精品三级大全| 国语对白做爰xxxⅹ性视频网站| 99热全是精品| 小蜜桃在线观看免费完整版高清| av.在线天堂| www.色视频.com| 日韩av在线大香蕉| 美女高潮的动态| 美女被艹到高潮喷水动态| 欧美xxⅹ黑人| 国产精品av视频在线免费观看| 精品一区在线观看国产| 国产成人aa在线观看| 亚洲三级黄色毛片| 熟女电影av网| 亚洲成人中文字幕在线播放| 九色成人免费人妻av| 色哟哟·www| 久久久久九九精品影院| 精品亚洲乱码少妇综合久久| 日日摸夜夜添夜夜爱| 国模一区二区三区四区视频| 极品教师在线视频| 女人久久www免费人成看片| 黄片无遮挡物在线观看| 中国国产av一级| 亚洲国产色片| 精品一区二区三卡| 边亲边吃奶的免费视频| 久久久久久伊人网av| 亚洲国产最新在线播放| 99久久人妻综合| 国产高清不卡午夜福利| 深夜a级毛片| 综合色丁香网| 少妇熟女欧美另类| 尾随美女入室| 亚洲精品日韩av片在线观看| 最近视频中文字幕2019在线8| 国产精品久久久久久av不卡| 欧美 日韩 精品 国产| 99re6热这里在线精品视频| 亚洲国产精品sss在线观看| 最近视频中文字幕2019在线8| 秋霞在线观看毛片| av在线亚洲专区| 婷婷色综合大香蕉| 久久综合国产亚洲精品| 麻豆乱淫一区二区| 91精品一卡2卡3卡4卡| 亚洲成人中文字幕在线播放| 日日干狠狠操夜夜爽| 国产久久久一区二区三区| 色网站视频免费| 免费不卡的大黄色大毛片视频在线观看 | 一本一本综合久久| 又爽又黄a免费视频| 国产精品久久久久久久电影| 国产精品国产三级国产av玫瑰| 午夜老司机福利剧场| 啦啦啦韩国在线观看视频| 永久免费av网站大全| 一级二级三级毛片免费看| 国产69精品久久久久777片| 黄色配什么色好看| 亚洲精品日韩av片在线观看| 久久精品久久精品一区二区三区| 女人被狂操c到高潮| 欧美激情国产日韩精品一区| 五月伊人婷婷丁香| 毛片一级片免费看久久久久| 欧美极品一区二区三区四区| 少妇高潮的动态图| 菩萨蛮人人尽说江南好唐韦庄| 性色avwww在线观看| 秋霞伦理黄片| 国产极品天堂在线| 综合色丁香网| 午夜福利成人在线免费观看| 欧美日韩综合久久久久久| 亚洲熟妇中文字幕五十中出| 久久久久网色| 91狼人影院| 精品久久久久久久久亚洲| 六月丁香七月| 联通29元200g的流量卡| av在线观看视频网站免费| 日韩成人av中文字幕在线观看| 午夜精品国产一区二区电影 | 国产精品一二三区在线看| 麻豆成人av视频| 看非洲黑人一级黄片| 午夜福利视频精品| 老女人水多毛片| 国产精品综合久久久久久久免费| 亚洲欧洲日产国产| 超碰97精品在线观看| 一个人看的www免费观看视频| 在线免费观看的www视频| 成人性生交大片免费视频hd| 国产成人一区二区在线| 免费播放大片免费观看视频在线观看| 美女cb高潮喷水在线观看| 亚洲精华国产精华液的使用体验| 日韩伦理黄色片| 中文乱码字字幕精品一区二区三区 | 网址你懂的国产日韩在线| 黑人高潮一二区| 男人狂女人下面高潮的视频| 国产av码专区亚洲av| 国国产精品蜜臀av免费| 欧美成人午夜免费资源| 91久久精品电影网| 免费看美女性在线毛片视频| 中文字幕制服av| 麻豆久久精品国产亚洲av| 搡老妇女老女人老熟妇| av线在线观看网站| 午夜福利高清视频| 免费观看无遮挡的男女| 午夜精品一区二区三区免费看| av播播在线观看一区| 插阴视频在线观看视频| 美女被艹到高潮喷水动态| 日韩欧美精品v在线| 午夜福利视频1000在线观看| 国产成人午夜福利电影在线观看| 亚洲国产精品专区欧美| 亚洲欧美一区二区三区国产| 女人久久www免费人成看片| 少妇的逼好多水| 国产一级毛片在线| 亚洲欧美一区二区三区黑人 | 日本与韩国留学比较| 大片免费播放器 马上看| 亚洲人成网站在线观看播放| 男人舔女人下体高潮全视频| 熟女人妻精品中文字幕| 久久久久久久久久久免费av| 男女边吃奶边做爰视频| 久久久久久久国产电影| 欧美精品一区二区大全| 免费大片18禁| 夜夜爽夜夜爽视频| 久久精品国产自在天天线| 国产精品久久久久久精品电影小说 | 午夜福利在线在线| 国模一区二区三区四区视频| 欧美人与善性xxx| 又粗又硬又长又爽又黄的视频| 色视频www国产| 亚洲第一区二区三区不卡| 午夜福利在线在线| 久久精品久久精品一区二区三区| 一级爰片在线观看| 亚洲乱码一区二区免费版| 一级毛片我不卡| 18+在线观看网站| 99久久精品热视频| 免费黄色在线免费观看| 国产毛片a区久久久久| 久久久国产一区二区| 免费看日本二区| 国产成人精品久久久久久| 69人妻影院| 中文字幕久久专区| 免费观看a级毛片全部| 五月天丁香电影| 三级经典国产精品| 激情五月婷婷亚洲| 精品亚洲乱码少妇综合久久| 蜜臀久久99精品久久宅男| 精品久久久精品久久久| 日日摸夜夜添夜夜添av毛片| 免费av毛片视频| 国产69精品久久久久777片| 欧美三级亚洲精品| 日本av手机在线免费观看| 欧美97在线视频| 亚洲美女视频黄频| 水蜜桃什么品种好| 人人妻人人澡人人爽人人夜夜 | 午夜精品在线福利| 国产精品一区二区三区四区免费观看| 一级毛片电影观看| 国产综合懂色| 看非洲黑人一级黄片| 亚洲精品日本国产第一区| 黄色配什么色好看| 国产视频首页在线观看| 乱码一卡2卡4卡精品| 哪个播放器可以免费观看大片| 亚洲国产色片| 国产老妇女一区| 日本av手机在线免费观看| 国产又色又爽无遮挡免| av又黄又爽大尺度在线免费看| 精品99又大又爽又粗少妇毛片| 午夜福利在线在线| 精品人妻熟女av久视频| 国产男女超爽视频在线观看| 我要看日韩黄色一级片| 三级经典国产精品| 亚洲欧美一区二区三区黑人 | 国产午夜精品久久久久久一区二区三区| 性色avwww在线观看| 少妇熟女aⅴ在线视频| 国产精品三级大全| 国产 一区 欧美 日韩| 草草在线视频免费看| 免费看av在线观看网站| 22中文网久久字幕| 高清欧美精品videossex| 一个人看的www免费观看视频| 成人漫画全彩无遮挡| av专区在线播放| 高清日韩中文字幕在线| 亚洲国产成人一精品久久久| 国产高潮美女av| 97热精品久久久久久| 黄色一级大片看看| 欧美一区二区亚洲| 亚洲欧美成人精品一区二区| 一级片'在线观看视频| 国产 一区 欧美 日韩| 精品国产三级普通话版| 免费看av在线观看网站| 免费观看av网站的网址| 一二三四中文在线观看免费高清| 国产精品人妻久久久久久| 久久人人爽人人爽人人片va| 亚洲人成网站高清观看| 久久久久久伊人网av| 免费黄网站久久成人精品| 2022亚洲国产成人精品| 久99久视频精品免费| 日本黄大片高清| 美女cb高潮喷水在线观看| 精品酒店卫生间| 日本免费a在线| 亚洲欧美成人精品一区二区| 久久人人爽人人爽人人片va| 久久久a久久爽久久v久久| 国产成人91sexporn| 内地一区二区视频在线| 国产 一区精品| 一级黄片播放器| 男女啪啪激烈高潮av片| 午夜福利视频1000在线观看| 成人亚洲精品一区在线观看 | 精品久久久久久成人av| 日本色播在线视频| 日本黄色片子视频| 国产黄色免费在线视频| 久久久久精品性色| 欧美xxⅹ黑人| 亚洲av免费高清在线观看| 欧美日韩一区二区视频在线观看视频在线 | www.av在线官网国产| 最近视频中文字幕2019在线8| 赤兔流量卡办理| 久久久久久国产a免费观看| 日韩电影二区| 一级片'在线观看视频| 欧美97在线视频| 亚洲自偷自拍三级| videos熟女内射| 亚洲av成人精品一二三区| 中文字幕制服av| 欧美bdsm另类| 欧美极品一区二区三区四区| 免费观看a级毛片全部| 男人狂女人下面高潮的视频| 亚洲乱码一区二区免费版| 啦啦啦啦在线视频资源| 2021天堂中文幕一二区在线观| 三级国产精品片| 2022亚洲国产成人精品| 久久久久性生活片| 国产av在哪里看| 久久久久精品性色| 在线a可以看的网站| 丰满乱子伦码专区| 欧美日韩亚洲高清精品| 成年版毛片免费区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产激情偷乱视频一区二区| 亚洲精品日韩在线中文字幕| 舔av片在线| 熟妇人妻不卡中文字幕| 亚洲精品久久久久久婷婷小说| 熟女人妻精品中文字幕| av网站免费在线观看视频 | 尤物成人国产欧美一区二区三区| 黄片wwwwww| 91精品国产九色| 亚洲欧美日韩无卡精品| 欧美3d第一页| 哪个播放器可以免费观看大片| 成人鲁丝片一二三区免费| 国产三级在线视频| 成人鲁丝片一二三区免费| 少妇被粗大猛烈的视频| 欧美成人精品欧美一级黄| 汤姆久久久久久久影院中文字幕 | 欧美潮喷喷水| 中文精品一卡2卡3卡4更新| 欧美一级a爱片免费观看看| 国产成人精品婷婷| 国产欧美日韩精品一区二区| 亚洲内射少妇av| 看黄色毛片网站| 一级二级三级毛片免费看| 亚洲,欧美,日韩| 久久韩国三级中文字幕| 色网站视频免费| 国内精品宾馆在线| 精品人妻偷拍中文字幕| 麻豆精品久久久久久蜜桃| 中文欧美无线码| 18禁动态无遮挡网站| 草草在线视频免费看| videos熟女内射| 欧美精品国产亚洲| 成年女人在线观看亚洲视频 | 少妇的逼好多水| 成人一区二区视频在线观看| 精品一区在线观看国产| 国产伦一二天堂av在线观看| 欧美激情在线99| 夫妻性生交免费视频一级片| videossex国产| 精品国产露脸久久av麻豆 | 黄色欧美视频在线观看| 丰满乱子伦码专区| 国产午夜精品论理片| 女人十人毛片免费观看3o分钟| 老司机影院毛片| 亚洲精品日本国产第一区| 亚洲精品日韩在线中文字幕| 免费看日本二区|