• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature sensor based on polymer thin film optical waveguide

    2013-01-08 11:46:43WangLongdeZhangTongZhangXiaoyangLiRuozhouWangLuning

    Wang Longde Zhang Tong Zhang Xiaoyang Li Ruozhou Wang Luning

    (1School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China)(2Department of Chemistry and Chemical Engineering, Huainan Normal University, Huainan 232001, China)(3Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology of Ministry of Education, Nanjing 210096, China)(4Suzhou Key Laboratory of Metal Nano-Optoelectronic Technology, Suzhou Research Institute of Southeast University, Suzhou 215123, China)

    Optical sensors have a potential application for temperature measurement in areas such as scientific experiments, chemistry, biochemistry, and industrial process control. Temperature sensing based on optical techniques is promising and remains an area of continuing and intensive research interest in recent years[1-3]. Fiber-optic temperature sensors constitute a major category of the optical temperature sensors[4-7]. Benefiting from the development of planar optical integration technology, optical sensors have been developed from using optical fiber as platforms to using easy-integrated planar waveguides. Currently, temperature sensors research based on optical planar waveguides is focused on surface plasmon resonance (SPR) sensors or other novel sensors[8-12]. However, the studies in optical planar waveguide temperature sensors using prism coupling waveguides are relatively fewer. Especially, to the best of our knowledge, very few people use the high-order guided modes to measure temperature.

    Polymers, owing to their high thermo-optic coefficients, have been considered for use in optical temperature sensors[13-15]. In this paper we propose an optical sensor to measure temperature using the guided mode of a planar polymer optical waveguide. The principle of the sensor is based on the attenuated total reflection and the thermo-optic effects of polymer. Theoretical analysis and the experimental setup of the method are introduced and discussed in detail. We demonstrate the characteristics of the TE0mode and the higher-order TE modes in optical waveguide mode transmission using temperature sensing. The experiments demonstrate that the measurement range and ease of implementation are particular advantages of this technique.

    1 Theoretical Analysis and Simulation

    The proposed configuration of the sensor is shown in Fig.1(a). The sensor consists of a high-index prism, an upper cladding layer, a SU8-2005 polymer thin film and a silica substrate. Under the substrate there is a heater plate. A transverse electric (TE) wave polarized laser beam is incident onto these films from the prism side.

    When a TE-polarized light beam is incident on the base of the prism with an interior angleθgreater than the critical angle between the prism medium and the air layer, the incident light beam reflects at the interface of the prism and the air layer, and creates an evanescent field inside the air. At a synchronous incident interior angleθ, the evanescent field is phase-matched to the guided wave in the polymer layer; that is to say, the interior angleθof the incident light at wavelengthλsatisfies the optical waveguide mode transmission condition, and the energy of incident light can be effectively coupled into the three-layer (air-polymer-fused silica) thin-film waveguide to excite guided waves, and the corresponding ATR resonance dips are shown on the reflection spectrum[16]. Disregarding the prism face and the refraction of the input beam, the proposed sensor can be regarded as a four-layer system as shown in Fig.1(b). For waveguide modes in this system to be excited, the following conditions must be satisfied:n2

    Fig.1 Schematic diagram. (a) Proposed waveguide temperature sensor; (b) Representation of four-layer system

    R=rr*=|ei2φ32|2·

    (1)

    where

    β0is the eigen propagation constant of the ideal three-layer waveguide in the absence of the prism;β=k0n3sinθis the propagation constant;k0is the wave vector in vacuum. When we consider the three-layer waveguide losses, we deduce the formula ofβ0, Δβ1, Δβ2and Δβ3as follows:

    β0=βr0+i(Δβ1+Δβ2+Δβ3)

    where Δβ1, Δβ2, Δβ3are considered as the change ofβ0with considering imaginary parts ofn1,n2,n0;βr0is the eigen propagation constant of the ideal three-layer waveguide whenn1,n2andn0are real numbers.

    The imaginary parts ofβ0and Δβare the intrinsic and radiative losses, respectively. The former represents the eigen loss in the ideal three-layer polymer waveguide, and the latter represents the leakage loss of the guided modes back into the prism. From Eq.(1), we can conclude that if Im(β0)=Im(Δβ), thenR=0. That is to say, when the intrinsic loss is equal to the radiative loss, the minimal reflectionRminof the ATR guided wave resonance dip is zero[17].

    Heating the polymer can change the propagation constant of the guided wave mode through the varying refractive index of the polymer due to the thermo-optic effect; thus, the synchronous incident exterior angleαand the minimal reflectionRminof the ATR guided wave resonance dip are varied. The effective refractive index of each modeNmis given by

    (2)

    From Eq.(2), we can obtain that

    (3)

    The mode indices for integral values ofNare given by[18]

    (4)

    Substituting Eq.(4) into Eq.(3), we obtain

    (5)

    Through measuring the thermo-optic coefficient dn/dTof the SU8 polymer by the SPA-4000 prism coupler containing a miniature heating device with an accuracy of ±0.1℃ under the samples, we can obtain the relationships about the refractive index of polymer and temperature:n1=1.573 07-1.34×10-4T,d=1.33 μm;n1=1.572 39-1.34×10-4T,d=2.84 μm;n1=1.573 45-1.38×10-4T,d=4.09 μm;n1=1.572 57-1.34×10-4T,d=5.72 μm.

    Substitutingn1into Eq.(5), we can obtain the function of the light incident exterior angleαand the measurement temperatureT.

    The performance of a temperature sensor is associated with both the minimal reflection and the full width at half maximum (FWHM) of ATR resonance dip. The deep and narrow resonance dip allows a greater degree of modulation for a given temperature. The theoretical simulation results of Fig.2 are the working base of the sensor under the conditions ofd=4.09 μm,n1=1.568 6+0.000 3i,n2=1.000+0.000 01i,n0=1.444 2+0.000 01i,n3=1.934 9,λ=1 550 nm,T=35 ℃. The guided modes are determined by changing the thickness of the coupling layer. It is known that the minimal reflection and FWHM of ATR resonance dip increase with the increase in the optical losses of the coupling layer and the guiding layer[17, 19].Once the materials of the coupling layer and the polymer are selected, the match condition illustrated by Eq.(1) can be reached by adjusting the thickness of the coupling layer and the guiding layer to make the intrinsic loss equal the radiative loss so that the minimal reflection of the resonance dip approaches zero.

    Fig.2 Theoretical simulation resonance reflectivity dips TE modes for several thicknesses of the coupling layer. (a) s=150 nm; (b) s=250 nm; (c) s=350 nm;(d) s=450 nm

    Because the imaginary part ofβ0changes with the thickness of the guiding layer, the minimal reflection of the resonance dip changes not only with the thickness of the coupling layer but also with the guiding layer. The properties of ATR resonance dip using the gas coupling layer can be optimized by choosing proper thicknesses of both the coupling layer and the guiding layer.

    Figs.3 and 4 are the theoretical plots from Eq.(1) of the minimal reflection of the resonance dip TE0vs. the thickness of the coupling layer and the guiding layer respectively. It can be seen that the thickness of the coupling layer and the guiding layer both contribute to the minimal reflection. Fig.3 also shows that the FWHM of ATR resonance dip is relevant to the thickness of the coupling layer. The dips in the reflection intensity are due to the coupling of energy into the waveguide. The minimum position corresponds to the synchronous angle of the excitation mode and determines the working angle. The minimum value gives the maximum energy coupling efficiency and determines the sensitivity of the polymer thin film temperature sensor. The width of the dip is a function of the loss and determines the sensitivity of the temperature sensor. The modes are broadened due to attenuation by leakage both into the silica substrate and the prism. When the thickness of the coupling layers=400 nm, the width of the resonance dip is narrow. From Fig.5, we know that the reflectivity is a function of the angle of incidence and the thickness of the guiding layer. The sensor’s working incident exterior angle can be chosen to be TE0in lower thicknesses or higher-order TE modes in higher thicknesses of the waveguide.

    Fig.3 Theoretical simulation resonance reflectivity dips TE0 for several thicknesses of the coupling layer (d=4.0 μm,n1=1.576 9+0.000 3i,n2=1.000+0.000 01i, n0=1.444 2+0.000 01i, n3=1.934 9, λ=1 550 nm, T=30℃)

    Fig.4 Theoretical simulation resonance reflectivity dips TE0 for several thicknesses of the guiding layer (s=400 nm, n1=1.576 9+0.000 3i, n2=1.000+0.000 01i, n0=1.444 2+0.000 01i, n3=1.934 9, λ=1 550 nm)

    Fig.5 Theoretical and experimental ATR spectrums of the thickness of 5.72 μm guiding layer waveguide

    2 Experimental Results and Discussion

    In our experiment the refractive index of the prism isn3=1.965 4 at the wavelength of 1 550 nm. Selecting the SU8-2005 polymer as the optical waveguide material is due to the fact that the SU8 has a higher thermo-optic coefficient and a lower propagation loss and it also has the ability of forming stable films. The polymer thin-films of 1.33, 2.84, 4.09 and 5.72 μm are spin-coated onto the polished fused Silica substrate, pre-baked at 95 ℃ for 120 s, then cured by UV-exposure for 2 s and finally baked at 95 ℃ for 12 h in an oven to complete removal of the solvent from the film. The SU8 polymer solution is then filtered through a 0.22 μm filter before it is applied.

    The ATR spectrums of the multilayer waveguide system are generated as shown in Fig.5. Several resonance dips that correspond different guided modes are shown in the spectrum in choosing the sensor’s working interior angle to be near the TE3resonance dip. The experimental result of light reflectivity for TE0vs. the temperature in different thicknesses of the guiding layer for the proposed waveguide sensor is shown in Fig.6. From Fig.6 we know that the reflectivity and temperature is in accord with a good linear relationship at 36 to 43 ℃. The results show that the slope which stands for the sensitivity of the polymer thin film temperature sensor is associated with the waveguide film thickness and the guided modes. Fig.7 shows the theoretical results of the light reflectivity vs. the temperature in different thicknesses of the guiding layer for the waveguide temperature sensor. From Fig.7 it can be obtained that the theoretical result is consistent with the experimental result in Fig.6. The slope is relevant to TE modes but not relevant to the thickness of the guiding layer when the imaginary part ofn1does not change with the thickness of the guiding layer.

    Fig.6 Experimental results of light reflectivity vs. measurement temperature in different thicknesses of guiding layer for proposed waveguide sensor (m=0)

    Fig.7 Theoretical results of light reflectivity vs. measurement temperature in different thicknesses of the guiding layer for proposed waveguide sensor (n1i=0.000 3i,n2=1.000+0.0000 1i,n0=1.444 2+0.000 01i,n3=1.934 9,λ=1 550 nm)

    Figs.8 and 9 show the light reflectivity of TE1and TE2vs. the temperature in different thicknesses of the guiding layer for the proposed waveguide sensor. From Figs.6, 8 and 9, we can obtain that for the same guiding layer thickness, the slope decrease with the increase in the guided modes when reflectivity is zero for TE0. For instance, if the thickness of the guiding layer is 4.09 μm, the slope values of TE0, TE1, TE2are 0.146 38, 0.083 85, 0.046 88, respectively. Nevertheless, for a film thickness of 5 720 nm, the slope values of TE0, TE1,TE2and TE3are 0.072 29, 0.105 72, 0.114 5, 0.121 67, respectively. The slope value is the highest in TE3where the reflectivity is zero in Fig.5. Therefore, to improve the sensitivity, the sensor’s working incident light exterior angleαcan be chosen to be in a certain TE mode in which the reflectivity is zero. Fig.10 shows the theoretical and experimental light incident exterior angleαof TE vs. the temperature of the guiding layer for the waveguide sensor. The experimental results are in agreement with the results derived from Eq.(5) and experimental datan1.

    Fig.8 Light reflectivity of TE1 vs. measurement temperature in different thicknesses of the guiding layer for proposed waveguide sensor (m=1)

    Fig.9 Light reflectivity of TE2 vs. measurement temperature in different thicknesses of the guiding layer for proposed waveguide sensor (m=2)

    Fig.10 Theoretical and experimental light incident exterior angle of TE vs. measurement temperature of the guiding layer for proposed waveguide sensor

    3 Conclusion

    We demonstrate a polymer thin film waveguide temperature sensor based on guided wave resonance with the ATR structure. The property of the polymer thin film optical waveguide temperature sensor is heavily dependent on the planar optical guiding modes, the loss of the polymer, the thickness of the guiding layer and the cladding layer. The relationships among temperature, refractive index, reflectivity, TE modes and the incident light exterior angle of the prism are systematically investigated. The slope about reflectivity and temperature which stands for the sensitivity of the polymer thin film temperature sensor is associated with the waveguide film thickness and the guided modes. The sensor’s working incident light exterior angleαshould be chosen under a certain TE mode with the reflectivity to be zero, and, in this case, the temperature sensor has the highest sensitivity. This temperature sensor is characterized by high sensitivity and simple structure and it is easily fabricated.

    [1]Andersen T B, Han Z H, Bozhevolnyi S I. Compact on-chip temperature sensors based on dielectric-loaded plasmonic waveguide-ring resonators[J].Sensors, 2011,11(2): 1992-2000.

    [2]Childs P R N, Greenwood J R, Long C A. Review of temperature measurement[J].RevSciInstrum,2000,71(8): 2959-2978.

    [3]Chen J H, Huang X G, He W X, et al. A parallel-multipoint fiber-optic temperature sensor based on Fresnel reflection[J].OpticsandLaserTechnology, 2011,43(8): 1424-1427.

    [4]Lee B. Review of the present status of optical fiber sensors[J].OptFiberTechnol, 2003,9(2): 57-79.

    [5]Sharma A K, Jha R, Gupta B D. Fiber-optic sensors based on surface plasmon resonance: a comprehensive review[J].IEEESensJ, 2007,7(8): 1118-1129.

    [6]Remouche M, Georges F, Meyrueis P. Flexible optical waveguide bent loss attenuation effects analysis and modeling application to an intrinsic optical fiber temperature sensor[J].OpticsandPhotonicsJournal, 2012,2(1): 1-7.

    [7]Zeng X, Wu Y, Hou C L, et al. A temperature sensor based on optical microfiber knot resonator[J].OpticsCommunications,2009,282(18): 3817-3819.

    [8]Lee S M, Ahn K C, Sirkis J S. Planar optical waveguide temperature sensor based on etched bragg gratings considering nonlinear thermo-optic effect[J].KSMEInternationalJournal, 2001,15(3): 309-319.

    [9]Lee D R, Cho K M, Jang S W, et al. Side-polished fiber optic temperature sensor using a prism and fiber-to-planar waveguide coupler[J].MicrowaveandOpticalTechnologyLetters, 2005,46(6):523-525.

    [10]Dumais P, Callender C L, Noad J P, et al. Temperature sensors and refractometers using liquid-core waveguide structures monolithically integrated in silica-on-silicon[C]//ProceedingsofSPIEonOpticalSensorsandDetectors. Montréal, Canada, 2008,7099: 1-11.

    [11]Remouche M, Mokdad R, Chakari A, et al. Intrinsic integrated optical temperature sensor based on waveguide bend loss[J].OpticsandLaserTechnology, 2007,39(7):1454-1460.

    [12]Seo J K, Kim K J, Oh M C. Integrated-optic temperature sensors based on guided-mode radiation in polymer waveguide[J].OpticsCommunications, 2010,283(7): 1307-1310.

    [13]Rindorf L, Bang O. Highly sensitive refractometer with a photonic-crystal-fiber long-period grating[J].OpticsLetters, 2008,33(6): 563-565.

    [14]Jung W G, Kim S W, Kim K T, et al. High-sensitivity temperature sensor using a side-polished single-mode fiber covered with the polymer planar waveguide[J].IEEEPhotonicsTechnologyLetters, 2001,13(11): 1209-1211.

    [15]Chen J G, Zhang T, Zhu J S, et al. Low-loss planar optical waveguides fabricated from polycarbonate[J].PolymerEngineeringandScience, 2009,49(10): 2015-2019.

    [16]Tien P K, Ulrich R. Theory of prism-film coupler and thin-film light guides[J].JOptSocAm, 1970,60(10):1325-1337.

    [17]Deng X X, Cao Z Q, Shen Q S, et al. An improved configuration of reflective-type electro-optic modulator with high light-induced damage threshold[J].OpticsCommunications, 2004,242(4): 623-630.

    [18]Lee H J, Henry C H, Orlowsky K J, et al. Refractive-index dispersion of phosphosilicate glass, thermal oxide, and silicon nitride films on silicon[J].AppliedOptics, 1988,27(19): 4104-4109.

    [19]Koynov K, Goutev N, Fitrilawati F, et al. Nonlinear prism coupling of waveguides of the conjugated polymer MEH-PPV and their figures of merit for all-optical switching[J].JOptSocAmB, 2002,19(4):895-901.

    亚洲国产色片| 色在线成人网| 欧美性猛交╳xxx乱大交人| 能在线免费观看的黄片| 真人做人爱边吃奶动态| 男人舔奶头视频| 亚洲熟妇熟女久久| 亚洲人成电影免费在线| 欧美高清成人免费视频www| 成人av一区二区三区在线看| 国产国拍精品亚洲av在线观看| 性色avwww在线观看| 久久伊人香网站| 黄色一级大片看看| 色综合亚洲欧美另类图片| 久久久久久久精品吃奶| 99久久成人亚洲精品观看| 少妇高潮的动态图| 九九久久精品国产亚洲av麻豆| 99国产精品一区二区蜜桃av| av黄色大香蕉| 国产午夜福利久久久久久| 欧美午夜高清在线| 国产成人影院久久av| 黄色丝袜av网址大全| 成人高潮视频无遮挡免费网站| 最好的美女福利视频网| 观看美女的网站| 美女高潮的动态| 国产精品不卡视频一区二区 | 国产成人欧美在线观看| 又黄又爽又免费观看的视频| 99久久精品热视频| 欧美乱妇无乱码| 国产在线精品亚洲第一网站| 老熟妇仑乱视频hdxx| 亚洲av成人av| 一进一出抽搐动态| 国产精品亚洲美女久久久| 自拍偷自拍亚洲精品老妇| 国产精品自产拍在线观看55亚洲| 国产精品亚洲av一区麻豆| 欧美日韩国产亚洲二区| 午夜a级毛片| 亚洲欧美日韩卡通动漫| 日本三级黄在线观看| h日本视频在线播放| 最新中文字幕久久久久| 午夜免费激情av| 久久人妻av系列| 日本黄色视频三级网站网址| 亚洲国产欧美人成| 老司机午夜十八禁免费视频| 在线十欧美十亚洲十日本专区| 91av网一区二区| 最近中文字幕高清免费大全6 | 中文在线观看免费www的网站| 麻豆成人av在线观看| 丰满的人妻完整版| 久9热在线精品视频| 啦啦啦韩国在线观看视频| 悠悠久久av| 亚洲内射少妇av| 日韩有码中文字幕| 欧美日韩国产亚洲二区| 午夜a级毛片| 欧美成人a在线观看| 久久伊人香网站| 一级黄色大片毛片| 国产国拍精品亚洲av在线观看| 亚洲国产色片| 内射极品少妇av片p| av国产免费在线观看| 欧美zozozo另类| 欧美高清性xxxxhd video| 一个人看的www免费观看视频| 草草在线视频免费看| 中国美女看黄片| 最近最新中文字幕大全电影3| 成年女人看的毛片在线观看| 亚洲最大成人av| 99热这里只有是精品在线观看 | 国产成人影院久久av| 最近最新中文字幕大全电影3| 久久精品91蜜桃| 免费高清视频大片| 最新在线观看一区二区三区| av福利片在线观看| 在线免费观看的www视频| 好男人在线观看高清免费视频| 国产欧美日韩精品一区二区| 午夜免费成人在线视频| 欧美成人a在线观看| 一本精品99久久精品77| 嫩草影视91久久| 俄罗斯特黄特色一大片| 亚洲第一电影网av| 国产精品一区二区性色av| 麻豆国产97在线/欧美| 国产中年淑女户外野战色| 亚洲一区二区三区不卡视频| 久久99热这里只有精品18| 亚洲欧美清纯卡通| 夜夜躁狠狠躁天天躁| 亚洲专区中文字幕在线| а√天堂www在线а√下载| 亚洲不卡免费看| 成人特级黄色片久久久久久久| 一二三四社区在线视频社区8| 国产真实乱freesex| netflix在线观看网站| 久久国产乱子免费精品| 国产精华一区二区三区| 久久久久久久久中文| 国产午夜精品久久久久久一区二区三区 | 亚洲无线观看免费| 中文字幕人成人乱码亚洲影| 性色avwww在线观看| 人妻丰满熟妇av一区二区三区| 成人国产一区最新在线观看| 亚洲国产精品成人综合色| 一本精品99久久精品77| 亚洲真实伦在线观看| а√天堂www在线а√下载| 国产精品永久免费网站| 97碰自拍视频| 久久天躁狠狠躁夜夜2o2o| 亚洲在线观看片| 又粗又爽又猛毛片免费看| 免费观看人在逋| 别揉我奶头 嗯啊视频| 永久网站在线| 综合色av麻豆| 内地一区二区视频在线| 一进一出抽搐gif免费好疼| 最好的美女福利视频网| 中亚洲国语对白在线视频| 国产成人a区在线观看| 91午夜精品亚洲一区二区三区 | 国产精品久久久久久久久免 | 日日干狠狠操夜夜爽| 在线播放国产精品三级| 免费看a级黄色片| 亚洲国产精品成人综合色| 又黄又爽又刺激的免费视频.| 国产爱豆传媒在线观看| 男女视频在线观看网站免费| 中文字幕av在线有码专区| 美女大奶头视频| 日韩高清综合在线| av专区在线播放| 国产免费一级a男人的天堂| 最近视频中文字幕2019在线8| 99热这里只有精品一区| 久久精品人妻少妇| 18禁裸乳无遮挡免费网站照片| 丁香六月欧美| 搡老岳熟女国产| 99riav亚洲国产免费| 波多野结衣巨乳人妻| 亚洲精品成人久久久久久| 嫁个100分男人电影在线观看| a级一级毛片免费在线观看| 丁香欧美五月| 99在线视频只有这里精品首页| 欧美日韩国产亚洲二区| 天堂动漫精品| 精品99又大又爽又粗少妇毛片 | 变态另类丝袜制服| 日本三级黄在线观看| 成人av一区二区三区在线看| 亚洲五月天丁香| 成人欧美大片| 国产高清激情床上av| 日韩亚洲欧美综合| 日韩国内少妇激情av| 亚洲,欧美精品.| 老司机午夜十八禁免费视频| 亚洲精品在线美女| 日韩av在线大香蕉| 中文字幕高清在线视频| 亚洲,欧美精品.| 99久久精品国产亚洲精品| 国产精品1区2区在线观看.| 床上黄色一级片| 婷婷丁香在线五月| 此物有八面人人有两片| 97热精品久久久久久| 中文字幕av在线有码专区| 搡女人真爽免费视频火全软件 | 久久久久久大精品| 精品99又大又爽又粗少妇毛片 | 国产精品三级大全| 午夜久久久久精精品| 婷婷精品国产亚洲av在线| 精品久久久久久久末码| 欧美绝顶高潮抽搐喷水| 波多野结衣高清作品| 男人狂女人下面高潮的视频| 日本免费一区二区三区高清不卡| 99riav亚洲国产免费| 18+在线观看网站| 国产伦精品一区二区三区视频9| 精品人妻熟女av久视频| 欧美日韩瑟瑟在线播放| 舔av片在线| 乱码一卡2卡4卡精品| av中文乱码字幕在线| 性色avwww在线观看| 亚洲成av人片在线播放无| 他把我摸到了高潮在线观看| 国产v大片淫在线免费观看| 色哟哟哟哟哟哟| 夜夜爽天天搞| 日日摸夜夜添夜夜添av毛片 | 亚洲最大成人手机在线| 国语自产精品视频在线第100页| 国产成人福利小说| 真实男女啪啪啪动态图| 成人三级黄色视频| 国产中年淑女户外野战色| 精品不卡国产一区二区三区| 亚洲欧美日韩卡通动漫| 欧美日本视频| 国产一区二区激情短视频| 亚洲美女搞黄在线观看 | 日本黄大片高清| 日本a在线网址| 99精品在免费线老司机午夜| 精品国产三级普通话版| 男人狂女人下面高潮的视频| 波多野结衣高清无吗| 99riav亚洲国产免费| 亚洲,欧美,日韩| 波多野结衣高清作品| 特大巨黑吊av在线直播| 自拍偷自拍亚洲精品老妇| 国产精华一区二区三区| 亚洲专区国产一区二区| 欧美zozozo另类| 可以在线观看毛片的网站| 国产精品av视频在线免费观看| 午夜激情福利司机影院| 日韩欧美 国产精品| 性插视频无遮挡在线免费观看| 日韩欧美在线乱码| 麻豆国产97在线/欧美| 日本三级黄在线观看| av在线观看视频网站免费| 亚洲av免费高清在线观看| 欧美激情久久久久久爽电影| 亚洲无线在线观看| 免费人成在线观看视频色| 草草在线视频免费看| 最新在线观看一区二区三区| 又粗又爽又猛毛片免费看| 国产成人影院久久av| 国产探花极品一区二区| 噜噜噜噜噜久久久久久91| 亚洲在线自拍视频| 国产精品免费一区二区三区在线| 99久国产av精品| 中文字幕av成人在线电影| www.www免费av| 天天一区二区日本电影三级| 18禁在线播放成人免费| 看黄色毛片网站| 亚洲精品色激情综合| 午夜福利成人在线免费观看| 91av网一区二区| 欧美xxxx性猛交bbbb| 亚洲国产高清在线一区二区三| 一区二区三区四区激情视频 | 国产精品久久视频播放| 99久久九九国产精品国产免费| 亚洲狠狠婷婷综合久久图片| 午夜精品一区二区三区免费看| 国产高清激情床上av| 欧美丝袜亚洲另类 | 色综合站精品国产| 免费观看精品视频网站| 久久久久久久久大av| 亚洲欧美精品综合久久99| 国产三级中文精品| 亚洲人与动物交配视频| 精品人妻偷拍中文字幕| 国产人妻一区二区三区在| 国产视频一区二区在线看| 在线观看免费视频日本深夜| 国产91精品成人一区二区三区| 成年女人毛片免费观看观看9| 又紧又爽又黄一区二区| 欧美一区二区国产精品久久精品| 日韩大尺度精品在线看网址| 日本精品一区二区三区蜜桃| 又黄又爽又刺激的免费视频.| 久久精品夜夜夜夜夜久久蜜豆| 欧美丝袜亚洲另类 | 亚洲性夜色夜夜综合| 国产探花在线观看一区二区| 97超视频在线观看视频| 观看免费一级毛片| 色吧在线观看| 国产aⅴ精品一区二区三区波| 一a级毛片在线观看| 欧美黄色淫秽网站| 亚洲自拍偷在线| 能在线免费观看的黄片| 一区二区三区高清视频在线| 国产真实乱freesex| 欧美三级亚洲精品| 给我免费播放毛片高清在线观看| 亚洲精品在线美女| 欧美成狂野欧美在线观看| 小说图片视频综合网站| 欧美成人一区二区免费高清观看| 精品福利观看| 最近最新免费中文字幕在线| 国产精品98久久久久久宅男小说| 精品久久久久久久末码| 小说图片视频综合网站| 国产成人影院久久av| 亚洲av二区三区四区| 久久6这里有精品| 内射极品少妇av片p| 极品教师在线免费播放| 亚洲无线观看免费| 免费观看人在逋| 欧美日本视频| 亚洲av一区综合| 韩国av一区二区三区四区| 琪琪午夜伦伦电影理论片6080| 亚洲三级黄色毛片| 色哟哟·www| 看免费av毛片| 国产三级黄色录像| 日韩欧美在线乱码| 极品教师在线免费播放| 国产精品99久久久久久久久| а√天堂www在线а√下载| 欧美+日韩+精品| 亚洲狠狠婷婷综合久久图片| 色5月婷婷丁香| 久久久精品欧美日韩精品| 麻豆一二三区av精品| 有码 亚洲区| 日日夜夜操网爽| 少妇的逼好多水| 看免费av毛片| 国产精品日韩av在线免费观看| 99热精品在线国产| 成人特级av手机在线观看| av专区在线播放| 麻豆国产97在线/欧美| 99热精品在线国产| 欧美性猛交黑人性爽| 国产在线男女| 黄色视频,在线免费观看| 国产精品人妻久久久久久| 九九热线精品视视频播放| 午夜视频国产福利| 听说在线观看完整版免费高清| 国产亚洲精品综合一区在线观看| 18禁在线播放成人免费| 亚洲欧美日韩东京热| 91在线精品国自产拍蜜月| 少妇熟女aⅴ在线视频| 狠狠狠狠99中文字幕| 少妇熟女aⅴ在线视频| 91在线精品国自产拍蜜月| 少妇熟女aⅴ在线视频| 日日干狠狠操夜夜爽| 国内精品一区二区在线观看| 嫩草影院入口| 欧美三级亚洲精品| 国产人妻一区二区三区在| 精品人妻偷拍中文字幕| 亚洲成a人片在线一区二区| 2021天堂中文幕一二区在线观| 亚洲成a人片在线一区二区| 午夜影院日韩av| 又爽又黄无遮挡网站| 一级a爱片免费观看的视频| 91麻豆av在线| 久久久成人免费电影| 久久久久精品国产欧美久久久| 亚洲综合色惰| 怎么达到女性高潮| 九九热线精品视视频播放| netflix在线观看网站| 极品教师在线免费播放| 久久久久国产精品人妻aⅴ院| 日韩av在线大香蕉| 久久香蕉精品热| 国产亚洲精品久久久com| 国内精品美女久久久久久| av女优亚洲男人天堂| 悠悠久久av| 亚洲成人久久爱视频| 欧美又色又爽又黄视频| 99久国产av精品| 久久精品夜夜夜夜夜久久蜜豆| 直男gayav资源| 宅男免费午夜| 美女被艹到高潮喷水动态| 九九热线精品视视频播放| 日日摸夜夜添夜夜添av毛片 | 欧美成人免费av一区二区三区| 一a级毛片在线观看| 直男gayav资源| 国产精品,欧美在线| 夜夜躁狠狠躁天天躁| 女生性感内裤真人,穿戴方法视频| 在线国产一区二区在线| 日本a在线网址| 网址你懂的国产日韩在线| 国产成人影院久久av| 亚洲中文字幕一区二区三区有码在线看| 久久久国产成人免费| 好男人电影高清在线观看| 国产视频内射| 久久精品夜夜夜夜夜久久蜜豆| 尤物成人国产欧美一区二区三区| 亚洲熟妇中文字幕五十中出| 国产亚洲精品综合一区在线观看| 日日干狠狠操夜夜爽| 国产黄片美女视频| 国产精品嫩草影院av在线观看 | 日本 av在线| www.熟女人妻精品国产| 久久精品影院6| 久久久久久久久中文| 午夜亚洲福利在线播放| 日本成人三级电影网站| 成人性生交大片免费视频hd| 欧美日本亚洲视频在线播放| 国产久久久一区二区三区| 99热只有精品国产| 午夜免费男女啪啪视频观看 | 噜噜噜噜噜久久久久久91| 搞女人的毛片| 日韩欧美精品免费久久 | 亚洲精品456在线播放app | 午夜老司机福利剧场| 国产一区二区三区视频了| 无人区码免费观看不卡| 日韩中字成人| 99热这里只有是精品50| 国产一区二区三区在线臀色熟女| 激情在线观看视频在线高清| 成年人黄色毛片网站| 国产三级中文精品| 欧美极品一区二区三区四区| 美女高潮喷水抽搐中文字幕| 欧美高清成人免费视频www| 狠狠狠狠99中文字幕| 国产精品亚洲一级av第二区| 国产美女午夜福利| www日本黄色视频网| 乱码一卡2卡4卡精品| 国产一区二区在线av高清观看| 欧美日韩国产亚洲二区| 18美女黄网站色大片免费观看| av在线蜜桃| 午夜激情欧美在线| avwww免费| 男女那种视频在线观看| av在线蜜桃| 国产麻豆成人av免费视频| 国产精品影院久久| 亚洲久久久久久中文字幕| 久久久久久久久久黄片| 在线观看舔阴道视频| 毛片一级片免费看久久久久 | 国产真实伦视频高清在线观看 | 久久香蕉精品热| 国产精品美女特级片免费视频播放器| 亚洲成人中文字幕在线播放| 久久久久久久亚洲中文字幕 | 国产精品1区2区在线观看.| 日韩亚洲欧美综合| 无遮挡黄片免费观看| 99久久成人亚洲精品观看| 有码 亚洲区| 一个人看视频在线观看www免费| 午夜老司机福利剧场| 久久热精品热| 一卡2卡三卡四卡精品乱码亚洲| 欧美黑人欧美精品刺激| 国产伦在线观看视频一区| 一区二区三区免费毛片| 国产一级毛片七仙女欲春2| 午夜激情福利司机影院| 亚洲美女视频黄频| 99久久精品一区二区三区| 狠狠狠狠99中文字幕| 亚洲精品在线美女| 欧美黄色淫秽网站| 日韩欧美三级三区| 国产熟女xx| 亚洲精品久久国产高清桃花| 波多野结衣高清无吗| 亚洲美女搞黄在线观看 | 宅男免费午夜| 在线播放无遮挡| 久久午夜福利片| av在线蜜桃| 一级av片app| 日韩欧美三级三区| 国产伦精品一区二区三区四那| 午夜福利免费观看在线| netflix在线观看网站| 亚洲av日韩精品久久久久久密| 小蜜桃在线观看免费完整版高清| 90打野战视频偷拍视频| 亚洲一区二区三区不卡视频| 我要搜黄色片| 亚洲色图av天堂| 成人性生交大片免费视频hd| 色噜噜av男人的天堂激情| 看免费av毛片| 69av精品久久久久久| 成年女人看的毛片在线观看| 亚洲欧美激情综合另类| 香蕉av资源在线| 在线播放无遮挡| 一边摸一边抽搐一进一小说| 久久久久亚洲av毛片大全| 黄色丝袜av网址大全| 淫秽高清视频在线观看| 麻豆成人av在线观看| 一级黄片播放器| 亚洲综合色惰| 好看av亚洲va欧美ⅴa在| 久久久久九九精品影院| 无遮挡黄片免费观看| 又黄又爽又刺激的免费视频.| 免费大片18禁| 欧美日韩黄片免| 亚洲第一欧美日韩一区二区三区| 欧美精品国产亚洲| 国产精品国产高清国产av| 亚洲人成电影免费在线| 久久这里只有精品中国| 午夜日韩欧美国产| 国产成人影院久久av| 亚洲美女黄片视频| 高潮久久久久久久久久久不卡| 嫩草影院新地址| 我的老师免费观看完整版| 色av中文字幕| 精品久久久久久久久av| 国产精品1区2区在线观看.| 午夜激情福利司机影院| 亚洲av.av天堂| 国产伦在线观看视频一区| 欧美乱妇无乱码| 欧美在线黄色| 日日摸夜夜添夜夜添小说| 嫩草影院入口| av中文乱码字幕在线| 男女那种视频在线观看| 91在线精品国自产拍蜜月| 欧美一区二区精品小视频在线| 欧美高清性xxxxhd video| 国产精品爽爽va在线观看网站| 国产精品亚洲一级av第二区| 久久久国产成人精品二区| 国产欧美日韩精品亚洲av| 欧美日韩瑟瑟在线播放| 一进一出抽搐动态| 高清日韩中文字幕在线| 内射极品少妇av片p| 午夜精品久久久久久毛片777| 亚洲片人在线观看| 在线播放无遮挡| 毛片女人毛片| 在线观看一区二区三区| 日韩欧美在线乱码| 给我免费播放毛片高清在线观看| 精品久久久久久久久亚洲 | 国产精品影院久久| 十八禁国产超污无遮挡网站| 亚洲av熟女| 波多野结衣高清无吗| 男女那种视频在线观看| 欧美激情在线99| 久久欧美精品欧美久久欧美| 日本一本二区三区精品| 欧美在线一区亚洲| av天堂在线播放| 成人美女网站在线观看视频| 99久久无色码亚洲精品果冻| 国产av在哪里看| 怎么达到女性高潮| 亚洲精品影视一区二区三区av| 国产野战对白在线观看| 99精品在免费线老司机午夜| 成人无遮挡网站| 一级a爱片免费观看的视频| 看片在线看免费视频| 桃红色精品国产亚洲av| 3wmmmm亚洲av在线观看| 18+在线观看网站| 一本一本综合久久| 国产精品av视频在线免费观看| 91狼人影院| 能在线免费观看的黄片| 美女黄网站色视频| 国产精品国产高清国产av| 欧美色欧美亚洲另类二区| 天堂√8在线中文| 欧美最新免费一区二区三区 | 国产精品久久久久久亚洲av鲁大| 国产成人a区在线观看|