• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phishing detection method based on URL features

    2013-01-08 11:46:41CaoJiuxinDongDanMaoBoWangTianfeng

    Cao Jiuxin Dong Dan Mao Bo Wang Tianfeng

    (1School of Computer Science and Engineering, Southeast University, Nanjing 211189,China)(2Key Laboratory of Computer Network and Information Integration of Ministry of Education, Southeast University, Nanjing 211189, China)(3Jiangsu Provincial Key Laboratory of E-Business, Nanjing University of Finance and Economics, Nanjing 210003, China)

    Phishing is the act of attempting to acquire information such as usernames, passwords, and credit card details (and sometimes, indirectly, money) by masquerading as a trustworthy entity in an electronic communication[1]. According to the phishing activity trends report of the 2nd quarter 2012 from the anti-phishing working group (APWG)[2], the total number of URLs used to host phishing attacks increased to 175 229, up from 164 023 in the first quarter of 2012. Financial services continued to be the most-targeted industry sector and followed by payment services. These phishing attacks have brought serious economic losses to the public. With the rapid development of Facebook, Twitter and other social networking sites, phishing behaviors have transited from stealing users’ credit card account information to selling users’ private information and other unlawful behaviors, which are becoming more serious with Trojan and Botnet technologies. Phishing has caused a great threat to Internet users, so how to detect phishing has become a hot research topic.

    Domestic and foreign scholars have conducted a lot of research work on phishing detection. Chandrasekaran et al.[3]proposed a machine learning method based on mail structure characteristics. Cantina[4]was presented as a phishing detection tool through the analysis of the web content. Fu et al.[5]put forward a detection method on the basis of web image similarity. The method introduced the earth mover’s distance (EMD) to calculate the visual similarity between the images, which performed well, but it only can be applied when the phishing page and the legitimate one are in a very similar image appearance. Cao et al.[6]also proposed an image-based detection algorithm. The algorithm calculated the similarity of web pages based on the attributed relational graph (ARG) of each page. Although these studies have made some progress in phishing detection, there are still some shortcomings such as weak universality and low efficiency in practical applications.

    In consideration of these shortcomings, this paper proposes a URL feature-based phishing detection method. The method first compares the phishing URLs with legal ones to extract the features of phishing URLs. Then machine learning algorithms are used to obtain the URL classification model by training the sample data set, and the model is applied to detect the given URLs. In order to adapt to the change of a phishing URL, the classification model should be constantly updated according to the new samples, so an incremental learning algorithm based on the feedback of the original sample data set is designed.

    1 Modeling Phishing URL Features

    1.1 Phishing URL features analysis

    In phishing attacks, the evildoers always try to absorb victims into clicking a URL pointing to the phishing site. They usually obfuscate phishing URLs through various methods[7]. Every method attaches some features to the phishing URLs and these features can differentiate it from a legal one. Therefore, the URL features are essential to detect the phishing activities. By analyzing the phishing URLs we collect, the prominent features of a phishing URL are listed as follows:

    1) Mixing IP address in the phishing URL. According to 3 000 phishing URLs and 1 000 legitimate ones, we can find that legitimate URLs containing an IP address almost do not exist.

    2) Obfuscating the domain with a mass of dots. Phishing URLs usually use lots of dots to confuse users, for example, http://paypal.com.online-update.onlinebanking.service.customer./…. This kind of URL rarely exists in a legitimate URL.

    3) Confusing users with abnormal depth of a URL path. In other words, there are many “/” in phishing URLs.

    4) Confusing users with other special characters, such as “@”, “~”, “-”. These special characters are often found in phishing URLs.

    5) Abnormal numbers of the mixture of letters and digits in phishing URLs. This feature also appears in legitimate URLs, but it is more apparent in phishing ones.

    6) Abnormal length of domain in the phishing URL. Under normal circumstances, the string appearing between the “http://” and the first “/” is considered as domain and the length is relatively longer in parts of phishing URLs.

    7) Low PageRank. PageRank is a ranking of the pages recorded by Google according to their importance. We find that almost all the phishing URLs get low ranking or no record.

    8) Suspicious words existing in the phishing URL. Some words appear frequently in phishing URLs, such as “l(fā)ogin”, “account”, and the appearance locations of these items in phishing URLs has some difference with those in legitimate ones.

    9) Imitating legitimate domain. For instance, the letter “l(fā)” in word “paypal” can be replaced with the digit “1”, and the high similarity always successfully cheats users.

    Of the above features, features 1) to 6) are easily obtained through the regular expression matching; feature 7) can be acquired by a third party (Google API); for feature 8), the frequency suspicious words can be achieved by applying the generalized suffix tree (GST); and the last feature 9) is more complex to obtain compared with the first eight, so further analysis will be focused on the imitating domain feature.

    1.2 Calculating domain similarity

    After analyzing the nearly 3 000 phishing URLs we have collected, it is found that only a few well-know domains (such as PayPal, Tibia, etc.) become the targets of more than half of URLs which have the feature of imitating domain. Most of these URLs just make a partial modification to confuse users. So, imitating legitimate domains is an important feature to detect the phishing URLs. One method to determine whether a domain imitates a legitimate one is to calculate the similarity of the two domains. The number of legitimate domains is so large that it is impractical to calculate the similarity with all legitimate ones. However, because of the concentration of the targeted legitimate domains, we can only calculate the similarity with the most targeted ones respectively and select the most similar ones.

    In the field of biology, the famous algorithm to solve the gene sequence comparison problem is proposed by Smith and Waterman[8]. They applied dynamic programming to calculate the similarity of two gene sequences according to a pre-defined strategy, resulting in a similarity matrixH. According to their method, the domain similarity matrixHin this paper is calculated as follows:

    Suppose that the domain string extracted from the detected URL isU=u1u2…um, the targeted domain string isT=t1t2…tn, the similarity matrix is defined as

    H(i,0)=0 0≤i≤m

    (1)

    H(0,j)=0 0≤j≤n

    (2)

    H(i,j)=max{0,H(i-1,j-1)+w(ui,tj),

    H(i-1,j)+w(Deletion),

    H(i,j-1)+w(Insertion)}

    1≤i≤m, 1≤j≤n

    (3)

    wherewis a series of pre-defined weight functions. There are four kinds of weight functions: matching functionw(Match), non-matching functionw(Mismatch), forward missing penalty functionw(Deletion), reverse missing penalty functionw(Insertion). In Eq.(3), ifui=tjthenw(ui,tj)=w(Match); otherwise,w(ui,tj)=w(Mismatch).H(i,j), an element of matrixH, indicates the similarity of the stringu1u2…uiandt1t2…tj.H(m,n), the element in the bottom right corner of matrixH, is the similarity of the stringUandT. As the similarity is related with the length of the targeted domain string and pre-defined matching function, the normalizing process is needed to unify the similarity.H′(m,n) can be used directly for similarity eigenvalue.

    (4)

    2 Incremental Learning Algorithm Based on Support Vector Machine

    In this paper, the phishing detection method based on URL features can separate the phishing ones from the legitimate ones. However, the classification model is only trained one time on a large number of original sample sets, which does not have the ability of the evolvement with the ever-increasing sample sets. It means that the method lacks of the ability of incremental learning. Furthermore, the experiment in the third part shows that the support vector machine classification algorithm[9]is the most effective method in phishing detection. So, we present an incremental learning algorithm based on the support vector machine.

    2.1 Problem description

    The SVM-based incremental learning algorithm is described as follows:

    ? Prerequisite: Original sample setAand incremental sample setB, andA∩B=?.φ1is the initial SVM classifier.

    ? Objective: To find the new SVM classifier trained from the sample setA∪B.

    2.2 Problem solution

    The classical SVM algorithm does not support incremental learning. The simplest way to achieve the evolution of the classifier is called repeated learning (TISVM, for short), in which the new sample set is added into the original one and then repeat the learning process. This method is of low efficiency when the sample set reaches a certain size. The main idea of the traditional incremental learning algorithm based on SVM (SISVM, for short) is to retain the support vectors after obtaining a classifier, and to combine the existing vectors with the incremental samples as a new sample set[10-11]. Since the number of support vectors is much smaller compared with the original sample set, the training time is significantly reduced. In the aspect of accuracy, the classifier is comparable to the one trained by repeating the learning method when the distribution of incremental samples is in accordance with the original sample set. Otherwise, errors may be brought into the classifier[12], as shown in Fig.1 and Fig.2. Fig.1 gives the initial classification result and Fig.2 presents the new classification result after adding black incremental samples to the original ones. It can be easily found that the hyperplane of classification offsets and some of the original samples turn into support vectors with the help of new samples. Therefore, the incremental learning algorithm that only retains support vectors will inevitably bring errors to classification.

    In order to reduce the error from the above algorithm, this paper designs an incremental learning algorithm based on feedback of the original sample data set (FISVM, for short). The main idea is that after obtaining the new classifier, we use it to identify the samples which do not agree with the new one from original samples. These samples may become support vectors, and they should be added into the new sample retraining process. The algorithm is listed as follows:

    Fig.1 Initial classification result

    Algorithm1Incremental learning algorithm

    /*Obtaining the classifier given the original sample set and the incremental sample set*/

    /*Sample is the defined type of sample data, and classifier is the defined type of SVM classifier*/

    classifier getClassifier(sample OriginalSet [], sample IncreSet [])

    {

    /*C-SET is used to store training samples*/

    sample C-SET[]=OriginalSet;

    /*B-SET is used to store the discard samples*/

    sample B-SET[]=?;

    /*φHis the obtained classifier through training the C-SET;*/

    classifierφH=SVMClassifier(C-SET);

    /*Verifying whether IncreSet accords withφH*/

    identifyIncreSamples(IncreSet,φH,IncreSetNK,IncreSetK);

    if IncreSetNK=?

    returnφH;

    else

    {

    C-SET=C-SET∪IncreSetNK;

    B-SET=B-SET∪IncreSetK;

    classifierφI=SVMClassifier(C-SET);

    identifyIncreSamples(B-SET,φI,IncreSetNK,IncreSetK);

    if IncreSetNK=?

    returnφI;

    else

    {

    C-SET=C-SET∪IncreSetNK;

    classifierφe=SVMClassifier(C-SET);

    returnφe;

    }

    }

    }

    3 Experimental Evaluation

    In this section, we conduct experiments on the data set which is composed of phishing URLs collected in the well-known phishing identifying platforms (such as PhishTank) and the legitimate URLs collected in the Sougou corpus and Google’s navigation website 265.com. First, we verify the feasibility of the phishing detection method, and then show the effectiveness of the proposed incremental learning algorithm based on SVM.

    3.1 Phishing detection method evaluation

    To minimize the overfitting which is common in machine learning, we make use of a 10 fold cross-validation method in the process of verification. Four kinds of machine learning algorithms are selected, which are the J48 classification tree, Na?ve Bayes (NB), logistic regression (LR) and support vector machine (SVM), to carry out experiments on the same data set. The results are shown in Tab.1, in which we can find that, in accuracy, SVM is the best, and, in a false positive rate, SVM is the lowest, and, in a false negative rate, SVM is in the second place following J48. With the comprehensive consideration from these three aspects, the SVM has the best performance. The performance of the four algorithms shows that the proposed phishing detection method is feasible and performs best combined with the SVM algorithm.

    3.2 Incremental learning algorithm evaluation

    In order to verify the validity of the incremental learning algorithm, we compare the proposed incremental learning algorithm (FISVM) with the traditional incremental learning algorithm (TISVM) and the incremental learning algorithm based on the support vectors (SISVM).

    In the experiment, the initial samples contain 300 phishing URLs and 300 legitimate ones, and 400 incremental samples are added to the initial samples at each incremental step with 500 samples for testing. The results are shown in Fig.3, which indicates that the TISVM achieves the highest classification accuracy in each incremental step benefiting by making use of information of all the samples. The characteristics of the SISVM makes the training set small so that the complexity is low but the accuracy is ineffective and volatile. Although the precision of the FISVM is lower than that of the TISVM, the overall trend is consistent with the TISVM. Moreover, it has small fluctuations. In summary, our incremental learning algorithm FISVM is close to the TISVM in accuracy and has good stability.

    Fig.3 Accuracy of the incremental learning algorithm

    4 Conclusion

    In this paper, we propose a phishing detection method using the URL as the entry point. Meanwhile, in order to adapt to the change of phishing URLs, the classification model should be constantly updated according to the new samples. So, an incremental learning algorithm based on the feedback of the original sample data set is designed. In experiments, we compare four machine learning algorithms to verify the phishing detection method and simultaneously verify the effectiveness of the incremental learning algorithm. The results show that the proposed phishing detection method is feasible and performs best combined with the SVM algorithm, and the incremental learning algorithm is also effective.

    [1]Wikipedia. Phishing[EB/OL].(2013-04-20)[2013-04-27]. http://en.wikipedia.org/wiki/Phishing.

    [2]Anti-Phishing Working Group. Phishing activity trends report [EB/OL]. (2012-10-17)[2013-03-16]. http://docs.apwg.org/reports/apwg_trends_report_q2_2012.pdf.

    [3]Chandrasekaran M, Narayanan K, Upadhyaya S. Phishing email detection based on structural properties[C]//NYSCyberSecurityConference. New York, USA, 2006: 2-8.

    [4]Zhang Y, Hong J I, Cranor L F. Cantina: a content-based approach to detecting phishing web sites[C]//16thInternationalWorldWideWebConference. Banff, Alberta, Canada, 2007:639-648.

    [5]Fu A Y, Liu W Y, Deng X T. Detecting phishing web pages with visual similarity assessment based on earth mover’s distance (EMD) [J].IEEETransactionsonDependableandSecureComputing, 2006,3(4): 301-311.

    [6]Cao Jiuxin, Mao Bo, Luo Junzhou, et al. A phishing web pages detection algorithm based on nested structure of earth mover’s distance (nested-EMD)[J].ChineseJournalofComputers, 2009,32(5): 922-929. (in Chinese)

    [7]Garera S, Provos N, Chew M, et al. A framework for detection and measurement of phishing attacks[C]//Proceedingsofthe2007ACMWorkshoponRecurringMalcode. Alexandria, VA, USA, 2007: 1-8.

    [8]Smith T F, Waterman M S. Identification of common molecular subsequences [J].JournalofMolecularBiology, 1981,147(1): 195-197.

    [9]Chang C C, Lin C J. LIBSVM: a library for support vector machines[J].ACMTransactionsonIntelligentSystemsandTechnology, 2011,2(3): 1-27.

    [10]Domeniconi C, Gunopulos D. Incremental support vector machine construction[C]//ProceedingsofIEEEInternationalConferenceonDataMining. San Jose, CA, USA, 2001: 589-592.

    [11]Syed N A, Liu H, Sung K K. Incremental learning with support vector machines[C]//ProceedingsoftheWorkshoponSupportVectorMachinesattheInternationalJointConferenceonArtificialIntelligence. Stockholm, Sweden, 1999: 876-892.

    [12]Wang W J. A redundant incremental learning algorithm for SVM[C]//Proceedingsofthe7thInternationalConferenceonMachineLearningandCybernetics. Kunming, China, 2008: 734-738.

    久久鲁丝午夜福利片| 五月天丁香电影| 久久久久久国产a免费观看| 久久久久久伊人网av| 一本色道久久久久久精品综合| 亚洲伊人久久精品综合| 国产精品国产三级国产av玫瑰| 国产av不卡久久| 色哟哟·www| 夫妻午夜视频| 中国国产av一级| 18禁在线播放成人免费| 深爱激情五月婷婷| 国产成人免费无遮挡视频| 亚洲婷婷狠狠爱综合网| 国内精品宾馆在线| 国产中年淑女户外野战色| 美女视频免费永久观看网站| 18禁动态无遮挡网站| 久久久久久久亚洲中文字幕| 97超碰精品成人国产| 伦理电影大哥的女人| 免费观看av网站的网址| 国产女主播在线喷水免费视频网站| 日韩欧美 国产精品| 久久久精品欧美日韩精品| 99久久精品国产国产毛片| 特大巨黑吊av在线直播| 亚洲精华国产精华液的使用体验| 大陆偷拍与自拍| 成人黄色视频免费在线看| 色哟哟·www| 亚洲欧美清纯卡通| 蜜桃亚洲精品一区二区三区| 亚洲成人一二三区av| 亚洲人成网站在线播| 国产爽快片一区二区三区| 天堂网av新在线| 91精品一卡2卡3卡4卡| 成人高潮视频无遮挡免费网站| 亚洲成人av在线免费| 亚洲av日韩在线播放| 亚洲真实伦在线观看| av免费在线看不卡| 日本猛色少妇xxxxx猛交久久| 69av精品久久久久久| 亚洲精品成人av观看孕妇| 别揉我奶头 嗯啊视频| 直男gayav资源| 黄色欧美视频在线观看| 在线观看人妻少妇| 男女无遮挡免费网站观看| 91精品一卡2卡3卡4卡| 亚洲欧美精品自产自拍| 久久久久精品久久久久真实原创| 下体分泌物呈黄色| 国产精品女同一区二区软件| 亚洲婷婷狠狠爱综合网| 久久国内精品自在自线图片| 日韩一区二区三区影片| 成年免费大片在线观看| 在线免费观看不下载黄p国产| 99久久精品热视频| 九九久久精品国产亚洲av麻豆| 亚洲国产精品专区欧美| 18禁裸乳无遮挡动漫免费视频 | 日日撸夜夜添| 777米奇影视久久| 一边亲一边摸免费视频| 久久人人爽人人爽人人片va| 色吧在线观看| 国产欧美另类精品又又久久亚洲欧美| 精品一区二区免费观看| 一本色道久久久久久精品综合| 青春草亚洲视频在线观看| 国产高清有码在线观看视频| 亚洲欧美清纯卡通| 国产中年淑女户外野战色| 在线免费观看不下载黄p国产| 国产精品蜜桃在线观看| 国产综合懂色| 亚洲av中文字字幕乱码综合| 80岁老熟妇乱子伦牲交| 99久久九九国产精品国产免费| 高清午夜精品一区二区三区| 白带黄色成豆腐渣| 99久久精品国产国产毛片| av卡一久久| 视频中文字幕在线观看| 国产精品女同一区二区软件| 国产综合精华液| 国产av国产精品国产| 一区二区三区免费毛片| 日韩欧美精品免费久久| 69av精品久久久久久| 天天躁日日操中文字幕| 久久午夜福利片| 日本一二三区视频观看| 亚洲综合精品二区| 日韩免费高清中文字幕av| 丝袜脚勾引网站| 最近2019中文字幕mv第一页| 王馨瑶露胸无遮挡在线观看| 亚洲高清免费不卡视频| 日韩欧美精品免费久久| 久久午夜福利片| 亚洲精品乱久久久久久| 少妇被粗大猛烈的视频| 2022亚洲国产成人精品| 亚洲熟女精品中文字幕| 亚洲精品成人久久久久久| 精品国产露脸久久av麻豆| 久久亚洲国产成人精品v| 成人亚洲精品av一区二区| 久久人人爽人人片av| 国产片特级美女逼逼视频| 久久久久九九精品影院| 下体分泌物呈黄色| 三级国产精品片| 涩涩av久久男人的天堂| 国产欧美日韩精品一区二区| 国产成人精品一,二区| 久久久久久久大尺度免费视频| 久久精品久久久久久久性| 在线亚洲精品国产二区图片欧美 | 国产91av在线免费观看| 中文精品一卡2卡3卡4更新| 一边亲一边摸免费视频| 亚洲av电影在线观看一区二区三区 | 赤兔流量卡办理| 男人添女人高潮全过程视频| 亚洲精品一二三| 国产欧美亚洲国产| 全区人妻精品视频| 肉色欧美久久久久久久蜜桃 | 亚洲,一卡二卡三卡| 国产免费一区二区三区四区乱码| 18禁裸乳无遮挡免费网站照片| 亚洲综合精品二区| 99热全是精品| 久热久热在线精品观看| 久久久久网色| 一区二区三区精品91| 纵有疾风起免费观看全集完整版| 麻豆久久精品国产亚洲av| 男女下面进入的视频免费午夜| 日韩欧美精品v在线| 视频区图区小说| 在线观看三级黄色| 在线观看美女被高潮喷水网站| 亚洲国产色片| 我的女老师完整版在线观看| 亚洲精品日韩av片在线观看| av网站免费在线观看视频| 亚洲欧美精品专区久久| 亚洲自偷自拍三级| 青青草视频在线视频观看| 男插女下体视频免费在线播放| 精品99又大又爽又粗少妇毛片| 看十八女毛片水多多多| 日日撸夜夜添| 国产精品99久久99久久久不卡 | 午夜视频国产福利| 国产精品福利在线免费观看| 69人妻影院| 熟女人妻精品中文字幕| 久久久久久久久久久免费av| 精品久久久久久电影网| 久久久久九九精品影院| av在线app专区| 九九在线视频观看精品| 欧美精品国产亚洲| 成人鲁丝片一二三区免费| 久久精品国产亚洲av涩爱| 日韩欧美 国产精品| 日韩成人av中文字幕在线观看| 中文字幕亚洲精品专区| 欧美日韩一区二区视频在线观看视频在线 | 久久精品久久久久久噜噜老黄| 嫩草影院入口| 亚洲精品一二三| 欧美日韩视频精品一区| 18禁裸乳无遮挡免费网站照片| 国产乱人偷精品视频| 老司机影院毛片| 爱豆传媒免费全集在线观看| 免费在线观看成人毛片| 人体艺术视频欧美日本| 91久久精品国产一区二区三区| 久久99热6这里只有精品| 亚洲精华国产精华液的使用体验| 日韩不卡一区二区三区视频在线| 热99国产精品久久久久久7| 成人一区二区视频在线观看| 亚洲天堂av无毛| 婷婷色综合www| 国产探花在线观看一区二区| 国产精品无大码| 女人十人毛片免费观看3o分钟| 亚洲在线观看片| 亚洲精品自拍成人| 视频中文字幕在线观看| 观看免费一级毛片| 3wmmmm亚洲av在线观看| 日韩欧美精品免费久久| 免费看不卡的av| 天天躁夜夜躁狠狠久久av| 色播亚洲综合网| 真实男女啪啪啪动态图| 男女啪啪激烈高潮av片| 一区二区三区四区激情视频| 另类亚洲欧美激情| 亚洲av成人精品一二三区| 亚洲最大成人手机在线| 亚洲无线观看免费| 在线观看一区二区三区| 成年人午夜在线观看视频| 日韩欧美一区视频在线观看 | 少妇的逼水好多| 一区二区三区精品91| 国产av国产精品国产| 亚洲国产精品国产精品| 身体一侧抽搐| 亚洲精品国产色婷婷电影| 免费看av在线观看网站| 成人亚洲精品一区在线观看 | 免费高清在线观看视频在线观看| 色播亚洲综合网| 少妇的逼水好多| 国内少妇人妻偷人精品xxx网站| 亚洲欧洲日产国产| 中文字幕制服av| 国产精品久久久久久久电影| 嫩草影院精品99| 国产精品伦人一区二区| 色网站视频免费| 日本猛色少妇xxxxx猛交久久| 美女高潮的动态| 成人免费观看视频高清| 又粗又硬又长又爽又黄的视频| 99热6这里只有精品| 国产一区二区三区综合在线观看 | 国产精品.久久久| 免费高清在线观看视频在线观看| 亚洲av国产av综合av卡| 亚洲欧美成人综合另类久久久| 大码成人一级视频| 丝袜美腿在线中文| 亚洲最大成人手机在线| 又爽又黄a免费视频| 久久精品国产亚洲av涩爱| 2022亚洲国产成人精品| 一级片'在线观看视频| 天天躁日日操中文字幕| 精品99又大又爽又粗少妇毛片| av在线亚洲专区| 在线观看av片永久免费下载| 高清日韩中文字幕在线| 天天躁日日操中文字幕| 男人狂女人下面高潮的视频| 欧美激情国产日韩精品一区| 国产一区二区三区av在线| 成人漫画全彩无遮挡| 亚洲av在线观看美女高潮| 亚洲精品aⅴ在线观看| 美女xxoo啪啪120秒动态图| 熟妇人妻不卡中文字幕| 蜜臀久久99精品久久宅男| 国产成人免费无遮挡视频| 国产一区有黄有色的免费视频| 日韩av在线免费看完整版不卡| 啦啦啦中文免费视频观看日本| 中文字幕人妻熟人妻熟丝袜美| 日韩av不卡免费在线播放| 日日摸夜夜添夜夜爱| 日本一本二区三区精品| 久久精品人妻少妇| 91精品伊人久久大香线蕉| 成年女人在线观看亚洲视频 | 亚洲国产精品成人久久小说| 三级经典国产精品| 日韩三级伦理在线观看| 久久精品国产亚洲av天美| 久久女婷五月综合色啪小说 | 国产精品久久久久久精品古装| 成人亚洲欧美一区二区av| 搡老乐熟女国产| 亚洲图色成人| 精品人妻偷拍中文字幕| 亚洲aⅴ乱码一区二区在线播放| 大又大粗又爽又黄少妇毛片口| 亚洲自拍偷在线| 国产亚洲精品久久久com| 麻豆成人av视频| 最近最新中文字幕免费大全7| 国产视频内射| 欧美日韩一区二区视频在线观看视频在线 | av又黄又爽大尺度在线免费看| 99热6这里只有精品| 老司机影院毛片| 亚洲最大成人av| 狠狠精品人妻久久久久久综合| 国产女主播在线喷水免费视频网站| 校园人妻丝袜中文字幕| 久久久a久久爽久久v久久| 免费高清在线观看视频在线观看| 国产亚洲av嫩草精品影院| 伦精品一区二区三区| 国产精品一及| 久久久久久久大尺度免费视频| 我的老师免费观看完整版| 免费观看性生交大片5| 国产成人a区在线观看| 国产精品成人在线| 丝袜脚勾引网站| 一个人看的www免费观看视频| 日本猛色少妇xxxxx猛交久久| 中文字幕亚洲精品专区| 大话2 男鬼变身卡| 一级av片app| 日本黄大片高清| 国产高清有码在线观看视频| 联通29元200g的流量卡| www.色视频.com| 久久99热6这里只有精品| 大话2 男鬼变身卡| 美女内射精品一级片tv| 日本熟妇午夜| 久久久国产一区二区| 国产爽快片一区二区三区| 日韩av不卡免费在线播放| 一区二区三区免费毛片| 在线播放无遮挡| 五月玫瑰六月丁香| 欧美极品一区二区三区四区| av播播在线观看一区| 天美传媒精品一区二区| 80岁老熟妇乱子伦牲交| 亚洲伊人久久精品综合| 韩国高清视频一区二区三区| 边亲边吃奶的免费视频| 2021少妇久久久久久久久久久| 国产黄片美女视频| 能在线免费看毛片的网站| 亚洲av二区三区四区| 在线观看免费高清a一片| 亚洲国产日韩一区二区| 久久韩国三级中文字幕| 在线a可以看的网站| 日韩成人伦理影院| 日日摸夜夜添夜夜爱| 欧美高清性xxxxhd video| 日韩在线高清观看一区二区三区| av国产免费在线观看| 男人爽女人下面视频在线观看| 欧美老熟妇乱子伦牲交| 国产精品秋霞免费鲁丝片| 亚洲国产色片| 国产精品一区二区在线观看99| 亚洲av.av天堂| 亚洲成人久久爱视频| 大又大粗又爽又黄少妇毛片口| 国产高潮美女av| 亚洲自偷自拍三级| 日韩免费高清中文字幕av| 久久精品国产亚洲网站| 亚洲精华国产精华液的使用体验| 亚洲欧美精品专区久久| 99九九线精品视频在线观看视频| 99热全是精品| 亚洲国产日韩一区二区| 五月伊人婷婷丁香| 狂野欧美激情性xxxx在线观看| 亚洲精品成人av观看孕妇| 啦啦啦啦在线视频资源| 亚洲精华国产精华液的使用体验| 成人黄色视频免费在线看| 国产老妇伦熟女老妇高清| 十八禁网站网址无遮挡 | 国产高潮美女av| 午夜爱爱视频在线播放| 亚洲精品亚洲一区二区| 久久99热6这里只有精品| 国产精品福利在线免费观看| 99久久精品国产国产毛片| av.在线天堂| 毛片一级片免费看久久久久| 特级一级黄色大片| 国产精品精品国产色婷婷| 美女被艹到高潮喷水动态| 一级片'在线观看视频| 成人一区二区视频在线观看| 国产精品爽爽va在线观看网站| 国产在线男女| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品国产鲁丝片午夜精品| 欧美日韩在线观看h| 国产黄色视频一区二区在线观看| 大话2 男鬼变身卡| 午夜福利视频1000在线观看| 精品酒店卫生间| 美女xxoo啪啪120秒动态图| 日韩欧美一区视频在线观看 | 爱豆传媒免费全集在线观看| 午夜精品一区二区三区免费看| 国产成人精品婷婷| 18+在线观看网站| 搡老乐熟女国产| 大又大粗又爽又黄少妇毛片口| 久久精品国产亚洲网站| 纵有疾风起免费观看全集完整版| 99久久精品国产国产毛片| 欧美最新免费一区二区三区| 日本爱情动作片www.在线观看| 18+在线观看网站| 有码 亚洲区| 夜夜爽夜夜爽视频| 高清日韩中文字幕在线| 亚洲不卡免费看| 偷拍熟女少妇极品色| 99热这里只有精品一区| 日韩伦理黄色片| 国产精品久久久久久精品古装| 亚洲精品乱码久久久久久按摩| 国产亚洲一区二区精品| 日本av手机在线免费观看| 亚洲国产高清在线一区二区三| 女人十人毛片免费观看3o分钟| 国产成人午夜福利电影在线观看| 久久精品综合一区二区三区| 国产精品国产av在线观看| 最近最新中文字幕免费大全7| 国产黄色免费在线视频| 在线 av 中文字幕| 日韩欧美 国产精品| 老司机影院成人| 寂寞人妻少妇视频99o| 丰满少妇做爰视频| 欧美区成人在线视频| 日韩成人av中文字幕在线观看| 人人妻人人看人人澡| 国产黄a三级三级三级人| 国产精品麻豆人妻色哟哟久久| 18禁裸乳无遮挡动漫免费视频 | 国产亚洲5aaaaa淫片| 亚洲国产色片| 精品人妻偷拍中文字幕| 国产成人aa在线观看| 国产精品一区二区性色av| 在现免费观看毛片| 你懂的网址亚洲精品在线观看| 成人无遮挡网站| 免费av不卡在线播放| 一二三四中文在线观看免费高清| 国产黄片美女视频| 亚洲国产最新在线播放| 精品酒店卫生间| 一本久久精品| 国产午夜福利久久久久久| 国产亚洲精品久久久com| 亚洲第一区二区三区不卡| 国产在视频线精品| 肉色欧美久久久久久久蜜桃 | 日本-黄色视频高清免费观看| 亚洲国产最新在线播放| 欧美人与善性xxx| 日韩三级伦理在线观看| 久久99热6这里只有精品| 久久人人爽人人片av| 丝袜喷水一区| 2022亚洲国产成人精品| 国产乱人视频| 一级毛片电影观看| 香蕉精品网在线| 午夜福利在线观看免费完整高清在| 黄色怎么调成土黄色| 中文字幕久久专区| av国产免费在线观看| 亚洲国产色片| 看十八女毛片水多多多| av一本久久久久| 亚洲精品国产av蜜桃| 亚洲av日韩在线播放| 男男h啪啪无遮挡| 午夜免费观看性视频| 国产精品秋霞免费鲁丝片| 99热6这里只有精品| 精品国产露脸久久av麻豆| 午夜免费鲁丝| 青春草视频在线免费观看| 精品国产乱码久久久久久小说| 亚洲四区av| 九草在线视频观看| 欧美另类一区| 在线观看一区二区三区激情| 3wmmmm亚洲av在线观看| 好男人在线观看高清免费视频| 白带黄色成豆腐渣| 能在线免费看毛片的网站| 久久精品人妻少妇| 亚洲美女搞黄在线观看| 夫妻午夜视频| 网址你懂的国产日韩在线| 男人爽女人下面视频在线观看| 国产午夜精品久久久久久一区二区三区| 伊人久久国产一区二区| 狂野欧美激情性xxxx在线观看| 国产黄片美女视频| 国产美女午夜福利| 国产精品av视频在线免费观看| 欧美97在线视频| 国产综合精华液| 你懂的网址亚洲精品在线观看| 亚洲精品成人av观看孕妇| 2022亚洲国产成人精品| 欧美丝袜亚洲另类| 亚洲精品成人久久久久久| 亚洲在线观看片| 国产精品三级大全| 熟女av电影| 亚洲精品久久午夜乱码| 国产精品一区二区性色av| 国产一级毛片在线| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲内射少妇av| 国产在线男女| 亚洲av男天堂| 免费看日本二区| 国产伦理片在线播放av一区| 22中文网久久字幕| 精品久久久久久久末码| 亚洲欧美成人精品一区二区| 精品久久久久久久久av| 成人综合一区亚洲| 亚洲精品色激情综合| 中文字幕制服av| 亚洲精品自拍成人| 国产精品久久久久久精品电影小说 | 一级a做视频免费观看| 直男gayav资源| 婷婷色综合大香蕉| 成人鲁丝片一二三区免费| 午夜福利在线在线| 狂野欧美白嫩少妇大欣赏| 国产爱豆传媒在线观看| 午夜老司机福利剧场| 国产欧美亚洲国产| 青青草视频在线视频观看| 中国美白少妇内射xxxbb| 欧美国产精品一级二级三级 | 亚洲精品久久久久久婷婷小说| 男人和女人高潮做爰伦理| 三级经典国产精品| 综合色丁香网| 欧美+日韩+精品| 成人国产av品久久久| 赤兔流量卡办理| 99久久中文字幕三级久久日本| 18禁动态无遮挡网站| 街头女战士在线观看网站| 亚洲欧美中文字幕日韩二区| 夫妻性生交免费视频一级片| 久久6这里有精品| 欧美日本视频| 亚洲国产欧美人成| 亚洲av成人精品一区久久| 亚洲怡红院男人天堂| 国产精品久久久久久久久免| 亚洲av国产av综合av卡| 在线免费十八禁| 国产成人精品久久久久久| 日韩成人av中文字幕在线观看| videossex国产| 日本一本二区三区精品| 久久久久久久久大av| av黄色大香蕉| 日韩人妻高清精品专区| 精品一区二区三区视频在线| 国产亚洲一区二区精品| 只有这里有精品99| 国产中年淑女户外野战色| 亚洲精品久久久久久婷婷小说| 久久久久国产精品人妻一区二区| 男女啪啪激烈高潮av片| 国产成人aa在线观看| 亚洲精品日韩在线中文字幕| 亚洲高清免费不卡视频| 波野结衣二区三区在线| 免费大片18禁| 搞女人的毛片| 黄色怎么调成土黄色| 国产一区二区三区综合在线观看 | 国国产精品蜜臀av免费| 小蜜桃在线观看免费完整版高清| 国产精品爽爽va在线观看网站| 国产又色又爽无遮挡免| 久久久精品94久久精品| 可以在线观看毛片的网站| 99热网站在线观看| 欧美高清性xxxxhd video| 日本色播在线视频| 最近的中文字幕免费完整| 女的被弄到高潮叫床怎么办| 中文天堂在线官网| 在线 av 中文字幕| 大话2 男鬼变身卡| 毛片女人毛片| 在线天堂最新版资源| 免费观看的影片在线观看| 国产午夜福利久久久久久| 午夜福利视频1000在线观看| 99视频精品全部免费 在线| 亚洲精品国产av成人精品| 亚洲精品自拍成人| 一个人观看的视频www高清免费观看|