Muhammad Zahir Hassan Peter C.Brosks David C.Barton
和實(shí)際公認(rèn)相同(Liles,1989),用復(fù)數(shù)固有值求根處理,確定制動(dòng)器裝置的穩(wěn)定性分析,用實(shí)數(shù)部分的符號(hào)提供一穩(wěn)定性的標(biāo)記,而虛數(shù)部分明確表示不穩(wěn)定模式的振動(dòng)頻率(Bajer等,2003;Lee等,2003b)。對(duì)于任何不穩(wěn)定特性機(jī)理導(dǎo)致在于其剛度矩陣的不對(duì)稱,它由盤-襯片界面摩擦聯(lián)接造成的(Kung等,2003)。穩(wěn)定性分析由瞬變熱分析取輸出存儲(chǔ)讀數(shù),使用者明確在該時(shí)間內(nèi)包含制動(dòng)器組件熱變形的影響,特別在盤-襯片界面,在自由振動(dòng)分析內(nèi)進(jìn)行這種分析方面,再次把面對(duì)面元件采用在模型內(nèi)。
表明三組結(jié)果,基于車速約為10km/h和作動(dòng)壓力為2MPa,界面摩擦系數(shù)為0.3,0.4和0.5,在0.5,3.0s和6.0s取固有值,表示其出現(xiàn)于等熱條件下,各圖線固有值形式座標(biāo)實(shí)數(shù)部分,頻率繪于橫座標(biāo)。
總之,運(yùn)動(dòng)不穩(wěn)定模態(tài)的數(shù)量隨摩擦力的增大而增大,在大多數(shù)情況,用等熱情況預(yù)測(cè)模式,同時(shí)還考慮通過全聯(lián)方法確定這些模式其界面接觸與時(shí)間有關(guān)。該時(shí)間關(guān)系不說明造成一不穩(wěn)定模式的頻率變化的原因,但它能引起固有值實(shí)數(shù)部分大小的改變。在某些情況,如圖12(a)所示,一個(gè)模式結(jié)束開始不穩(wěn)定(8.5kHz和9.2kHz),同時(shí)在另一種情況,改變接觸界面造成一個(gè)新的不穩(wěn)定模式發(fā)生(圖12(a),4.05kHz)。如果制動(dòng)器尖叫的可能性取決于固有值實(shí)數(shù)部分的大小,在圖12(a)—(c)示結(jié)果表明尖叫聲的可能性或隨時(shí)間(固有值實(shí)數(shù)部分增加)(圖12(b),6.2kHz)增大,或當(dāng)實(shí)數(shù)部分變?。▓D12(c),5.1kHz)而減小。以上采用的時(shí)間間隔是不精確的,但可用于證實(shí)過程的原則。改進(jìn)該過程中某次的效率,然后可能做瞬變熱仿真各時(shí)間段的穩(wěn)態(tài)分析。
圖12 復(fù)數(shù)固有值具有正實(shí)數(shù)值的時(shí)間座標(biāo):(a)μ=0.3;(b)μ=0.4和(c)μ=0.5Fig.12 Time based extraction of complex eignvalues having positive real part:(a)μ=0.3;(b)μ=0.4and(c)μ=0.5(see online version for colours)
例如用制動(dòng)器組件保持模態(tài)形式在時(shí)間座標(biāo)仿真時(shí)如圖13所示。它們證實(shí)用盤采取徑向運(yùn)動(dòng)模式說明保持不穩(wěn)定模式的特性,并且這些隨頻率增加復(fù)數(shù)逐漸增大。
圖13 t=6.0s(p=2.0MPa,v=10km/h,μ=0.3):制動(dòng)期間選取不穩(wěn)定模式;(a)1723Hz;(b)4050Hz;(c)5141Hz和(d)8500HzFig.13 Unstable mode extracted after braking periods of t=6.0s(p=2.0MPa,v=10km/h,μ=0.3):(a)1723 Hz;(b)4050Hz;(c)5141Hz and(d)8500Hz(see online version for colours)
研究者們提出了尖叫傾向和制動(dòng)器各部件的幾何形狀及其材料特性有關(guān)(Lee等,2003c)。這依賴于采用該技術(shù)進(jìn)行參數(shù)研究,確保這種方法可用來作為制動(dòng)器設(shè)計(jì)的一個(gè)預(yù)測(cè)工具。本模型計(jì)算材料特性和制動(dòng)器幾何尺寸的影響,探索企圖在汽車制動(dòng)系統(tǒng)中減小或消除尖叫聲的發(fā)生。本熱-機(jī)械模型不能探索磨損和阻尼的影響,它們顯然是包括在該方法中的一個(gè)重要因素。
本文介紹的尖叫模擬方法顯著強(qiáng)化了大家所熟知的復(fù)數(shù)固有值分析方法。所述方法的一個(gè)優(yōu)點(diǎn)是可在整個(gè)制動(dòng)過程中允許制動(dòng)部件在熱和冷的影響下,確定其尖叫聲發(fā)生的可能性。
全聯(lián)熱-機(jī)械有限元模型的開發(fā)和補(bǔ)充,提供了定位的證據(jù),時(shí)間變量,發(fā)生在轉(zhuǎn)子經(jīng)過襯片摩擦表面下方的轉(zhuǎn)子外平面的變形。這將導(dǎo)致接觸壓力分布隨時(shí)間轉(zhuǎn)變,并且是所述制動(dòng)過程、界面摩擦和系統(tǒng)的熱特性和其幾何尺寸的函數(shù)。根據(jù)部分SAE J2521牽引制動(dòng)表仿真初始穩(wěn)定性的結(jié)果,證實(shí)尖叫聲自然消失和其與熱-機(jī)械在摩擦界面相互影響的關(guān)系。
Leeds正在進(jìn)行研究工作的目標(biāo)為
·模型的廣泛論證,因目前僅限于有關(guān)該系統(tǒng)結(jié)構(gòu)方面研究。
·整個(gè)SAE J2521牽引制動(dòng)試驗(yàn)?zāi)P偷姆抡妗?/p>
·包含制動(dòng)器幾何尺寸和材料特性的參量研究。
上述提供了可能觀察到存在于相互作用機(jī)械和系統(tǒng)參數(shù),綜合發(fā)生尖叫不穩(wěn)定性之間的復(fù)雜關(guān)系。(欽譯自Int.J.Vehicle Design,Vol.51Nos.1/2 2009)
References
[1] ABAQUS(2004a)ABAQUS Version 6.5Manual,Karlsson and Sorensen,Inc.,Hibbit.
[2] ABAQUS(2004b)Heat Transfer and Thermal Stress A-nalysis using ABAQUS Version 6.5Training Course Lecture Notes,Karlsson and Sorensen,Inc.,Hibbit.
[3] Abu Baker,A.R.,Ouyang,H.,James,S.and Li,L.(2008)‘Finite element analysis of wear and its effect on squeal generation’,Proceeding IMechE Part D:Journal of Automobile Engineering,Vol.222,No.7,pp.1153-1165.
[4] Bajer,A.,Belsky,V.and Kung,S.(2004)The Influence of Friction-induced Damping and Nonlinear Effects on Brake Squeal Analysis,SAE Technical Paper:2004-01-2794.
[5] Bajer,A.,Belsky,V.and Zeng,L.J.(2003)Combining a Nonlinear Static Analysis and Complex Eigenvalue Extraction in Brake Squeal Simulation,SAE Technical Paper:2003-01-3349.
[6] Crolla,D.A.and Lang,A.M.(1991)‘Brake noise and vibration-the state of the art theory’,in Dowson,D.,Taylor,C.M.and Godet,M.(Eds.):Vehicle Tribology,Tribology Series No.18,Leeds,England.
[7] Dunlap,K.B.,Riehle,M.A.and Longhouse,R.E.(1999)An Investigation Overview of Automotive Disc Brake Boise,SAE Technical Paper:1999-01-0142.
[8] Grieve,D.G.,Barton,D.C.,Crolla,D.A.and Buckingham,J.T.(1998)‘Design of lightweight automotive brake disc using finite element and taguchi techniques’,Proceeding IMechE Part D:Journal of Automobile Engineering,Vol.212,No.4,pp.245-254.
[9] Jarvis,R.P.and Mills,B.(1963)‘Vibration induced by dry friction’,Proceeding of Institution of Mech.Engrs.,Vol.178,No.1,p.847.
[10] Kinkaid,N.M.O’Reilly,O.M.and Papadopoulos,P.(2003)‘Automotive disc brake squeal’,Journal of Sound and Vibration,Vol.267,No.1,pp.105-166.
[11] Koetniyom,S.(2000)Thermal Stress Analysis of Automotive Disc Brake,PhD Dissertation,School of Mechanical Engineering,University of Leeds.
[12] Kung,S.,Steizer,G.,Belsky,V.and Bajer,A.(2003)Brake Squeal Analysis Incorporating Contact Conditions and other Nonlinear Effects,SAE Technical Paper:2003-01-3343.
[13] Kung,S.W.,Dunlap,K.B.and Ballinger,R.S(2000)Complex Eigenvalue Analysis for Reducing Low Frequency Brake Squeal,SAE Technical Paper:2000-01-0444.
[14] Lang,A.M.and Smales,H.(1993)‘An approach to the solution of disc brake vibration problem,braking of road vehicle’,Automobile Division of The Institution of Mechanical Engineering,Mechanical Engineering Publication Limited,Suffolk,pp.223-231.
[15] Lee,Y.S.,Brooks,P.C.,Barton,D.C.and Crolla,D.A.(2003a)‘A predictive tool to evaluate disc brake squeal propensity Part 1:the model philosophy and the contact problem’,International Journal Vehicle Design,Vol.31,No.3,pp.289-307.
[16] Lee,Y.S.,Brooks,P.C.,Barton,D.C.and Crolla,D.A.(2003b)‘A predictive tool to evaluate disc brake squeal propensity Part 2:system linearisation and modal analysis’,International Journal Vehicle Design,Vol.31,No.3,pp.308-329.
[17] Lee,Y.S.,Brooks,P.C.,Barton,D.C.and Crolla,D.A.(2003c)‘A predictive tool to evaluate disc brake squeal propensity Part 3:parametric design study’,International Vehicle Design,Vol.31,No.3,pp.330-353.
[18] Liles,G.D.(1989)Analysis of Disc Brake Squeal using Finite Element Methods,SAE Technical Paper:891150.
[19] Limpert,R.(1992)Brake Design and Safety,Society of Automotive Engineers(SAE)Inc.,Pennsylvania.
[20] McKinlay,A.J.,Brooks,P.C.and Barton,D.C.(2006)‘A study of vehicle handbrake rollaway:theoretical,numerical and experimental assessment’,in Barton,D.C.and Fieldhouse,J.(Eds.):Proceeding of the International Conference on Vehicle Braking Technology,IMechE,pp.1-12.
[21] Millner,N.(1978)An Analysis of Disc Brake Squeal,SAE Technical Paper:780332.
[22] Mohd Ripin,Z.B.(1995)Analysis of Disc Brake Squeal using the Finite Element Method,PhD Dissertation,School of Mechanical Engineering,Universityof Leeds.
[23] North,M.R.(1972)Disc Brake Squeal-A Theoretical Model,The Motor Industry Research Association(MIRA)Report No.1972/5.
[24] Ouyang,H.,Nack,W.V.,Yuan,Y.and Chen,F(xiàn).(2005)‘Numerical analysis of automotive disc brake squeal:a review’,International of Vehicle Noise and Vibrations,Vol.1,Nos.3,4,pp.207-231.
[25] Papinniemi,J.C.S.,Lai,J.and Zhao,L.L.(2002)‘Brake squeal:a literature review’,Journal of Applied Acoustics,Vol.63,No.4,pp.391-400.
[26] SAE International(2003)SAE J2521-Disc Brake Dynamometer Squeal Matrix,SAE International,Warrendale PA.
[27] Sheridan,D.C.,Kutchey,J.A.and Samie,F(xiàn).(1988)Approaches to the Thermal Modelling of Disc Brake,SAE Technical Paper:880256.
[28] Thuresson,D.(2004)‘Influence of material properties on sliding contact braking applications’,Wear,Vol.257,pp.451-460.
[29] Tirovic,M.and Day,A.J.(1991)‘Disc brake interface pressure distributions’,Proceeding IMechE Part D:Journal of Automobile Engineering,Vol.205,pp.137-146.