• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    川東弧形帶三維構造擴展的AFT記錄

    2012-12-18 05:29:34劉少峰郜瑭珺
    地球物理學報 2012年5期
    關鍵詞:華鎣山徑跡川東

    王 平,劉少峰,郜瑭珺,王 凱

    1 南京大學地球科學與工程學院,南京 210093

    2 中國地質大學地質過程與礦產(chǎn)資源國家重點實驗室,北京 100083

    3 中國石化勘探南方分公司,成都 610041

    4 西安地質礦產(chǎn)研究所,西安 710054

    川東弧形帶三維構造擴展的AFT記錄

    王 平1,劉少峰2,郜瑭珺3,王 凱4

    1 南京大學地球科學與工程學院,南京 210093

    2 中國地質大學地質過程與礦產(chǎn)資源國家重點實驗室,北京 100083

    3 中國石化勘探南方分公司,成都 610041

    4 西安地質礦產(chǎn)研究所,西安 710054

    對川東弧形褶皺帶北段、中段和南段的三條剖面,進行了7件樣品的磷灰石裂變徑跡(AFT)測試,結合前人已發(fā)表的4件樣品,分析模擬了主要背斜的隆升-剝露熱歷史.結果表明川東弧形帶主體構造變形時間為135→65Ma,即早白堊世早期到晚白堊世晚期.進而建立并對比了三條剖面的構造變形時序,揭示出川東弧形帶的三維構造擴展歷史:(1)平行于構造線走向,表現(xiàn)為從中心向兩翼的構造擴展,弧形帶中段的構造變形最早,起始時間為早白堊世早期(約135Ma),北段和南段的變形較晚,起始時間為早白堊世晚期(約100Ma);(2)垂直于構造線走向,在弧形帶北段和中段均表現(xiàn)為由東向西的構造擴展,而在弧形帶南段,由于受到前緣華鎣山斷裂的影響,表現(xiàn)為自西向東的變形時序.川東弧形帶的三維構造擴展歷史暗示了“彎山構造”的成因模式,以及華鎣山先存斷裂對弧形構造的限制作用.

    磷灰石裂變徑跡(AFT),川東弧形帶,熱歷史模擬,三維構造擴展,彎山構造

    1 引 言

    川東弧形帶位于四川盆地東部華鎣山與齊岳山之間,由一系列呈NE走向規(guī)模巨大的弧形褶皺組成,褶皺樣式表現(xiàn)出十分典型的“隔檔式”薄皮構造特征(圖1).研究表明,在晚中生代華南板塊內部SE-NW向多層拆離機制作用下,構造變形從雪峰山向四川盆地不斷擴展,并先后形成了湘鄂西隔槽式褶皺帶和川東隔檔式褶皺帶[1-4].

    圖1 川東—湘鄂西弧形褶皺帶地質圖(a)與構造剖面(b)虛線框為圖2的范圍.小圖中Qinling:秦嶺—大別造山帶;SCB:華南板塊;NCB:華北板塊.Fig.1 Geological map of Eastern Sichuan fold belt(a)and cross section from Xuefengshan mountain to Sichuan basin(b)The dashed box shows the location of Fig.2.Inset:Qinling:Qinling-Dabie Orogen;SCB:South China Block;NCB:North China Block.

    華南板內構造變形鑄就了從福建沿海到四川盆地總寬度超過1000km的造山帶,其形成過程和動力學機制多年來一直都是構造地質學領域的熱點問題[5-8].川東褶皺帶地處華南造山帶前鋒,代表了晚造山期的構造事件,確定其變形時間對于揭示華南造山帶的構造歷史具有重要意義.地質學家很早就注意到了四川盆地周緣的褶皺變形,以此命名“四川運動”,并將其時間定位于燕山期即白堊紀的構造變形[9-10],依據(jù)鄂西地區(qū)的下白堊統(tǒng)與下伏地層間的不整合接觸關系,可以判斷湘鄂西褶皺帶構造變形從晚侏羅世末到早白堊世早期[11].然而在川東弧形帶內卻普遍缺少晚白堊世以來的地層,卷入變形的最新地層為下白堊統(tǒng),單憑地層接觸關系難以確定其變形時間下限.近年來,也有學者認為“四川運動”構造變形時間應為新生代中晚期[12-13],相應的川東褶皺帶形成時間為喜山期[14-15].例如,馮向陽等[16]指出川東褶皺帶是燕山期—喜馬拉雅期有序變形的結果,燕山期主要集中在盆地外圍,至喜馬拉雅期才使盆地內部卷入變形.

    可見,對于川東弧形帶構造變形過程尚無完整認識,主要原因是缺少晚白堊世以來的沉積地層,無法獲得有效的時間限定.磷灰石裂變徑跡技術(AFT)為解決此類構造變形年代學問題提供了新途徑,它利用了磷灰石礦物在小于封閉溫度(約140℃)的條件下徑跡開始累積的熱特性,可以揭示出由于構造抬升使巖石上升到地表的剝露歷史.目前該技術已在四川盆地周緣(如大巴山、米倉山等)的構造研究中廣泛應用,為揭示白堊紀以來盆山演化提供了重要的時間約束[17-28].Shen等[29]曾對萬州一帶的侏羅紀砂巖進行了11個樣品的AFT研究,通過時間-溫度的熱歷史模擬發(fā)現(xiàn)這些樣品大都經(jīng)歷了100~70Ma的快速冷卻階段,據(jù)此將川東弧形帶北段的構造變形時間限定在早、晚白堊世之交.然而,這些熱年代學研究還僅限于川東弧形帶的北段,不足以完整揭示弧形帶的構造變形過程.鑒于此,本文選定川東弧形帶北段、中段和南段的三條剖面,運用AFT方法分析了主要背斜的隆升-剝露熱歷史,建立并對比了三條剖面的構造變形時序,試圖完整揭示弧形帶的構造擴展歷史.

    2 AFT采樣、測試和結果

    川東褶皺帶大致呈北東走向,且向北西方向凸出的弧形樣式(圖2).弧形帶自北向南可以分為三段:北段位于開縣—萬州一帶,緊鄰大巴山構造帶,構造線走向呈北東東或近東-西向;中段位于大竹—石柱一帶,包括華鎣山、方斗山等北北東走向的構造線;南段位于合川—涪陵一帶,構造線走向呈北北東或近南—北向.本文選擇垂直于川東弧形構造線的三條剖面進行采樣,其中AA′剖面自東向西橫穿北段的茨竹埡和南門場背斜,BB′剖面自東向西橫穿中段的方斗山、黃泥堂和華鎣山背斜,CC′剖面自東向西橫穿南段的大山場、銅鑼峽和中梁山背斜,以及華鎣山背斜的南段(圖2).

    構造-地形剖面清晰展示了川東弧形帶向斜寬緩、背斜窄陡的“隔檔式”構造變形樣式[4].向斜地帶廣泛出露中侏羅統(tǒng)沙溪廟組、上侏羅統(tǒng)蓬萊鎮(zhèn)砂巖和泥巖,平均寬度約30km.背斜核部多為下三疊統(tǒng)嘉陵江組、中三疊統(tǒng)巴東組灰?guī)r和上三疊統(tǒng)須家河組砂巖,平均寬度約10km.本次獲得AFT樣品共7件,都分布在背斜兩側不足5km的范圍以內.樣品均采自新鮮露頭,涉及地層包括中侏羅統(tǒng)沙溪廟組和上三疊統(tǒng)須家河組,巖性主要為長英質砂巖,每件樣品重約2kg.此外,本文還選用Richardson等[28]在華鎣山和南門場背斜獲得的4件AFT樣品進行對比分析,總計11件樣品的范圍基本覆蓋了整個川東弧形帶.

    將采集的巖石樣品粉碎,經(jīng)傳統(tǒng)方法粗選后,利用電磁、重液等分選手段進行單礦物提純,在雙目鏡下挑選磷灰石約100~150顆.裂變徑跡測試在中國科學院高能物理研究所完成,將磷灰石顆粒置于玻璃片上,用環(huán)氧樹脂滴固,經(jīng)磨平和拋光后制成光薄片.在25℃下用7%的HNO3蝕刻30s揭示自發(fā)徑跡,將低鈾白云母外探測器與磷灰石一并放入反應堆輻照,之后將白云母外探測器置于25℃、40%的HF中蝕刻35min,揭示誘發(fā)裂變徑跡.利用AUTOSCAN測量裝置對徑跡密度和水平封閉徑跡長度進行測量.中子注量采用CN5鈾玻璃標定,年齡值計算采用Zeta常數(shù)法(Zeta值:389.4±19.2).

    AFT樣品的測試結果見表1,單顆粒年齡分布如圖3所示.所有樣品的單顆粒年齡值分布在45~140Ma之間,均小于采樣地層的沉積年代.年齡特征表明樣品經(jīng)過沉積埋藏、加熱并經(jīng)過完全退火,其自發(fā)徑跡是由于后期構造抬升再度冷卻并重新累計的結果.樣品的單顆粒年齡正態(tài)分布置信度(P))均大于5%,表明所測年齡值屬于同組年齡,不存在多組份年齡現(xiàn)象.另外,樣品的徑跡長度統(tǒng)計也普遍顯示出單峰分布的特征(參見圖4、圖5和圖6),反映了相對簡單的冷卻過程.

    圖2 川東弧形帶構造-地形剖面與AFT采樣位置AA′:弧形帶北段剖面;BB′:弧形帶中段剖面;CC′:弧形帶南段剖面.圖中的虛線框表示圖7中遙感影像的位置.Fig.2 Structural-topographic profiles in Eastern Sichuan fold belt and AFT sampling locationsAA′:Northeastern Sichuan profile;BB′:Eastern Sichuan profile;CC′:Southeastern Sichuan profile.The dash boxes indicate the locations of the remote sensing images in Fig.7.

    川東弧形帶三條剖面上樣品的AFT合并年齡和徑跡長度具有如下空間分布特征:弧形帶北段從茨竹埡背斜向南門場背斜,AFT年齡值逐漸減小,分布在67~57Ma之間,徑跡長度也具有相同的變化趨勢,分布在12.10~11.68μm之間;弧形帶中段從方斗山背斜向華鎣山背斜,總體上AFT年齡和徑跡長度逐漸減小,分別在97~78Ma之間和12.47~11.91μm之間.但在靠近華鎣山背斜核部處,年齡值突然增大到85Ma;弧形帶南段從大山場背斜到中梁山背斜,總體上AFT年齡和徑跡長度均顯示出逐漸增大的趨勢,分別在49~58Ma之間和12.38~12.78μm之間.但華鎣山背斜南段的情況較為特殊,其年齡值為67Ma,而徑跡長度卻僅為12.09μm.以上特征反映出川東弧形帶不同區(qū)段AFT樣品熱歷史的差異,其成因很可能與弧形構造擴展過程有關.為了進一步揭示川東弧形構造的變形時序,我們分別對三條剖面的AFT樣品熱歷史進行重建.

    3 AFT熱歷史重建

    AFT合并年齡并沒有直接的地質意義[30],然而,基于實驗室退火模型,根據(jù)磷灰石的單顆粒裂變徑跡年齡及大量徑跡長度數(shù)據(jù)進行的反演模擬可以較好地重建樣品的熱歷史.本文采用Hefty(v1.3)軟件[31]和Laslett模型[32]對川東弧形帶內的9件樣品進行了AFT熱歷史模擬,它們分別是北段AA′剖面的FT-19,2495-1和2495-3三件樣品,中段BB′剖面的FT-28和FT-09兩件樣品,南段CC′剖面的FT-33,F(xiàn)T-41,F(xiàn)T-44和FT-46四件樣品.

    表1 AFT樣品測試結果(帶*號的樣品引自文獻[28])Table 1 Result of apatite fission track dating(The sample with*from reference[28])

    圖3 AFT單顆粒年齡分布雷達圖Fig.3 Radar plot show grain age distribution of fission track dating

    反演模擬之前首先通過正演方法確定樣品熱歷史的約束條件.本文引入了兩個地質約束條件:(1)白堊紀的大規(guī)模剝蝕冷卻事件.該時期四川盆地周緣山帶,如秦嶺—大巴山、米倉山等都經(jīng)歷了顯著的剝蝕冷卻過程[17-24].Hu等[18]通過秦嶺地區(qū)大量磷灰石和鋯石的AFT和(U-Th)/He分析確定了100~60Ma的區(qū)域剝蝕事件,Shi等[23]針對大巴山地區(qū)的AFT分析結果也反映了這一時期的快速冷卻.(2)新生代以來區(qū)域冷卻剝蝕事件.該時期由于青藏高原的隆升,再次激活了秦嶺等老造山帶的剝蝕作用.Enkelmann等[33]通過對南西秦嶺AFT樣品分析識別出新生代晚期(9~4Ma)的快速剝露事件,Tian等[20]對米倉山的AFT和(U-Th)/He研究也反映出約20Ma前后的冷卻過程,表明與青藏高原新生代隆起密切相關.此外,根據(jù)現(xiàn)有的地質證據(jù),可以肯定川東弧形帶主體形成于晚侏羅世之后[11],所以在反演模擬時省略了樣品的埋藏加熱史,僅模擬了部分退火帶以上(小于140℃)的溫度-時間熱歷史.

    熱歷史模擬過程采用Monte Carlo搜索算法反復計算溫度-時間熱歷史曲線,并判斷其與實測數(shù)據(jù)的擬合程度,以獲得最佳的模擬結果.模擬質量根據(jù)合并年齡與平均徑跡長度兩個GOF值進行檢驗,若GOF檢驗值大于5%時,定義模擬熱史是“可接受的”,當檢驗值超過50%時,定義模擬結果是“高質量的”.設定當“高質量的”的熱歷史曲線數(shù)量大于200條時為計算的結束條件,得到這些曲線所圍限的區(qū)間代表了樣品抬升冷卻的基本熱歷史(圖4、圖5和圖6).

    3.1 弧形帶北段

    川東弧形帶北段三個樣品的熱歷史模擬如圖4所示.茨竹埡背斜的T3砂巖(FT-19)的熱歷史模擬顯示出樣品在100→80Ma快速抬升冷卻,從80Ma之后為緩慢冷卻,對應于背斜構造變形的起始時間約為100Ma.南門場背斜的T3砂巖(2495-1)的熱歷史模擬顯示樣品在90→70Ma快速冷卻,對應的構造變形開始時間為90Ma,略晚于茨竹埡背斜.南門場背斜J2砂巖(2495-3)在105→85Ma快速冷卻,早于該背斜下部T3樣品(2495-1)的冷卻時間,表明背斜巖層自上而下逐漸剝露的冷卻過程.三個樣品的快速冷卻時間與Shen等[29]獲得的模擬結果基本一致,進而驗證了川東弧形帶北段背斜隆起的起始時間為早白堊世晚期(105~100Ma),并且自東向西具有遞進式擴展的趨勢,構造變形一直持續(xù)到晚白堊世早期(80~70Ma),之后進入構造穩(wěn)定階段.

    圖4 川東弧形帶北段AFT樣品的熱歷史模擬結果與徑跡長度分布灰色為“可接受的”熱歷史曲線;深灰色為“高質量的”熱歷史曲線;陰影區(qū)域表示構造變形對應的冷卻時段.Fig.4 Result of thermal history modeling and track length distribution in Northeastern Sichuan The thermal path envelopes marked by gray are“acceptable”;The envelopes marked by dark gray are“good”.

    圖5 川東弧形帶中段AFT樣品的熱歷史模擬結果與徑跡長度分布灰色為“可接受的”熱歷史曲線;深灰色為“高質量的”熱歷史曲線;陰影區(qū)域表示構造變形對應的冷卻時段.Fig.5 Result of thermal history modeling and track length distribution in Eastern SichuanThe thermal path envelopes marked by gray are“acceptable”;The envelopes marked by dark gray are“good”.

    3.2 弧形帶中段

    川東地區(qū)兩個樣品的熱歷史模擬如圖5所示.方斗山以東的J2砂巖(FT-28)的熱歷史模擬顯示樣品在135→115Ma快速抬升冷卻,115Ma之后為緩慢冷卻,對應于背斜構造隆起的起始時間約為135Ma.黃泥堂背斜的J2砂巖(FT-09)的熱歷史顯示樣品在120→100Ma快速抬升冷卻,100Ma之后為緩慢冷卻,對應的構造變形開始時間為120Ma,略晚于方斗山樣品的抬升時間.兩個樣品的AFT熱歷史模擬結果表明,川東地區(qū)構造變形具有自東向西擴展的趨勢,方斗山背斜變形始于早白堊世早期(約135Ma),黃泥堂背斜始于早白堊世中期(約120Ma),變形過程一直延續(xù)到早白堊世晚期(約100Ma).雖然我們沒有獲得華鎣山背斜AFT樣品的徑跡長度數(shù)據(jù),無法對其熱歷史進行重建,但根據(jù)華鎣山T3和J1砂巖樣品(2595-1和2595-2)的合并年齡與黃泥堂背斜J2樣品(FT-09)的合并年齡近似,推測華鎣山背斜變形時間不會晚于早白堊世.

    3.3 弧形帶南段

    川東弧形帶南段四個樣品的熱歷史模擬如圖6所示.大山場背斜的J2砂巖(FT-33)的熱歷史模擬顯示樣品在85→65Ma快速冷卻,65Ma之后進入緩慢冷卻階段,對應的構造變形開始時間約為85Ma.銅鑼峽背斜的J2砂巖(FT-41)的熱歷史與大山場背斜的構造變形時間基本一致.中梁山背斜的T3砂巖(FT-44)的熱歷史顯示樣品90→70Ma快速抬升冷卻,構造變形時間略早于大山場和銅鑼峽背斜.華鎣山南段T3砂巖(FT-46)的熱歷史顯示樣品100→80Ma快速抬升,從80Ma開始緩慢冷卻,在弧形帶南段構造變形最早.四個樣品的熱歷史表明,弧形帶南段與北段、中段構造擴展方向相反,表現(xiàn)為自西向東的擴展模式,即西部華鎣山南段最早開始變形(約100Ma),中部的中梁山背斜次之(約90Ma),東部的大山場和銅鑼峽兩背斜開始變形的時間最晚(約85Ma).

    4 弧形帶三維構造擴展歷史

    綜合上述三條剖面的AFT樣品的熱歷史重建結果,我們認為川東弧形帶整體構造變形時間為135→65Ma,即早白堊世早期-晚白堊世晚期.對比湘鄂西褶皺帶晚侏羅世末到早白堊世早期的變形時限,川東弧形帶的變形時間明顯較晚,與褶皺帶自東向西的遞進式擴展模式基本吻合[1-4].此外,本文獲得的AFT年齡與米倉山、大巴山等周緣地區(qū)的AFT年齡具有較好的一致性[17-24],熱歷史的反演結果也均反映了白堊紀以來的抬升冷卻過程,由此暗示了四川盆地東部廣泛缺失白堊紀地層的原因很可能是周緣山帶同期構造隆升的結果.根據(jù)上述變形時限和地溫梯度(25℃),并結合最新的磷灰石和鋯石(U-Th)/He研究結果[28-30],可以推測出白堊紀以來中侏羅統(tǒng)之上的地層剝蝕量約為3~5km.

    圖6 川東弧形帶南段AFT樣品的熱歷史模擬結果與徑跡長度分布灰色為“可接受的”熱歷史曲線;深灰色為“高質量的”熱歷史曲線;陰影區(qū)域表示構造變形對應的冷卻時段.Fig.6 Result of thermal history modeling and track length distribution in Northeastern SichuanThe thermal path envelopes marked by gray are“acceptable”;The envelopes marked by dark gray are“good”;The think black lines are best thermal path.

    然而,川東弧形帶的擴展模式并非簡單的遞進式構造擴展,北段、中段和南段的變形時間并不同步.例如,弧形帶中段的變形時間總體較早,而北段和南段的變形時間總體較晚,北段和中段均為自東向西的擴展趨勢,而南段則為自西向東的擴展趨勢.這些非同步的構造擴展現(xiàn)象很可能與弧形構造的發(fā)育過程有關.根據(jù)Weil和Sussman[34]對弧形構造地形、發(fā)震和應變分布特征的分析結果,大多數(shù)弧形帶都具有三維構造擴展特征,即在垂直于構造線的方向上由后緣向前緣推進,同時在平行于構造線的方向上產(chǎn)生弧形彎曲.類似的三維擴展特征也得到了砂箱物理模擬試驗的證實[35-36].據(jù)此,我們分別從平行走向和垂直走向兩個方面來討論川東弧形帶的三維構造擴展過程,揭示其變形歷史.

    4.1 平行構造線走向的擴展過程

    在平行于構造線的方向上,川東弧形帶總體表現(xiàn)為從中心向兩翼的構造擴展過程.弧形帶中段構造變形較早,起始時間為早白堊世早期(約135Ma),形成的背斜主體平行于齊岳山呈NNE走向近直線型排列,很明顯是齊岳山逆沖構造向西推進的結果.而位于弧形帶兩翼的北段和南段構造變形較晚,起始時間為早白堊世晚期(約100Ma).另外,北段的背斜樞紐方向由川東地區(qū)的NNE向轉為NEE向,繼而轉為近E-W向,弧形背斜的東端與齊岳山北部斜交.南段的背斜樞紐由NNE向轉為近N-S向,斜交于齊岳山南部(圖2).

    由于弧形帶中心和兩翼的變形時序差異,在它們的銜接部位形成了褶皺疊加構造(圖7).例如在弧形帶北段,樞紐為NEE向的茨竹埡背斜與樞紐為NNE向的方斗山背斜疊加(圖7a),由此限制了方斗山背斜向北延伸,構成了類似“L”型的疊加褶皺[37].另一處樞紐為NEE向的溫泉井背斜疊加在樞紐為NNE向的七里峽背斜之上(圖7d),形成向SW突出的鼻狀背斜隆起,構成遷移型疊加褶皺[38].又如在弧形帶南段,樞紐為NNE向的板橋背斜被樞紐近N-S向的銅鑼峽背斜疊加(圖7b),構成了類似“L”型的疊加褶皺.另一處樞紐為近N-S向的大山場背斜疊加在樞紐為NNE向的茍家場背斜之上(圖7c),使后者的樞紐方向發(fā)生轉變.

    平行弧形帶走向的構造擴展過程充分說明川東褶皺帶形成伊始并非弧形形態(tài),而是在后期變形過程中兩翼逐漸發(fā)育才組合形成弧形構造樣式.大量的古地磁研究發(fā)現(xiàn),川東-湘鄂西弧形褶皺帶很可能是“彎山構造(orocline)”成因[39-41],即在褶皺帶形成初期構造線為直線形,隨著擴展過程中逐漸彎曲而變?yōu)榛⌒危?2].由于在褶皺帶彎曲變形過程中同時伴隨著繞垂向軸的構造旋轉,使得“彎山構造”形成的構造線走向與古地磁偏角具有相同的變化趨勢.基于這一特征,張輝等[43]和韓玉林等[44]分別對川東弧形帶北段云安廠背斜的中三疊統(tǒng)和侏羅系地層的古地磁偏角進行了檢驗,結果印證了可能存在的“彎山構造”.本文通過AFT熱歷史模擬所揭示出的平行弧形帶走向的構造擴展過程,同樣也支持了川東弧形帶“彎山構造”的成因模式.

    圖7 平行弧形帶走向的褶皺構造疊加(ETM影像)(a,d)川東弧形帶北段;(b,c)川東弧形帶南段.Fig.7 Fold interference along the strike of accurate fold-belt(a,d)Northeastern Sichuan;(b,c)Southeastern Sichuan.

    4.2 垂直構造線走向的擴展過程

    在垂直于構造線的方向上,川東弧形帶總體表現(xiàn)為由東向西的構造擴展過程.例如在弧形帶北段,西部的南門場背斜變形起始時間(約90Ma)晚于東部茨竹埡背斜(約100Ma),在弧形帶中段,西部的黃泥堂背斜變形起始時間(約120Ma)也晚于東部的方斗山背斜(約135Ma).然而,在弧形帶南段卻表現(xiàn)為由東向西變形時間由新到老的相反趨勢,東部的銅鑼峽和大山場背斜變形起始時間(約85Ma)晚于西部的中梁山背斜(約90Ma)和華鎣山背斜南段(100Ma)的構造變形時間.

    華鎣山背斜較早變形的原因很可能與先存斷裂有關.它擁有川東弧形帶范圍內的最高海拔(~1600m),核部受逆沖斷裂控制出露最古老的奧陶紀地層,是川東弧形帶與四川盆地弱變形區(qū)的重要分界線.大量的地球物理資料,包括重力、航磁和層析成像,均表明華鎣山斷裂為異常轉換帶或梯度帶[45-46].另外,反射地震剖面還揭示出華鎣山斷裂在早古生代時期為張性大斷裂,控制了兩側志留系、石炭系和二疊系的沉積厚度,在中生代早期斷裂相對穩(wěn)定,被三疊紀-侏羅紀地層覆蓋[47-48].因此,我們推測在早白堊世早期川東褶皺帶構造變形向西擴展的過程中,擠壓應力沿區(qū)域滑脫層傳遞到華鎣山,使先存斷裂處于應力相對集中的狀態(tài),造成華鎣山背斜較早發(fā)生構造隆起,進而限制了弧形帶中段和南段的構造擴展.在重慶一帶,向南呈“掃帚”狀撒開的弧形背斜北段均匯交于華鎣山背斜南段,暗示了弧形構造擴展受到了華鎣山斷裂的限制.

    5 結 論

    本文通過對川東弧形帶北段、中段和南段三條剖面上7件樣品的AFT測試,結合前人已發(fā)表的4件樣品,分析模擬了川東弧形帶主要背斜白堊紀以來的隆升-剝露熱歷史,并取得以下認識:

    (1)川東弧形帶主體構造變形時間為135→65Ma,即早白堊世早期到晚白堊世晚期.

    (2)川東弧形帶的三維構造擴展歷史表現(xiàn)為:平行構造帶走向,從中心向兩翼的構造擴展,其中弧形帶中段的構造變形最早,起始時間為早白堊世早期(約135Ma),弧形帶北段和南段的變形較晚,起始時間為早白堊世晚期(約100Ma);垂直構造線走向,弧形帶北段和中段總體表現(xiàn)為由東向西的構造擴展過程,南段由于華鎣山先存斷裂的影響構造擴展方向相反,表現(xiàn)為由西向東的變形時序.

    (3)川東弧形帶的三維構造擴展歷史支持了“彎山構造”的成因模式,并且暗示了華鎣山先存斷裂對褶皺帶構造擴展的限制.

    致 謝 中國地質大學(北京)袁萬明教授在磷灰石裂變徑跡測試過程中提供了幫助,與同濟大學許長海教授和地質力學所施煒研究員的討論使作者深受啟發(fā),兩位匿名審稿人提出的寶貴意見對文章修改起到了關鍵作用,在此一并表示感謝.

    (References)

    [1] 丘元禧,張渝昌,馬文璞.雪峰山的構造性質與演化.北京:地質出版社,2000.Qiu Y X,Zhang Y C,Ma W P.The tectonic nature and evolution of the Xuefeng Shan—A formation evolution model of the intracontinental orogen(in Chinese).Beijing:Geological Publishing House,2000.

    [2] 梅廉夫,劉昭茜,湯濟廣等.湘鄂西—川東中生代陸內遞進擴展變形:來自裂變徑跡和平衡剖面的證據(jù).地球科學—中國地質大學學報,2010,35(2):161-174.Mei L F,Liu S X,Tang J G,et al.Mesozoic Intracontinental progressive deformation in Western Hunan-Hubei-Eastern Sichuan provinces of China:Evidence from apatite fission track and balanced cross-section.Earth Science—Journal of China University of Geosciences(in Chinese),2010,35(2):161-174.

    [3] 丁道桂,劉光祥.揚子板內遞進變形——南方構造問題之二.石油實驗地質,2007,29(3):238-246.Ding D G,Liu G X.Progressive deformation in Yangtze Plate—Series 2of the southern structure studies.Petroleum Geology &Experiment(in Chinese),2007,29(3):238-246.

    [4] Yan D P,Zhou M F,Song H L,et al.Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block(South China).Tectonophysics,2003,361(3-4):239-254.

    [5] Wang Y J,Zhang Y H,F(xiàn)an W M,et al.Structural signatures and40Ar/39Ar geochronology of the Indosinian Xuefengshan tectonic belt,South China Block.Journal of Structural Geology,2005,27(6):985-998.

    [6] 崔盛芹,李錦蓉.試論中國濱太平洋帶的印支運動.地質學報,1983,57(1):51-62.Cui S Q,Li J R.On the Indosinian movement of China′s peri-pacific tectonic belt.Acta Geological Sinica(in Chinese),1983,57(1):51-62.

    [7] Hsu K J,Li J,Chen H,et al.Tectonics of South China:Key to understanding West Pacific geology.Tectonophysics,1990,183(1-4):9-39.

    [8] Li Z X,Li X H.Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China:A flat-slab sub duction model.Geology,2007,35(2):179-182.

    [9] 譚錫疇,李春昱.四川西康地質志.中央地質調查所.地質專報,1948(甲種15號).北京:地質出版社,1959.Tan X C,Li C Y.Geology of Sichuan Xikang.Central Geological Survey.Geological Memoir,1948(No.15A)(in Chinese).Beijing:Geological Publishing House,1959.

    [10] 李春昱.四川運動及其在中國的分布.中國地質學會會志,1950,(30):1-8.Li C Y.Sichuan movement and its distribution in China.Annals of Chinese Geological Society(in Chinese),1950,(30):1-8.

    [11] 胡召齊,朱光,劉國生等.川東“侏羅山式”褶皺帶形成時代:不整合面的證據(jù).地質論評,2009,55(1):32-42.Hu S Q,Zhu G,Liu G S,et al.The folding time of the Eastern Sichuan Jura-type fold belt:Evidence from unconformity.Geological Review(in Chinese),2009,55(1):32-42.

    [12] 葛肖虹,王敏沛,劉俊來.重新厘定“四川運動”與青藏高原初始隆升的時代、背景:黃陵背斜構造形成的啟示.地學前緣,2010,17(4):206-217.Ge X H,Wang M P,Liu J L.Redefining the Sichuan movement and the age and background of Qingzang Plateau′s first uplift:The implication of Huangling anticline and its enlightenment.Earth Science Frontiers(in Chinese),2010,17(4):206-217.

    [13] 萬天豐.中國大地構造學綱要.北京:地質出版社,2004:152-165.Wan T F.Compendium of China Continental Tectonics(in Chinese).Beijing:Geological Publishing House,2004:152-165.

    [14] 童崇光.新構造運動與四川盆地構造演化及氣藏形成.成都理工學院學報,2000,27(2):123-130.Tong C G.Relationship between neotectonic movement and structural evolution and gas pools formation of Sichuan basin.Journal of Chengdu University of Technology(in Chinese),2000,27(2):123-130.

    [15] 郭正吾,鄧康齡,韓永輝等.四川盆地形成與演化.北京:地質出版社,1996.Guo Z W,Deng K L,Han Y H,et al.The Formation and Development of Sichuan Basin(in Chinese).Beijing:Geological Publishing House,1996.

    [16] 馮向陽,孟憲剛,邵兆剛等.華南及鄰區(qū)有序變形及其動力學初探.地球學報,2003,(2):115-120.Feng X Y,Meng X G,Shao Z G,et al.A preliminary discussion on features and dynamics of sequence deformation in South China and Neighboring Areas.Acta Geoscientia Sinica(in Chinese),2003,(2):115-120

    [17] Hu S B,Raza A,Min K,et al.Late Mesozoic and Cenozoic thermotectonic evolution along a transect from the North China craton through the Qinling orogen into the Yangtze Craton,central China.Tectonics,2006,25:TC60096,doi:10.1029/2006TC001985.

    [18] 胡圣標,郝杰,付明希等.秦嶺—大別—蘇魯造山帶白堊紀以來的抬升冷卻史—低溫年代學數(shù)據(jù)約束.巖石學報,2005,21(4):1167-1173.Hu S B,Hao J,F(xiàn)u M X,et al.Cenozoic denudation and cooling history of Qinling-Dabie-Sulu orogens:apatite fission track thermochronology constraints.Acta Petrologica Sinica(in Chinese),2005,21(4):1167-1173.

    [19] 田云濤,朱傳慶,徐明等.白堊紀以來米倉山——漢南穹窿剝蝕過程及其構造意義:磷灰石裂變徑跡的證據(jù).地球物理學報,2010,53(4):920-930.Tian Y T,Zhu C Q,Xu M,et al.Exhumation history of the Micangshan-Hannan dome since Cretaceous and its tectonic significance:evidences from apatite fission track analysis.Chinese J.Geophys.(in Chinese),2010,53(4):920-930.

    [20] Tian Y T,Kohn B P,Zhu C Q,et al.Post-orogenic evolution of the Mesozoic Micang Shan Foreland Basin system,central China.Basin Research,2012,24(1):70-90.

    [21] 沈傳波,梅廉夫,徐振平等.大巴山中—新生代隆升的裂變徑跡證據(jù).巖石學報,2007,23(11):2901-2910.Shen C B,Mei L F,Xu Z P,et al.Fission track thermochronology evidence for Mesozoic-Cenozoic uplifting of Daba Mountion,central China.Acta Petrologica Sinica(in Chinese),23(11):2901-2910.

    [22] 許長海,周祖翼,常遠等.大巴山弧形構造帶形成與兩側隆起的關系:Ft和(U-Th)/He低溫熱年代約束.中國科學(地球科學):2010,40(12):1684-1696.Xu C H,Zhou Z Y,Chang Y,et al.Genesis of Daba arcuate structural belt related to adjacent basement upheavals:Constraints from Fission-track and(U-Th)/He thermochronolgy.Science in China Earth Science(in Chinese),2010,40(12):1684-1696.

    [23] Shi W,Zhang Y Q,Dong S W,et al.Intra-continental Dabashan orocline,southwestern Qinling,Central China.Journal of Asian Earth Sciences,2012,46(2):20-38.

    [24] 常遠,許長海,Peter W R等.米倉山—漢南隆起白堊紀以來的剝露作用:磷灰石(U-Th)/He年齡記錄.地球物理學報,2010,53(4):912-919.Chang Y,Xu C H,Peter W R,et al.The exhumation evolution of the Micang Shan-Hannan uplift since Cretaceous:Evidence from apatite(U-Th)/He dating.Chinese J.Geophys.(in Chinese),2010,53(4):912-919.

    [25] 袁玉松,孫冬勝,周雁等.中上揚子地區(qū)印支期以來抬升剝蝕時限的確定.地球物理學報,2010,53(2):362-369.Yuan Y S,Sun D S,Zhou Y,et al.Determination of onset of uplifting for the Mid-upper Yangtze area after Indosinian event.Chinese J.Geophys.(in Chinese),2010,53(2):362-369.

    [26] Qing J Z,Wang J,Qiu N S.Evidence of thermal evolution history of Northeast Sichuan Basin-(U-Th)/He low temperature thermochronometry of Apatite and Zircon.Journal of China University of Geosciences,2008,19(6):591-601.

    [27] 邱楠生,秦建中,Mcinnes B I A等.川東北地區(qū)構造―熱演化探討――來自(U-Th)/He年齡和Ro的約束.高校地質學報,2008,14(2):223-230.Qiu N S,Qing J Z,Mcinnes B I A,et al.Tectonothermal evolution of the northeastern Sichuan basin:Constraints from apatite and zircon(U-Th)/He ages and vitrinite reflectance data.Geological Journal of China Universities(in Chinese),2008,14(2):223-230.

    [28] Richardson N J,Densmore A L,Seward D,et al.Extraordinary denudation in the Sichuan basin:Insights from low-temperature thermochronology adjacent to the eastern margin of the Tibetan Plateau.J.Geophys.Res.,2008,113(B4):B04409,doi:10.1029/2006JB004739.

    [29] Shen C B,Mei L F,Xu S H.Fission-track dating of Mesozoic sandstones and its tectonic significance in the Eastern Sichuan Basin,China.Radiation Measurements,2009,44(9-10):945-949.

    [30] Gleadow A J W,Belton D X,Kohn B P,et al.Fission track dating of phosphate minerals and the thermochronology of apatite.Rev.Mineral.Geochem.,2002,48(1):579-630.

    [31] Ketcham R A.Forward and inverse modeling of lowtemperature thermochronometry data.∥Reiners P W,Ehlers T A,eds.Low-Temperature Thermochronology:Techniques,Interpretations,and Applications,Reviews in Mineralogy and Geochemistry.Chantilly:Mineralogical Society of America,2005,58:275-314.

    [32] Laslett G M,Green P F,Duddy I R,et al.Thermal annealing of fission tracks in apatite 2.A quantitative analysis.Chem.Geol.Isot.Geosci.Sect.,1987,65(1):1-13.

    [33] Enkelmann E,Ratschbacher L,Jonckheere R,et al.Cenozoic exhumation and deformation of Northeastern Tibet and the Qinling:Is Tibetan lower crustal flow diverging around the Sichuan Basin?Geol.Soc.Am.Bull.,2006,118(5-6):651-671.

    [34] Weil A B,Sussman A J.Classifying curved orogens based on timing relationships between structural development and vertical-axis rotations.Geol.Soc.Am.Spec.Pap.,2004,383:1-15.

    [35] Marshak S,Wilkerson M S,Hsui A T,et al.Generation of curved fold-thrust belt:Insight from simple physical and analytical models.∥Maclay K R ed.Thrust Tectonics.London:Chapman and Hall,1992:83-92.

    [36] Marshak S.Kinematics of orocline and arc formation in thinskinned orogens.Tectonics,1988,7(1):73-86.

    [37] Simón J L.Superposed buckle folding in the Eastern Iberian Chain,Spain.J.Struct.Geol.,2004,26(8):1447-1464.

    [38] 樂光禹,杜思清,黃繼均等.構造復合聯(lián)合原理.成都:成都科技大學出版社,1996.Le G Y,Du S Q,Huang J J,et al.Principle of structural compounding-combine(in Chinese).Chengdu:Press of Chengdu University of Science and Technology,1996.

    [39] Huang K,Opdyke N D.Middle Triassic paleomagnetic results from central Hubei Province,China and their Tectonic Implications.Geophys.Res.Lett.,1997,24(13):1571-1574.

    [40] Tan X D,Kodama K P,Gilder S,et al.Palaeomagnetic evidence and tectonic origin of clock-wise rotations in the Yangtze Fold Belt,South China Block.Geophys.J.Int.,2007,168(1):48-58.

    [41] 李正祥,Powell C Mca,方大鈞等.華南中生代以來彎山構造的發(fā)育和地塊相對旋轉——地質和古地磁證據(jù).科學通報,1996,41(5):446-450.Li Z X,Powell C,F(xiàn)ang D J,et al.Since the Mesozoic tectonic development of mountain land and the relative rotation in southern China:Evidence of geological and paleomagnetic.Chinese Science Bulletin(in Chinese),1996,41(5):446-450.

    [42] Carey S W.The orocline concept in geotectonics.Proceedings of the Royal Society of Tasmania,1955,89:255-288.

    [43] 張輝,談曉冬,韓玉林.白堊紀同褶皺重磁化組分揭示中揚子褶皺帶構造旋轉過程.科學通報,2007,52(17):2049-2056.Zhang H,Tan X D,Han Y L.Cretaceous synfolding remagnetization components revealing tectonic rotation of the middle Yangtze fold belt.Chinese Science Bulletin,2007,52(20):2837-2846.

    [44] 韓玉林,許長海,周祖翼等.揚子褶皺帶侏羅紀砂巖古地磁及其褶皺帶弧形彎曲的成因.地球物理學報,2009,52(12):3072-3082.Han Y L,Xu C H,Zhou Z Y,et al.Paleomagnetism of Jurassic sandstones from Yangtze fold belt and its implications for the fold belt curvature.Chinese J.Geophys.(in Chinese),2009,52(12):3072-3082.

    [45] 蔣洪堪,戰(zhàn)雙慶,王宏勛.四川大足—福建泉州深部地電特征.地球物理學報,1992,35(2):214-222.Jiang H K,Zhan S Q,Wang H X.The deep geoelectrical characteristics in Dazu,Sichuan-Quanzhou,F(xiàn)ujian.Chinese J.Geophys.(in Chinese),1992,35(2):214-222.

    [46] 孫若昧,劉福田,劉建華.四川地區(qū)的地震層析成像.地球物理學報,1991,34(6):708-716.Sun R M,Liu F T,Liu J H.Seismic tomography of Sichuan.Chinese J.Geophys.(in Chinese),1991,34(6):708-716.

    [47] 四川省地質礦產(chǎn)局.四川省區(qū)域地質志.北京:地質出版社,1991.Sichuan Bureau of Geology and Mineral Resources.Regional Geology of Sichuan Province(in Chinese).Beijing:Geological Publishing House,1991.

    [48] 方少仙,侯方浩,李凌等.四川華鎣山以西石炭系黃龍組沉積環(huán)境的再認識.海相油氣地質,2000,5(1-2):158-166.Fang S X,Hou F H,Li L,et al.Sedimentary environment of Carboniferous Huanglong formation west of Huaying Shan in Sichuan province.Marine Origin Petroleum Geology(in Chinese),2000,5(1-2):158-166.

    Cretaceous transportation of Eastern Sichuan arcuate fold belt in three dimensions:Insights from AFT analysis

    WANG Ping1,LIU Shao-Feng2,GAO Tang-Jun3,WANG Kai4
    1 School of Earth Science and Engineering,Nanjing University,Nanjing210093,China
    2 State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Beijing100083,China
    3 Sinopec Exploration Southern Company,Chengdu610041,China
    4 Xi′an Institute of Geology and Mineral Resources,Xi′an 710054,China

    The Eastern Sichuan arcuate fold belt,the front of the South China orogen,has not been well dated,because no sediment record can be used for dating.In this paper,we used 11 apatite fission track(AFT)samples,including 7new samples and 4published samples,to analyze the exhumation history of the anticlines.The samples were collected along three profiles,with 3samples along Northeastern Sichuan profile,4samples along Eastern Sichuan profile and 4 samples along Southeastern Sichuan profile.The AFT thermal history modeling showed that the rapid cooling event generally occurred from 135to 65Ma,indicating the structural deformation of the Eastern Sichuan fold belt was from early period of early Cretaceous to late period of lateCretaceous.Additionally,the transportation history of the Eastern Sichuan arcuate fold belt in three dimensions was revealed by the three profiles:Along the structural lines,the deformation was transported from the center to the two limbs of the arcuate fold belt,with earlier deformation(~135Ma)in Eastern Sichuan and later deformation(~100Ma)in Northeastern and Southeastern Sichuan;Across the structural lines,the deformation was generally transported from east to west in Northeastern and Eastern Sichuan,but from west to east in Southeastern Sichuan,because the Huayingshan anticline was uplifted earlier than other folds.The transportation history of the Eastern Sichuan fold belt suggested the orocline bending process and obstruction of the pre-existing Huayingshan fault during the formation of the arcuate fold belt.

    Apatite fission track(AFT),Eastern Sichuan arcuate fold belt,Thermal history modeling,Transportation in three dimensions,Orocline

    10.6038/j.issn.0001-5733.2012.05.023

    P314

    2011-11-03,2012-03-17收修定稿

    國家自然科學基金重點項目(41030318)資助.

    王平,男,1981年生,博士后,主要從事中、新生代前陸構造,河流地貌演化等構造地貌學方面的研究.E-mail:tigerwp@gmail.com

    王平,劉少峰,郜瑭珺等.川東弧形帶三維構造擴展的AFT記錄.地球物理學報,2012,55(5):1662-1673,

    10.6038/j.issn.0001-5733.2012.05.023.

    Wang P,Liu S F,Gao T J,et al.Cretaceous transportation of Eastern Sichuan arcuate fold belt in three dimensions:Insights from AFT analysis.Chinese J.Geophys.(in Chinese),2012,55(5):1662-1673,doi:10.6038/j.issn.0001-5733.2012.05.023.

    (本文編輯 胡素芳)

    猜你喜歡
    華鎣山徑跡川東
    基于蒙特卡羅模擬方法的圓筒形固體核徑跡氡探測器探測效率的研究
    裂變徑跡LA-ICP-MS/FT法原理、實驗流程和應用
    地質與資源(2021年1期)2021-05-22 01:24:26
    華鎣山游擊隊遺址
    黨史文苑(2020年1期)2020-03-16 03:17:30
    川東土家族薅草鑼鼓
    布瓦雄碉與川東碉樓
    重慶建筑(2017年4期)2017-04-24 02:36:11
    我用一生在華鎣山愛著
    散文詩世界(2016年5期)2016-11-22 02:08:59
    改善華鎣山森林立地條件措施淺析
    核乳膠中質子徑跡計算機輔助識別方法研究
    密集粒子徑跡的粘連分離
    川東含硫氣田氣井井下管柱腐蝕特征分析
    韶关市| 安岳县| 常山县| 潢川县| 揭西县| 福鼎市| 怀仁县| 安义县| 抚州市| 北碚区| 甘谷县| 前郭尔| 神木县| 徐闻县| 邵阳县| 崇州市| 岚皋县| 丰台区| 建始县| 垣曲县| 滦平县| 常熟市| 天长市| 康保县| 枝江市| 满城县| 永泰县| 乌鲁木齐县| 通渭县| 贡山| 丹棱县| 华池县| 岗巴县| 昂仁县| 钦州市| 福泉市| 咸宁市| 兖州市| 北安市| 昌黎县| 瓮安县|