• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Several Key Parameters on the Dynamic Analysis of TTR

    2012-12-13 02:56:34ZHANGQiYANGHongbiaoHUANGYiZHANGRixi
    船舶力學(xué) 2012年3期

    ZHANG Qi,YANG Hong-biao,HUANG Yi,ZHANG Ri-xi

    (State Key Laboratory of Structural Analysis for Industrial Equipment,Department of Naval Architecture Dalian University of Technology,Dalian 116023,China)

    1 Introduction

    As China is going to explore South China Sea,dry-tree systems are attractive because they provide direct surface access to the well bore for maintenance and work-over activities and can enhance hydrocarbon recovery.TTRs are used to provide a dry-tree solution for floating production systems.And TTR system design and integration are identified as one of the key challenges facing with engineers.Because of the importance of the riser system reliability to profitable production of reserves,it is critical that the dynamic performance of the risers is accurately predicted during design.

    In previous works,the dynamic analysis of risers has been widely discussed.Chung et al[1-3]investigated the coupled responses of a vertical deep-ocean pipe with excitations at pipe ends and external torsion.Ferrari et al[4]and Moroka et al[5-7]have studied about the dynamic behavior of general offshore risers.The modeling techniques of the riser have been presented by Mortazavi et al[8].The importance of structure and hydrodynamic nonlinearities on static and dynamic behavior of TTR has also been illustrated by Bae et al[9].Chang et al[10-11]studied the dynamic drilling riser subjected to random loads,and pointed out that the vessel motion rather than wave force is the principal dynamic loading of the riser.Though time consuming compared with frequency analysis[5],time domain analysis allows taking nonlinearities into consideration so as to achieve more accurate results,therefore,it is adopted in present study.

    The design of a riser must include consideration of the many options of the size,pipe strength,the rig positioning and tensioning capabilities and the current profile and wave conditions.These factors have different relative effects upon the riser design.A sensitivity analysis which reveals the effect of these parameters is of great interest to those designing deepwater risers.

    The present study aims to develop the modeling techniques and analysis procedures for a TTR with a stress joint.Also detailed responses for displacement,bending moment and stress are shown for the further investigation the sensitivity of dynamic effects to crucial parameters,such as,boundary condition,TTF and motion of the TLP.

    2 Riser mechanical behavior and hydrodynamic load

    2.1 Riser basic equation

    A vertical TTR can normally be analyzed as an extensive beam under axial tension with lateral loads and effects of the hydrostatic pressure due to internal and external fluid.

    where x is the lateral displacement of the riser,z is the vertical distance along the riser from the mud-line,Te(z)is the effective axial tension,M is the mass per unit length of the riser and is represented by:

    where,Dois the outer diameter of the riser,Diis the inner diameter of the riser,ρsis the mass density of the riser pipe,ρmis the mass density of internal fluid enclosed in the riser.

    2.2 Unidirectional hydrodynamic load

    The hydrodynamic load Fx(z,t)in Eq.(1)is usually composed by two terms,drag force and inertial force,which depend on the relative velocity and the acceleration of the water particle with respect to the riser.

    Generally,Fx(z,t)can be represented by modified Morison’s equation as follows:

    where,F(x,t)is the in-line force per unit length,u is the wave particle velocity,ucis the x-directional current velocity,andare the riser acceleration and velocity of appoint along the riser,respectively.It can be calculated that

    Eq.(1)can be discretized by using interpolation function,the finite element equation involving geometrically nonlinear responses of a pipe with large displacement is:

    The accuracy of the results is directly dependent on a good selection of the hydrodynamic coefficients(CD,CM),usually the two coefficients are decided by experiment and then applied empirically to ocean.In general,a drag coefficient is a function of the Reynolds number(Re),riser surface roughness and Keulegan-Carpenter number(K-C).Typically the value of CMis in the range of 1.5 to 2.0 for a smooth circular cylinder[12].The value of Cin a post-critical

    Dsteady-state is about 0.6 to 1.0[12].In this paper,the object riser is in a Re=2.55×105,based on the recommended practice in the literature by Mousselli[13],we select two relatively conservative values:CD=1.0,CM=2.0.

    3 Object riser description and simplification

    The objective riser is designed for a TLP work in South China Sea at a water depth about 1 500 m.The riser system is mainly comprised of:riser joint,subsea well head connector,tensioners,stress joint and production tree.The riser consists of a production tubing and two(double-barrier)tubular around it(Fig.1(a)).Once the production tubing breaks,the outer pipe can still work.The inner riser acts as the primary pressure barrier for the production tubing.The stress joint is made of Titanium alloy,which is thought to be light enough and has a high yielding stress[14].

    Fig.1 Riser section

    In predicting the structural performance of such complex systems,it is imperative to use a fundamentals-based approach to arrive at simplifying modeling assumptions.

    Global analysis of the very riser system is performed using an equivalent pipe model(Fig.1(b)).The equivalent pipe models are generated using the assumption that the riser section properties can be calculated from a compound section.Using this assumption,which ig-nores non-isometric properties,the riser properties are obtained by adding the areas,moments of inertia,effective tensions and masses of all of the tubulars together along the length of the riser.Riser is modeled by three-dimensional(12 degrees-of-freedom element)beam finite elements,which include the coupled axial and bending deformations.

    The main dimension of the equivalent riser is shown in Tab.1.Specially,the parameter of the stress joint is given by Tab.2.

    Tab.1 Main parameters of the riser

    Tab.2 Main parameters of stress joint

    4 Key factors in dynamic analysis of TTRS

    4.1 Top tension factor

    The tension of the TTR is provided by tensioners.The Top Tension Factor(TTF)is set to obtain a tensioned riser so as to avoid buckling and provide sufficient lateral stiffness for the riser.It is considered as a critical parameter for both tensioning systems and riser design.Top tension factor is usually defined as follows:

    where,the effective tension at top is deemed as the net tension at the riser top.The riser apparent weight is riser weight in water,with the buoyancy and internal fluid into account.

    4.2 TLP motion

    The riser is connected with the TLP by a Hydraulic tensioner,so the riser top is driven by the motion of the TLP.And correspondingly the damping of the riser system also affects the TLP motion.

    TLP motion usually consists of three parts:Static TLP offset,low frequency offset caused by wind and wave-drift forces and instantaneous response of the TLP to random waves.The motion may be calculated from the simulated waves and vessel frequency response function.

    The TLP motion is calculated by Sesam/DeepC in present study.The motion of the TLP is coupled with riser risermooring lines by assuming the risermooring lines as massless nonlinear springs.

    Fig.2 Typical coupled motion of the object TLP in extreme condition

    According to the motion characteristics of Ten-sion Leg Platform,in present study,only three freedoms,surge,sway and heave,are considered.Fig.2 shows the particular coupled time history motions of the object TLP in extreme condition.This is used in the next calculations.

    4.3 Environmental condition

    The environmental condition of the TTR includes current profile and wave data.The current used profile is usually a monitoring data.The environmental condition is needed to assemble the design matrix of the riser.According to the statistical data of the South China Sea,the maximum wave height of the 100-year wave is about 15 m,and the zero-crossing period is about 10.4 s.Tab.3 shows the 100-year current profile which is used as extreme condition in the calculation.

    Tab.3 100-year current profile

    5 Results and discussion

    The general FE analysis program ABAQUS has been chosen to model and simulate the TTR response.It is believed that the use of a general,nonlinear solver provides the necessary freedom to incorporate the proper physics without being forced to make unjustified simplifying assumptions due to software limitations.The use of this finite-element model solution procedure allows realistic modeling of the deep-ocean pipe configuration;this is complemented by an external force modeling due to(surface and subsea)environments,and fluid and flow properties.

    5.1 Riser in extreme condition

    In riser dynamic analysis,the response of the TTR in extreme conditions is of great interest.In the present study,the nonlinear irregular time domain analysis has been conducted for the very TLP production riser at 1 500 m water depth considering extreme South China Sea environmental conditions.The key data for the design are given in Tab.4.The data of the stress joint is the same as given in Tab.2.

    Tab.4 Parameters of riser and environmental condition

    Fig.3 shows that the envelope of the displacement of the riser in three directions.It can be easily seen from Fig.3 that the main deflation of the riser appears in the X direction which is parallel to the in-coming direction of the wave.The displacement in the Y and Z directions are relatively much smaller,so in the following study,we mainly concern about the lateral displace-ment of the riser in the X direction.

    Fig.4 shows the envelope of the minimum and maximum bending moment around axis X.It can be noted that the bending moment varies a lot in the wave splash zone,in the lower part of the riser,bending moment experiences a stable stage during which its value is almost 0,then it goes dramatically high nearby the bottom of the riser.This should be mostly paid attention to in the design of TTRs.

    Fig.3 The envelope minimum and maximum of the displacement of the riser in three directions

    Fig.4 The envelope of the minimum and maximum bending moment around riser axis

    As can be seen in Fig.5,the critical locations along the riser with relatively high stresses level are the stress joint above the subsea wellhead,and the splash zone.In the middle portion of the riser,equivalent stress decreases with the increase of the water depth.In general,the equivalent stress of the riser is well below the allowable stress.

    5.2 Sensitivity analysis

    The sensitivity analysis should be conducted under a coupled lateral and axial riser motion.Fig.6 shows the axial displacements at a depth=100 m under pure axial motion(excited only in z-direction)and coupled lateral-axial riser motion(exited not only in z-direction but also in x and y directions).

    Fig.5 The maximum Equivalent stress along the riser

    Fig.6 Axial displacements at a depth=100 m under pure axial motion and coupled lateral-axial riser motion

    It can be seen that the motions in the lateral have a great influence on the axial behavior.The following analysis is all based on a coupled lateral and axial riser motion.

    The design of a riser must include consideration of the many options of the size,pipe strength,the rig positioning and tensioning capabilities and the current profile and wave conditions.These factors have different relative effects upon the riser design.A sensitivity analysis which reveals the effect of these parameters is of great interest to those designing deepwater risers.

    Lack of recognition of these sensitivities can potentially lead to more expensive and less reliable riser systems.Analysis and field measurement results indicate that the riser response magnitude is very sensitive to the mean pitch and position of the TLP.

    5.3 Effect of TTF

    In order to evaluate the effect of TTF,a variety of different values of TTF from 1.3 to 1.8 are adopted.Other parameters used in the calculation are the same as shown in Tab.3.

    Figs.7-8 show the maximum displacement,equivalent stress of the riser under different TTFs.As expected,the deflection of the riser decreases with the increase of the TTF,this is because that the increase of the tension increases the axial stiffness of the riser.So,increase top tension is thought to be a way to prevent the collision of the riser.However the increase of the top tension also increases the equivalent stress of the riser in the top end,and it should also be noted that the equivalent stress at the bottom end of the riser increases with the decrease of the TTF,this is probably because the bottom end of the riser is greatly influenced by the current.Therefore,the design of TTF should be a consideration of both the top end and the bottom end of the riser.A good design should be a balance between the riser top end and the bottom end.

    Fig.7 The envelope of the maximum lateral displacement along the riser under different TTFs

    Fig.8 The envelope of the maximum equivalent stress along the riser under different TTF

    5.4 Effect of TLP motion

    Three different TLP motions are investigated;the mean offset of the TLP is 2%,4%and 6%of the water depth,respectively.TTF is 1.5 as a constant in the process.Other parameters used in the calculation are the same as shown in Tab.3.

    Apparently,the lateral displace is very sensitive to the motion of the TLP,also it can be seen from Figs.9-10 that the bending moment in the most region of the riser increases little with the increase of the TLP motion.While the bending moment at the bottom,however,is very sensitive to the motion.When the motion increases only 2%,the bending moment at the bottom end of the riser increases nearly 50%.

    Fig.9 The envelope of the maximum bending moment along the riser under different TLP motions

    Fig.10 The envelope of the maximum bending moment along the riser under different TLP motions

    5.5 Effect of current

    Three cases of different current profile are taken in the study,the profiles of the three currents are shown as Fig.11.Cases123 represent for current in 5y10y100y typhoons,respectively.The other parameters are the same to those used in Tab.4.

    Fig.12 and Fig.13 represent the result of the maximum displacement and bending moment of the riser considering different current profiles.The difference of the displacement and bending moments are not as significant as it should be expected.The riser’s displacement in the middle portion in Case3 is only about 3~5 m larger than in Case1.And the difference of the bending moment could only be seen in the top half of the riser as shown in Fig.12.This is possibly due to the fact that the current velocity is relatively large in the top half zone.

    Fig.11 Three different current profiles

    Fig.12 The envelope of the maximum lateral displacement along the riser under different current profiles

    Fig.13 The envelope of the maximum bending moment along the riser under different current profiles

    5.6 Effect of wave

    Three cases of different significant wave height(H=5 m,10 m,15 m)are taken into account with the constant TTF(1.5)and zero crossing wave period(10.4 s).

    The differences among the results of the displacement are subtle,in the present paper,only the curve of bending moment is given as in Fig.14.It can be observed that the wave only affects in the splash zone.And with the increase of the wave height,only a slight increase can be seen in the bending moment along the riser.It can be reckoned that wave parameter mostly influences the behavior of top tensioned riser indirectly by determining the vessel motion,while the direct influence on the riser is little.

    Fig.14 The envelope of the bending moment along the riser under different wave height

    6 Conclusions

    This paper mainly deals with a production TTR used in a TLP designed to serve in South China Sea.The investigations conducted here could be an important advancement to make possible the use of a vertical production riser with dry tree.Numerical simulations for TTRs have been carried out.Parametric evaluations for riser behavior are an important procedure to investigate the design of the riser system.Results emphasize the most important parameters for the riser’s dynamic behavior.The conclusions can be drawn as follows:

    (1)Of all the three freedoms(sway,surge and heave)of the TLP motions,surge affects the most on the dynamic of TTR.

    (2)Coupled lateral and axial riser motion should be considered when conducting TTR dynamic analysis.

    (3)Lack of recognition of sensitivity analysis can potentially lead to more expensive and less reliable riser systems.The parameter that has the most significant effect for the 1 500 m depth riser is top tension and motion of the TLP.While the increase of the top tension reduces riser deflection,Simultaneously it increases the equivalent stress of the riser,a good design should be a‘balance’between the riser top end and the bottom end.

    (4)Compared with TTF and TLP motion,current and wave both have limited effects on the dynamic behavior of the TTRs.

    Acknowledgements

    The work has been carried out at Ocean Engineering and Structure Safety Lab(OESS)of DUT and sponsored by the China National Hi-tech Research and Development Program(National 863 Program)No.2008AA09A105-04.The authors would also like to acknowledge China National Offshore Oil Corporation(CNOOC)for their support of the present study.

    [1]Chung J S,Felippa C A.Nonlinear static analysis of deep ocean mining pipe-Part II:Numerical studies[J].Journal of Energy Resources Technology,1981,103(1):17-25.

    [2]Chung J S,Cheng B R,Huttelmaier H P.Three-dimensional coupled responses of a vertical deep-ocean pipe[J].International Journal of Offshore and Polar Engineering(ISOPE),1994,4(4):229-239.

    [3]Chung J S,Whitney A K,Loden W A.Nonlinear transient motion of deep ocean mining pipe[J].Journal of Energy Resources Technology,1981,103(1):2-10.

    [4]Felippa C A,Chung J S.Nonlinear static analysis of deep ocean mining pipe-Part I:Modeling and formulation[J].Journal of Energy Resources Technology,1981,103(1):11-15.

    [5]Ferrari Jr.J A,Bearman P W.Hydrodynamic loading and response of offshore risers[C]//Proceedings of 18th OMAE Conference.St.John′s,Canada,1999:4132.

    [6]Moroka C K,Coelho F M,Shiguemoto D A,Franciss R,Matt C G C.Dynamic behavior of a top tensioned riser in frequency and time domain[C]//Proceedings of 16th ISOPE.San Francisco,2006(2):31-36.

    [7]Morooka C K,Coelho F M,Ribeiro E J B,Ferrari Jr.J A,Franciss R.Dynamic behavior of a vertical riser and service life reduction[C]//Proceedings of 24th OMAE Conference.Halkidiki,Greece,2005(1):605-610.

    [8]Morooka C K,Yokoo I H.Behavior of floating platform with marine riser in directional waves[C]//Proceedings of 2nd ISOPE.San Francisco,EUA,1992(1):628-635.

    [9]Mortazavi M,Brad Campbell R,Brinkmann C R.Modeling and analysis of top-tensioned riser[C]//Proceedings of 20th OMAE.Rio de Janeiro,Brazil,2001:1168.

    [10]Bae Y S,Bernitsas M M.Importance of nonlinearities in static and dynamic analyses of marine risers[C]//Proceedings of 5th ISOPE.Hague,1995,2:209-218.

    [11]Chang Yuanjiang,Chen Guoming,Sun youyi,Xu liangbin,Peng Peng.Nonlinear dynamic analysis of deepwater drilling risers subjected to random loads[J].China Ocean Engineering,2008,22(4):683-691.

    [12]Chang Yuanjiang,Chen Guoming.Theoretical investigation and numerical simulation of dynamic analysis for ultra-deepwater drilling risers[J].Journal of Ship Mechanics,2010,14(6):596-605.

    [13]Design of risers for floating production systems(FPSs)and tension-leg platforms(TLPs)[S].API 2RD,1999.

    [14]Mousselli A H.Offshore pipeline design,analysis,and methords[M].Tulsa:PennWell Publishing Co.,1981.

    [15]Zhang Qi,Zhang Rixi,Huang Yi,Yang Hongbiao.Design and analysis of taper stress joint for top tensioned risers[C]//Proceedings of 20th ISOPE.Beijing,2010(2):23-28.

    久久久久久久亚洲中文字幕| 人人妻人人澡人人看| 女性生殖器流出的白浆| 国产xxxxx性猛交| 亚洲精品一区蜜桃| 国产精品久久久久久久久免| 国产片特级美女逼逼视频| 美女xxoo啪啪120秒动态图| 免费女性裸体啪啪无遮挡网站| 成年人免费黄色播放视频| 成年女人在线观看亚洲视频| 欧美日韩亚洲高清精品| 国产精品嫩草影院av在线观看| 亚洲精品国产av成人精品| 亚洲欧美清纯卡通| 一区二区三区乱码不卡18| 一二三四中文在线观看免费高清| 天堂8中文在线网| 有码 亚洲区| 黑人欧美特级aaaaaa片| 91精品伊人久久大香线蕉| 国精品久久久久久国模美| xxxhd国产人妻xxx| 亚洲精品成人av观看孕妇| 在线观看一区二区三区激情| 亚洲成人av在线免费| 91aial.com中文字幕在线观看| 大片电影免费在线观看免费| 又黄又粗又硬又大视频| 日韩制服丝袜自拍偷拍| 亚洲国产日韩一区二区| 欧美bdsm另类| 卡戴珊不雅视频在线播放| 国产精品久久久久久精品电影小说| 欧美成人午夜免费资源| 久久久国产精品麻豆| 国产精品成人在线| 亚洲欧洲日产国产| 老司机亚洲免费影院| 老熟女久久久| 夫妻性生交免费视频一级片| 国产欧美日韩综合在线一区二区| 在线观看美女被高潮喷水网站| 美女国产高潮福利片在线看| 美女午夜性视频免费| 最近中文字幕2019免费版| 制服诱惑二区| 一二三四中文在线观看免费高清| 高清在线视频一区二区三区| 黑丝袜美女国产一区| 日韩中字成人| 观看美女的网站| 久久人人爽人人片av| 日韩视频在线欧美| 日韩av在线免费看完整版不卡| 一级片'在线观看视频| 亚洲精品国产av成人精品| 自线自在国产av| 免费大片黄手机在线观看| 国产精品成人在线| 国产成人av激情在线播放| 激情视频va一区二区三区| 国产午夜精品一二区理论片| 黄片无遮挡物在线观看| 在线观看美女被高潮喷水网站| 在线观看www视频免费| 国产成人午夜福利电影在线观看| 亚洲精品久久久久久婷婷小说| 色哟哟·www| 亚洲国产精品成人久久小说| 在线观看免费视频网站a站| 在线看a的网站| av免费在线看不卡| 在线 av 中文字幕| 午夜免费观看性视频| 亚洲精品aⅴ在线观看| 可以免费在线观看a视频的电影网站 | 高清视频免费观看一区二区| 欧美日韩精品成人综合77777| 久久影院123| 少妇人妻精品综合一区二区| 一区二区日韩欧美中文字幕| 中文天堂在线官网| av网站在线播放免费| 国产精品久久久久久精品电影小说| 青春草视频在线免费观看| 制服丝袜香蕉在线| 欧美精品av麻豆av| 亚洲五月色婷婷综合| 久久婷婷青草| 国产黄频视频在线观看| 日日爽夜夜爽网站| 在线观看人妻少妇| 1024视频免费在线观看| 成人18禁高潮啪啪吃奶动态图| 在线免费观看不下载黄p国产| 亚洲人成网站在线观看播放| 久久99精品国语久久久| 最近中文字幕高清免费大全6| 黄色 视频免费看| 不卡视频在线观看欧美| 少妇被粗大猛烈的视频| 一二三四中文在线观看免费高清| 巨乳人妻的诱惑在线观看| 美女脱内裤让男人舔精品视频| 精品久久久久久电影网| 欧美国产精品va在线观看不卡| 日本欧美视频一区| 成人毛片60女人毛片免费| 精品一区二区三卡| 亚洲一码二码三码区别大吗| 久久午夜综合久久蜜桃| 黄色 视频免费看| 国产成人精品福利久久| 亚洲国产欧美在线一区| 少妇熟女欧美另类| 老汉色av国产亚洲站长工具| 免费不卡的大黄色大毛片视频在线观看| 一本大道久久a久久精品| 国产精品麻豆人妻色哟哟久久| 男女免费视频国产| 在线观看国产h片| 韩国av在线不卡| 伦精品一区二区三区| 成人黄色视频免费在线看| 免费观看性生交大片5| 韩国av在线不卡| 亚洲男人天堂网一区| 国产精品一国产av| 一区二区三区乱码不卡18| 午夜影院在线不卡| 边亲边吃奶的免费视频| 天美传媒精品一区二区| 亚洲少妇的诱惑av| 天天躁夜夜躁狠狠久久av| 伦理电影免费视频| 18禁动态无遮挡网站| 久久精品人人爽人人爽视色| 国产亚洲欧美精品永久| 欧美成人午夜精品| 波野结衣二区三区在线| √禁漫天堂资源中文www| 黄色视频在线播放观看不卡| 国产欧美亚洲国产| 中国三级夫妇交换| 精品少妇一区二区三区视频日本电影 | 久久久久久久国产电影| 免费女性裸体啪啪无遮挡网站| 一级片'在线观看视频| 最近2019中文字幕mv第一页| 国产在线视频一区二区| 少妇的丰满在线观看| 色婷婷久久久亚洲欧美| 99国产精品免费福利视频| 久久久精品国产亚洲av高清涩受| 9热在线视频观看99| 欧美变态另类bdsm刘玥| 一区二区av电影网| 国产老妇伦熟女老妇高清| 久久婷婷青草| 亚洲欧美成人综合另类久久久| 中国国产av一级| 秋霞在线观看毛片| 精品99又大又爽又粗少妇毛片| 波多野结衣一区麻豆| 美女xxoo啪啪120秒动态图| 欧美日韩精品网址| 精品99又大又爽又粗少妇毛片| 国产成人精品福利久久| 亚洲人成电影观看| 国产麻豆69| 日本爱情动作片www.在线观看| 天堂俺去俺来也www色官网| 一区福利在线观看| 国产免费现黄频在线看| 中文天堂在线官网| 日韩制服骚丝袜av| 国产亚洲最大av| 日韩欧美精品免费久久| 一区二区三区激情视频| 日韩视频在线欧美| 免费大片黄手机在线观看| 亚洲欧美一区二区三区黑人 | 欧美日韩国产mv在线观看视频| 亚洲精品日本国产第一区| 纯流量卡能插随身wifi吗| 亚洲精华国产精华液的使用体验| 亚洲av欧美aⅴ国产| 亚洲欧洲精品一区二区精品久久久 | 色播在线永久视频| 一区二区日韩欧美中文字幕| 成人国产麻豆网| 春色校园在线视频观看| 免费在线观看完整版高清| 精品国产乱码久久久久久小说| 亚洲av免费高清在线观看| 1024香蕉在线观看| 国产成人91sexporn| 欧美国产精品va在线观看不卡| 少妇被粗大的猛进出69影院| 日本wwww免费看| 免费在线观看视频国产中文字幕亚洲 | 日韩大片免费观看网站| 黄网站色视频无遮挡免费观看| 国产欧美亚洲国产| 欧美国产精品一级二级三级| 蜜桃国产av成人99| 亚洲欧美精品自产自拍| 免费观看性生交大片5| 久久久国产欧美日韩av| 久久精品亚洲av国产电影网| 热99国产精品久久久久久7| av视频免费观看在线观看| 男人操女人黄网站| 女性被躁到高潮视频| 伦精品一区二区三区| 精品一区二区免费观看| 久久久精品区二区三区| 国产熟女欧美一区二区| 日韩成人av中文字幕在线观看| 国产在线一区二区三区精| 纵有疾风起免费观看全集完整版| 亚洲精品久久午夜乱码| 欧美97在线视频| 两性夫妻黄色片| 日韩欧美精品免费久久| 亚洲在久久综合| 国产成人免费观看mmmm| 久久精品久久久久久久性| 国产白丝娇喘喷水9色精品| 又粗又硬又长又爽又黄的视频| 妹子高潮喷水视频| 中文天堂在线官网| 亚洲精品国产av成人精品| 尾随美女入室| 大码成人一级视频| 亚洲国产成人一精品久久久| 视频在线观看一区二区三区| 高清欧美精品videossex| 18禁国产床啪视频网站| 一区二区av电影网| 久热久热在线精品观看| 亚洲av欧美aⅴ国产| 国精品久久久久久国模美| 日韩精品免费视频一区二区三区| 久久精品久久久久久噜噜老黄| 男人爽女人下面视频在线观看| 男人添女人高潮全过程视频| 成人国产麻豆网| 亚洲四区av| 亚洲精品美女久久av网站| 十分钟在线观看高清视频www| 一级a爱视频在线免费观看| 黄色配什么色好看| 一级毛片电影观看| 国产日韩欧美在线精品| 欧美bdsm另类| 精品少妇一区二区三区视频日本电影 | 精品人妻在线不人妻| 国产麻豆69| 久久人人爽人人片av| 欧美最新免费一区二区三区| 亚洲国产精品一区三区| 日本欧美视频一区| 少妇人妻久久综合中文| 亚洲成人一二三区av| 国产av码专区亚洲av| 久久综合国产亚洲精品| h视频一区二区三区| 人人妻人人澡人人看| 日韩 亚洲 欧美在线| 国产精品.久久久| 免费久久久久久久精品成人欧美视频| 亚洲少妇的诱惑av| 观看av在线不卡| 欧美 亚洲 国产 日韩一| 久久av网站| 各种免费的搞黄视频| 久久久久久免费高清国产稀缺| 最近最新中文字幕大全免费视频 | 亚洲国产欧美在线一区| 日韩制服丝袜自拍偷拍| 国产 一区精品| 老司机影院成人| 国产在线视频一区二区| 搡老乐熟女国产| 女人高潮潮喷娇喘18禁视频| 国产黄频视频在线观看| 日韩 亚洲 欧美在线| 老司机影院毛片| 免费av中文字幕在线| 少妇人妻精品综合一区二区| av.在线天堂| av在线播放精品| 日本欧美视频一区| 七月丁香在线播放| 久久久久久人人人人人| 久久久久久久久久久久大奶| 中文字幕精品免费在线观看视频| 99re6热这里在线精品视频| 久久久久国产一级毛片高清牌| 女人被躁到高潮嗷嗷叫费观| 欧美日韩成人在线一区二区| 国产老妇伦熟女老妇高清| 人妻一区二区av| 日本午夜av视频| www日本在线高清视频| 91精品三级在线观看| 99香蕉大伊视频| 日韩 亚洲 欧美在线| 亚洲国产精品一区二区三区在线| 人妻人人澡人人爽人人| 色94色欧美一区二区| 最近中文字幕高清免费大全6| a级片在线免费高清观看视频| xxx大片免费视频| 99久久人妻综合| 日本色播在线视频| 国产精品蜜桃在线观看| 欧美亚洲 丝袜 人妻 在线| 久久久久精品性色| 亚洲精品aⅴ在线观看| 欧美人与性动交α欧美软件| 在线天堂最新版资源| 久久韩国三级中文字幕| 五月开心婷婷网| 国产综合精华液| 欧美老熟妇乱子伦牲交| 黑人欧美特级aaaaaa片| 中文字幕人妻丝袜一区二区 | 少妇熟女欧美另类| 丝袜人妻中文字幕| 韩国高清视频一区二区三区| 亚洲美女黄色视频免费看| 一级a爱视频在线免费观看| 天天操日日干夜夜撸| 夜夜骑夜夜射夜夜干| 国产成人精品在线电影| 亚洲欧美一区二区三区久久| 熟女电影av网| 国语对白做爰xxxⅹ性视频网站| av有码第一页| 亚洲婷婷狠狠爱综合网| 久久女婷五月综合色啪小说| 大片免费播放器 马上看| 女人久久www免费人成看片| 丰满迷人的少妇在线观看| 少妇被粗大的猛进出69影院| 国产人伦9x9x在线观看 | 国产av国产精品国产| 人妻一区二区av| 两个人看的免费小视频| 十八禁网站网址无遮挡| 最近中文字幕高清免费大全6| 亚洲成av片中文字幕在线观看 | 一区福利在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产人伦9x9x在线观看 | 99久久综合免费| 成年人免费黄色播放视频| 最近中文字幕高清免费大全6| 亚洲欧美成人精品一区二区| 国产视频首页在线观看| 伦精品一区二区三区| 青青草视频在线视频观看| 男人添女人高潮全过程视频| 亚洲内射少妇av| 男人添女人高潮全过程视频| 国产亚洲欧美精品永久| 男女午夜视频在线观看| av福利片在线| 亚洲欧洲日产国产| 晚上一个人看的免费电影| 1024香蕉在线观看| 中国三级夫妇交换| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图 男人天堂 中文字幕| 国产无遮挡羞羞视频在线观看| 天堂中文最新版在线下载| 中文字幕精品免费在线观看视频| 午夜福利在线免费观看网站| av网站在线播放免费| 免费少妇av软件| 国产精品偷伦视频观看了| 啦啦啦啦在线视频资源| 制服丝袜香蕉在线| 制服人妻中文乱码| 日韩在线高清观看一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 一个人免费看片子| 五月伊人婷婷丁香| 国产无遮挡羞羞视频在线观看| 成人黄色视频免费在线看| 久久精品夜色国产| 女性生殖器流出的白浆| 国产免费视频播放在线视频| 1024香蕉在线观看| 久久人人爽av亚洲精品天堂| 精品视频人人做人人爽| 最近最新中文字幕免费大全7| 国产精品久久久av美女十八| 极品人妻少妇av视频| 久久久久久免费高清国产稀缺| 久久久亚洲精品成人影院| 一区二区三区乱码不卡18| 成年美女黄网站色视频大全免费| 午夜福利视频精品| 十八禁网站网址无遮挡| 久久 成人 亚洲| 人妻一区二区av| av国产精品久久久久影院| 日韩欧美一区视频在线观看| 久久久国产一区二区| 免费高清在线观看日韩| 咕卡用的链子| 午夜福利在线免费观看网站| 免费久久久久久久精品成人欧美视频| a级片在线免费高清观看视频| 亚洲内射少妇av| 国产又色又爽无遮挡免| 免费久久久久久久精品成人欧美视频| 国产伦理片在线播放av一区| 免费久久久久久久精品成人欧美视频| 久久久a久久爽久久v久久| 日本vs欧美在线观看视频| 香蕉精品网在线| 男女啪啪激烈高潮av片| 国产精品久久久久成人av| 欧美精品一区二区大全| 精品少妇内射三级| 99国产综合亚洲精品| 人人澡人人妻人| 国产色婷婷99| 黑人猛操日本美女一级片| 国产乱人偷精品视频| 婷婷色麻豆天堂久久| 欧美国产精品va在线观看不卡| 青春草国产在线视频| 下体分泌物呈黄色| 国产精品一区二区在线观看99| 国产精品亚洲av一区麻豆 | 久久久久久久亚洲中文字幕| 一级片'在线观看视频| 18禁动态无遮挡网站| av有码第一页| 久久精品国产综合久久久| 丝袜喷水一区| 免费高清在线观看视频在线观看| 欧美日韩亚洲高清精品| 婷婷色综合大香蕉| 人妻系列 视频| 国产成人精品久久二区二区91 | 啦啦啦视频在线资源免费观看| 亚洲人成网站在线观看播放| xxxhd国产人妻xxx| 亚洲第一青青草原| 99久久综合免费| 免费大片黄手机在线观看| 黑人欧美特级aaaaaa片| 久久久久久久久久久免费av| 丰满迷人的少妇在线观看| 午夜免费观看性视频| 成人18禁高潮啪啪吃奶动态图| 久热这里只有精品99| 日韩制服骚丝袜av| 精品国产一区二区三区四区第35| 日韩制服骚丝袜av| 国产淫语在线视频| 亚洲精品乱久久久久久| kizo精华| 久久综合国产亚洲精品| 国产高清不卡午夜福利| 嫩草影院入口| 纵有疾风起免费观看全集完整版| 免费日韩欧美在线观看| 老鸭窝网址在线观看| 国产老妇伦熟女老妇高清| 国产免费现黄频在线看| 欧美 亚洲 国产 日韩一| 免费观看av网站的网址| 97精品久久久久久久久久精品| 纵有疾风起免费观看全集完整版| 一本大道久久a久久精品| 亚洲精品自拍成人| 97精品久久久久久久久久精品| 69精品国产乱码久久久| 婷婷色av中文字幕| 色婷婷av一区二区三区视频| 日韩制服丝袜自拍偷拍| 街头女战士在线观看网站| 熟妇人妻不卡中文字幕| av福利片在线| 亚洲三级黄色毛片| 亚洲精品国产一区二区精华液| 久久精品国产鲁丝片午夜精品| 亚洲综合色网址| 免费黄频网站在线观看国产| av天堂久久9| 久久久久久久亚洲中文字幕| 亚洲精品日韩在线中文字幕| 晚上一个人看的免费电影| 亚洲熟女精品中文字幕| 在线观看一区二区三区激情| 777米奇影视久久| 人妻一区二区av| 久久久久久久久免费视频了| 亚洲久久久国产精品| 99九九在线精品视频| 国产白丝娇喘喷水9色精品| 成年人午夜在线观看视频| 成人毛片60女人毛片免费| 亚洲四区av| 国产精品无大码| 亚洲五月色婷婷综合| 国产麻豆69| 亚洲av在线观看美女高潮| 欧美另类一区| 亚洲精品一二三| 中文精品一卡2卡3卡4更新| a级片在线免费高清观看视频| 国产精品女同一区二区软件| 中文字幕人妻丝袜制服| 亚洲综合精品二区| 婷婷色麻豆天堂久久| 麻豆精品久久久久久蜜桃| 精品国产一区二区久久| 亚洲国产精品国产精品| 激情五月婷婷亚洲| 久久鲁丝午夜福利片| 天堂8中文在线网| 久久人妻熟女aⅴ| 超碰97精品在线观看| 色吧在线观看| 一区福利在线观看| 啦啦啦视频在线资源免费观看| 人妻一区二区av| 午夜老司机福利剧场| 欧美日韩成人在线一区二区| 国产成人欧美| xxx大片免费视频| 99re6热这里在线精品视频| 精品少妇内射三级| freevideosex欧美| 九色亚洲精品在线播放| 国产极品天堂在线| 一个人免费看片子| xxxhd国产人妻xxx| 中文天堂在线官网| 黑人巨大精品欧美一区二区蜜桃| 亚洲内射少妇av| 久久久国产精品麻豆| 777久久人妻少妇嫩草av网站| 久久99精品国语久久久| 少妇精品久久久久久久| 国产高清国产精品国产三级| 天天影视国产精品| 成人18禁高潮啪啪吃奶动态图| 欧美激情高清一区二区三区 | 伦理电影大哥的女人| 亚洲欧美一区二区三区久久| 午夜福利网站1000一区二区三区| 热re99久久精品国产66热6| av又黄又爽大尺度在线免费看| 久热这里只有精品99| 9191精品国产免费久久| 日韩av在线免费看完整版不卡| 日韩一区二区三区影片| 可以免费在线观看a视频的电影网站 | 下体分泌物呈黄色| 免费播放大片免费观看视频在线观看| 国产亚洲精品第一综合不卡| 色视频在线一区二区三区| 18禁国产床啪视频网站| 国产日韩一区二区三区精品不卡| 99re6热这里在线精品视频| 可以免费在线观看a视频的电影网站 | 久久韩国三级中文字幕| 99精国产麻豆久久婷婷| 亚洲成人手机| 寂寞人妻少妇视频99o| 免费在线观看视频国产中文字幕亚洲 | 在线观看美女被高潮喷水网站| 天堂中文最新版在线下载| 国产精品蜜桃在线观看| 精品一区二区三区四区五区乱码 | 精品国产乱码久久久久久小说| 日韩一区二区视频免费看| 国产精品欧美亚洲77777| 亚洲经典国产精华液单| 一区二区三区乱码不卡18| 波多野结衣一区麻豆| 国产精品久久久久久久久免| 成人毛片60女人毛片免费| 麻豆乱淫一区二区| 免费高清在线观看日韩| 建设人人有责人人尽责人人享有的| 成人国产麻豆网| 免费在线观看完整版高清| 亚洲,一卡二卡三卡| 亚洲精品日韩在线中文字幕| 女的被弄到高潮叫床怎么办| 国产精品欧美亚洲77777| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 十八禁高潮呻吟视频| 99久久中文字幕三级久久日本| 久久精品国产鲁丝片午夜精品| 久久午夜综合久久蜜桃| 岛国毛片在线播放| 麻豆精品久久久久久蜜桃| av在线观看视频网站免费| 国产乱人偷精品视频| av又黄又爽大尺度在线免费看| 久久久国产精品麻豆| 久久午夜福利片| 欧美精品一区二区免费开放|