楊明茹,周志軍,常巖林,張艷霞
(河北大學(xué)生命科學(xué)學(xué)院,河北保定 071002)
4種昆蟲基因組中的線粒體假基因
楊明茹,周志軍,常巖林,張艷霞
(河北大學(xué)生命科學(xué)學(xué)院,河北保定 071002)
為了進(jìn)一步了解昆蟲核基因組中線粒體假基因(Numts)序列分布情況,避免Numts序列對基于線粒體DNA(mt DNA)進(jìn)行系統(tǒng)發(fā)育關(guān)系研究結(jié)果的誤導(dǎo),利用Blast N對GenBank中已完成核基因組和mtDNA測序的4種昆蟲核基因組中的Numts序列進(jìn)行檢索,結(jié)果表明:岡比亞按蚊Anophelesgambiae中沒有Numts序列;黑腹果蠅Drosophilamelanogaster中僅有少量Numts序列;赤擬谷盜Triboliumcastaneum和意大利蜜蜂Apismellifera基因組中Numts序列超過100條,尤其是意大利蜜蜂中的Numts序列涵蓋全部mtDNA.ND2,ND4,ND5,COⅠ與lrRNA向核內(nèi)轉(zhuǎn)移頻率高于其他mt DNA基因片段,因此,在使用其進(jìn)行系統(tǒng)發(fā)育關(guān)系研究時需加倍謹(jǐn)慎.
mt DNA;Numts;基因組
線粒體DNA(mt DNA)具有結(jié)構(gòu)簡單、進(jìn)化速率快和母系遺傳等特征,是研究基因組結(jié)構(gòu)和基因表達(dá)的良好模型,同時也是在分子進(jìn)化和系統(tǒng)發(fā)育研究中應(yīng)用最廣的分子標(biāo)記[1].隨著聚合酶鏈?zhǔn)椒磻?yīng)(PCR)和DNA測序技術(shù)的發(fā)展,mtDNA作為分子標(biāo)記被廣泛用于不同類群的系統(tǒng)進(jìn)化和群體遺傳結(jié)構(gòu)研究[2-4].
線粒體假基因(nuclear mitochondrial pseudogenes,Numts)是在核基因組中發(fā)現(xiàn)的、與mtDNA高度相似的DNA片段[5],通常被認(rèn)為是mtDNA向核基因組轉(zhuǎn)移的結(jié)果,在真菌、無脊椎動物、脊椎動物和植物中都有Numts存在[6-8].由于核基因組中的Numts序列進(jìn)化速率較mt DNA慢,更接近于mtDNA的祖先序列[9-12],因此,在使用通用引物進(jìn)行擴(kuò)增時,核基因組中的Numts極易被優(yōu)先擴(kuò)增出來或與mt DNA靶序列一起擴(kuò)增出來[13-15].Numts序列的存在不僅增加了獲得mt DNA靶序列的難度,而且如果將Numts序列誤作為mtDNA靶序列使用,甚至?xí)贸鲥e誤的結(jié)論[14-17].Sorenson等[18]分別將在斑胸樹鴨Dendrocygnaarcuata中發(fā)現(xiàn)的COⅠ-Numts序列和mtDNA基因序列用于樹鴨屬系統(tǒng)發(fā)育關(guān)系分析,發(fā)現(xiàn)其分支拓?fù)浣Y(jié)構(gòu)完全不同.同時,Numts也可為系統(tǒng)進(jìn)化研究提供有益的線索[16,19],與內(nèi)含子、衛(wèi)星序列和轉(zhuǎn)位因子等冗余DNA一樣,Numts不受進(jìn)化的選擇作用,保留著更多的祖先特征,可以為物種的分子進(jìn)化研究提供大量的信息[20],比如,人們已把Numts作為分子標(biāo)記,對人[21]和擬南芥[22]進(jìn)行了研究.
mtDNA向核內(nèi)轉(zhuǎn)移現(xiàn)象非常普遍.2001年,Bensasson等[19]統(tǒng)計發(fā)現(xiàn)在80余種真核生物(包括20余種昆蟲)中存在Numts序列.此后,Numts在弄蝶[23]、蜜蜂[24]、螞蟻[25]、蟬[26]、石蛃[27]等類群中被報道.在Genbank中,以“Insecta Numt”作為關(guān)鍵詞,進(jìn)行Numts序列檢索,共獲得881條Numts序列,隸屬于昆蟲綱6個目,分別為直翅目、鱗翅目、膜翅目、石蛃目、雙翅目和半翅目;涵蓋7種基因類型,分別為COⅠ(部分)、ND5(部分)、COⅠ(部分)-trn L-COⅡ(部分)、trn L-COⅡ(部分)、ND2(部分)-COⅠ(部分)、COⅢ(部分)、ATP6(部分)[23,25-27,28-35].
此前關(guān)于Numts的報道,都是基于單一物種基因組中的Numts分析,且不同研究所使用的參數(shù)設(shè)置也不盡相同,難以進(jìn)行比較.為了進(jìn)一步深入了解昆蟲核基因組中Numts序列分布情況,對基因組序列組裝基本完成(Y染色體除外)的4種昆蟲中的Numts序列的大小、數(shù)目及分布特點等進(jìn)行了研究.
1.1 實驗數(shù)據(jù)來源
從公共數(shù)據(jù)庫NCBI中下載物種的基因組數(shù)據(jù),見表1.
表1 實驗物種及基因組數(shù)據(jù)來源Tab.1 Specimens and data collection of the genome
1.2 實驗方法
分別以mt DNA編碼的37個基因(13個蛋白質(zhì)編碼基因、22個tRNA基因和2個r RNA基因)為誘餌序列,在NCBI中逐個對其核基因組序列進(jìn)行Blast N同源性序列比對檢索,分別統(tǒng)計4種昆蟲基因組不同染色體上的Numts序列.在進(jìn)行Numts序列統(tǒng)計時,為避免假陽性和減少遺漏早期進(jìn)化的Numts序列,選擇了較保守的期望值(E值為10-4)[6,44-46],沒有統(tǒng)計序列長度≤50 bp的檢索結(jié)果,同時,對相鄰位點的Numts序列進(jìn)行核查以確定他們是否屬于同一Numts序列.
2.1 4種昆蟲核基因組中的Numts分布
NCBI-Blast N同源性序列分析結(jié)果(如表2):岡比亞按蚊基因組中沒有檢測到Numts;黑腹果蠅中檢測到25條Numts序列,總長度為2.634 kb,其中,最長的Numts序列長度為541 bp,對應(yīng)于mt DNA的ND2(部分)和COⅠ(部分)及它們之間的3個tRNA基因簇(trn W-trnC-trn Y).赤擬谷盜中檢測到123條Numts序列,總長度為18.485 kb,其中,最長的Numts序列長度為951 bp,對應(yīng)于mtDNA的ND4(部分);意大利蜜蜂中的Numts含量最多,共檢測到994條Numts序列,總長度達(dá)327.102 kb,其Numts序列已涵蓋mt DNA的全部序列.其中,最長的Numts序列長度為1 267 bp,對應(yīng)于mtDNA的4個tRNA基因(trn M-trn Q-trn A-trnI)和整個ND2.所檢測到的Numts序列長短不一,但大多數(shù)小于300 bp(表2).
表2 4種昆蟲基因組中的Numts大小分布(Blast N檢索E值為10-4)Tab.2 Size distribution of Numts in four insect genomes detected by Blast N at a threshold of 10-4
圖1 4種昆蟲基因組中染色體長度及Numts序列分布情況Fig.1 Chromosome length and the distribution of Numts in four insect genomes
2.2 不同染色體中的Numts分布
4種昆蟲基因組中,不同染色體上的Numts分布情況如圖1所示,黑腹果蠅的5個常染色體和1個X染色體,赤擬谷盜的9個常染色體和1個X染色體及意大利蜜蜂的15個常染色體和1個X染色體中都有Numts分布.其中,黑腹果蠅的4號染色體、赤擬谷盜的3號染色體,意大利蜜蜂的X染色體檢測到的Numts序列最多,總長度分別為0.81,5.40,38.20 kb;而黑腹果蠅的2L號染色體,赤擬谷盜的2號和10號染色體,意大利蜜蜂的9號染色體檢測到的Numts序列最少,長度分別僅為0.11,0.54,9.68 kb.意大利蜜蜂的Numts含量明顯高于赤擬谷盜與黑腹果蠅,僅Numts序列含量最少的9號染色體的Numts數(shù)目都遠(yuǎn)高于黑腹果蠅基因組的整體Numts量.
2.3 不同線粒體基因向核內(nèi)轉(zhuǎn)移頻率差異分布
mtDNA中,不同的基因片段向核內(nèi)轉(zhuǎn)移的頻率不同,其中,重排發(fā)生頻繁、長度較短的tRNA基因的轉(zhuǎn)移頻率較低,而位置相對固定,長度較長的蛋白質(zhì)編碼基因和rRNA基因的轉(zhuǎn)移頻率較高,ND2,ND4,ND5,COⅠ與lrRNA基因的轉(zhuǎn)移的次數(shù)較高(如圖2).
圖2 不同mt DNA編碼基因?qū)?yīng)的Numts數(shù)量Fig.2 Numbers of Numts of different mt DNA encoding genes
3.1 4種昆蟲基因組中Numts序列比較
生物在長期進(jìn)化過程中,mtDNA向核內(nèi)轉(zhuǎn)移已被證實,并且很可能仍在持續(xù)進(jìn)行之中,已經(jīng)報道的不同物種mtDNA向核內(nèi)轉(zhuǎn)移的數(shù)量差異很大[6-7].
基于相同的參數(shù)設(shè)置,對4種昆蟲基因組中的Numts序列進(jìn)行研究發(fā)現(xiàn):2種雙翅目昆蟲基因組中沒有或僅含有少量Numts,鞘翅目的赤擬谷盜基因組中Numts數(shù)量較多,膜翅目意大利蜜蜂基因組中的Numts數(shù)量最多,與之前的報道基本一致[6-7,24,47].
本研究發(fā)現(xiàn)岡比亞按蚊、黑腹果蠅、赤擬谷盜和意大利蜜蜂基因組的Numts序列總長度分別為0,2.6,18.5,327 kb.之前報道黑腹果蠅基因組的Numts序列總長度分別為0.5[6],10.3[7]和0.8 kb[24],赤擬谷盜中分別為31.2 kb[7]和8.8 kb[24],意大利蜜蜂中分別為0[48],172[7],237 kb[24]和272 kb[47].Pamilo等[24]發(fā)現(xiàn)赤擬谷盜中ND4與ND5的轉(zhuǎn)移頻率很高,約占總量的1/2;筆者發(fā)現(xiàn)lrRNA的轉(zhuǎn)移頻率同樣很高,三者約占總量的2/3.Behura等[47]發(fā)現(xiàn)意大利蜜蜂的10號染色體Numts含量最少,COⅠ轉(zhuǎn)移頻率最高;而本課題組發(fā)現(xiàn)9號染色體Numts序列最少,ND2轉(zhuǎn)移頻率高于COⅠ.造成上述差異的主要原因可能是由于實驗參數(shù)設(shè)置和基于的基因組組裝版本差異.所檢測到的Numts序列長度多數(shù)小于300 bp(表2),表明較小的基因片段具有更高的向核內(nèi)轉(zhuǎn)移效率.
此前報道在蚱蜢[28]、蚜蟲[49]、伊蚊[30]和沙漠蝗[50]的一些基因具有很高的轉(zhuǎn)移頻率,而在一些虎甲中Numts卻十分罕見[51].由于蚱蜢和蚜蟲是不完全變態(tài)昆蟲,而岡比亞按蚊、黑腹果蠅、意大利蜜蜂、赤擬谷盜及虎甲都是完全變態(tài)昆蟲.赤擬谷盜和意大利蜜蜂基因組中檢測到大量Numts序列,推翻了此前關(guān)于完全變態(tài)昆蟲中缺乏Numts的觀點[51].
本研究涉及的4種昆蟲基因組大小差異不大,因此,不能用“基因組越大Numts越多”的觀點[7]解釋這些物種間Numts的數(shù)量差異.Hazkani-Covo等[52]發(fā)現(xiàn)人類基因組中的Numts序列僅30%來自mt DNA直接轉(zhuǎn)移,其余70%則由轉(zhuǎn)移后的mt DNA片段在核內(nèi)復(fù)制、轉(zhuǎn)座而成.Tourmen等[53]發(fā)現(xiàn)一些重復(fù)的Numts的側(cè)翼區(qū)域都是長末端重復(fù)序列(LTR),表明核基因組中存在Numts序列復(fù)制、轉(zhuǎn)座的機(jī)制.此前,有報道認(rèn)為意大利蜜蜂基因組的重組率遠(yuǎn)高于黑腹果蠅和岡比亞按蚊[54],那么基因組中Numts數(shù)量變化是否與基因組的重組率具有一定相關(guān)性?仍有待于進(jìn)一步的研究.
3.2 Numts序列對分子進(jìn)化研究的影響
mtDNA向核內(nèi)轉(zhuǎn)移的頻率決定于細(xì)胞內(nèi)的競爭強(qiáng)度、父系基因滲透概率和物種種群數(shù)量[55].隨著在更多物種中的Numts序列發(fā)現(xiàn),如何處理其對分子進(jìn)化研究的影響成為我們不得不面對的問題.
首先,在使用通用引物對mt DNA基因進(jìn)行擴(kuò)增時,應(yīng)盡量選擇線粒體含量較豐富的組織或器官[56];其次,可以通過設(shè)計特異性引物、以長距PCR產(chǎn)物為模板進(jìn)行二次PCR,RT-PCR等方法避免Numts序列干擾[19,56-58];最后,可以通過Numts序列特征識別所獲得數(shù)據(jù)中的假基因.蛋白質(zhì)編碼基因?qū)?yīng)的Numts序列,通常會由于堿基替換或插入/缺失導(dǎo)致移碼突變或終止突變.例如,周志軍等[35]利用線粒體COⅠ基因片段進(jìn)行暗褐蟈螽不同地理種群間的遺傳分化研究時,發(fā)現(xiàn)5條COⅠ-Numts序列,其長度略短于mtDNACOⅠ,存在2處堿基缺失(3 bp和21 bp),在另外2條COⅠ-Numts中還存在額外的1 bp缺失.除了這些明顯的Numts特征外,也可以通過翻譯后的氨基酸序列是否發(fā)生保守位點突變加以判斷.Sorenson等[59]在熊斑樹鴨核基因組發(fā)現(xiàn)COⅠ-Numts與mtDNA-COⅠ相比,不存在堿基插入/缺失,異常的終止密碼子,但其氨基酸序列有7個保守位點發(fā)生了變化.對于tRNA和rRNA基因,Numts序列識別顯得更復(fù)雜,有些學(xué)者提出可以通過比較序列的二級結(jié)構(gòu)來識別Numts[60].
核內(nèi)Numts序列在給基于mtDNA的分子進(jìn)化研究帶來困難的同時,也提供了一個新的有力工具.首先,可以根據(jù)Numts中保留的基因信息確定物種之間的親緣關(guān)系和進(jìn)化距離.通過分別構(gòu)建mt DNA和Numts的進(jìn)化關(guān)系樹,可以確定mt DNA和Numts,不同Numts之間的分歧時間.例如,張鳳英等采用上述方法發(fā)現(xiàn)在擬穴青蟹的同一個體中存在2類Numts序列,分別代表了2次核整合事件[61].其次,可以作為系統(tǒng)發(fā)育研究的外群.例如,在人類起源問題的研究中,Zischler等[62]使用人類核基因組中的一段D-loop區(qū)的Numts序列作為外群,證實了現(xiàn)代人類起源于非洲的假說,結(jié)束了很久以來關(guān)于現(xiàn)代人類起源地的爭論.Hay等[63]用cytb-Numts作為外群,構(gòu)建系統(tǒng)發(fā)育樹分析發(fā)現(xiàn)爬行類的Sphenodonpunctatus僅僅是Sphenodonguntheri的同物異名.第三,Numts序列作為分子標(biāo)記.同一段Numts序列在近源種間是否存在及其變異程度,可以反映物種間的親緣關(guān)系遠(yuǎn)近.Sato等[64]分別使用Numts序列和mtDNA序列,重建了達(dá)爾文雀系統(tǒng)發(fā)育關(guān)系,結(jié)果顯示,2種序列建立的系統(tǒng)發(fā)育樹分支拓?fù)浣Y(jié)構(gòu)基本一致.Hazkani-Covo利用Numts序列構(gòu)建了5種靈長類動物系統(tǒng)發(fā)育樹,結(jié)果支持人類-黑猩猩的姊妹群關(guān)系[65].
綜上所述,Numts序列給基于mt DNA的分子進(jìn)化研究帶來挑戰(zhàn)的同時,也帶來了新的契機(jī).相信隨著更多物種基因組測序計劃的完成,對Numts序列研究的逐步深入,Numts序列必將在分子進(jìn)化研究中展現(xiàn)更大的價值.
[1]BOORE J L.Animal mitochondrial genomes[J].Nucleic Acids Res,1999,27(8):1767-1780.
[2]AVISE J C,AMOLD J,BALL R M,et al.Intraspecific phylogeography:the mitochondrial DNA bridge between population genetics and systematics[J].Annu Rev Ecol Syst,1987,18:489-522.
[3]徐其放,陳嘉昌,朱世杰,等.動物線粒體DNA的特異結(jié)構(gòu)及應(yīng)用分子系統(tǒng)學(xué)分析的方法[J].中國比較醫(yī)學(xué)雜志,2005,15(5):315-319.
XU Qifang,CHEN Jiachang,ZHU Shijie,et al.Structural characteristics of animal's mitochondrial DNA and its application on molecular systematics[J].Chinese Journal of Comparative Medicine,2005,15(5):315-319.
[4]BOORE J L,BROWN W M.Big trees from little genomes:mitochondrial gene order as a phylogenetic tool[J].Curr Opin Genet Dev,1998,8(6):668-674.
[5]LOPEZ J V.Numt,a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat[J].J Mol Evol,1994,39:174-190.
[6]RICHLY E,LEISTER D.Numts in sequenced eukaryotic genomes[J].Mol Biol Evol,2004,21(6):1081-1084.
[7]HAZKANI-COVO E,ZELLER R M,MARTIN W.Molecular poltergeists:mitochondrial DNA copies(numts)in sequenced nuclear genomes[J].PLoS Genet,2010,6(2):e1000834.
[8]SACERDOT C,CASAREGOLA S,LAFONTAINE I,et al.Promiscuous DNA in the nuclear genomes of hemiascomycetous yeasts[J].FEMS Yeast Res,2008,8:846-857.
[9]BROWN W M,GEORGE M,WILSON A C.Rapid evolution of animal mitochondrial DNA[J].Proc Natl Acad Sci USA,1979,76(4):1967-1971.
[10]TAMURA K.The rate and pattern of nucleotide substitution in Drosophila mitochondrial DNA[J].Mol Bid Ed,1992,9(5):814-825.
[11]ARCTANDER P.Comparison of a mitochondrial gene and a corresponding nuclear pseudogene[J].Proc R Soc Lond Biol,1995,262:13-19.
[12]PERNA N T,KOCHER T D.Mitochondrial DNA:molecular fossils in the nucleus[J].Current Biology,1996,6(2):128-129.
[13]KUYL A C,KUIKEN C L,DEKKER J T,et al.Nuclear counterparts of the cytoplasmic mitochondrial 12Sr RNA gene:a problem of ancient DNA and molecular phylogenies[J].J Mol Evol,1995,40(6):652-657.
[14]ZH ANG Dexing,HEWITT G M.Nuclear integrations:challenges for mitochondrial DNA markers[J].Trends in Ecology and Evolution,1996,11(6):247-251.
[15]SONG H,BUHAY J E,WHITING M F,et al.Many species in one:DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified[J].PNAS,2008,105(36):13486-13491.
[16]ZH ANG Dexing,HEWITT G M.Nuclear DNA analyses in genetic studies of populations:practice,problems and prospect[J].Molecular Ecology,2003,12:563-584.
[17]LEISTER D.Origin,evolution and genetic effects of nuclear insertions of organelle DNA[J].Trends Genetics,2005,21(12):655-663.
[18]SORENSON M D,QUINN T W.Numt:A challenge for avian systematics and population biology[J].The Auk,1998,115(1):214-221.
[19]BENSASSON D,ZHANG Dexing,HARTL D L,et al.Mitochondrial pseudogenes:evolution's misplaced witnesses[J].Trends Ecol Evol,2001,16(6):314-321.
[20]ZUCKERKANDL E.Why so many noncoding nucleotides?The eukaryote genome as an epigenetic machine[J].Genetica,2002,115(1):105-129.
[21]THOMAS R,ZISCHLER H,P A··A··BO S,et al.Novel mitochondrial DNA insertion polymorphism and its usefulness for human population studies[J].Hum Biol,1996,68(6):847-854.
[22]ULLRICH H,LATTIG K,BRENNICKE A,et al.Mitochondrial DNA variations and nuclear RFLPs reflect different genetic similarities among 23 Arabidopsis thaliana ecotypes[J].Plant Mol Biol,1997,33:37-45.
[23]HEBERT P D,PENTON E H,BURNS J M,et al.Ten species in one:DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator[J].Proc Natl Acad Sci USA,2004,101(41):14812-14817.
[24]PAMILO P,VILJAKAINEN L,VIHAVAINEN A.Exceptionally high density of Numts in the honeybee genome[J].Mol Biol and Evol,2007,24(6):1340-1346.
[25]MARTINS J Jr,SOLOMON S E,MIKHEYEV A S,et al.Nuclear mitochondrial-like sequences in ants:evidence fromAtta cephalotes(Formicidae:Attini)[J].Insect Mol Biol,2007,16(6):777-784.
[26]LEE Y J,HILL K B R.Systematic revision of the genus Psithyristria St l(Hemiptera:Cicadidae)with seven new species and a molecular phylogeny of the genus and higher taxa[J].Syst Entomol,2010,35(2):277-305.
[27]BALDO L,DE QUEIROZ A,HEDIN M,et al.Nuclear-mitochondrial sequences as witnesses of past interbreeding and population diversity in the jumping bristletail mesomachilis[J].Mol Biol Evol,2011,28(1):195-210.
[28]BENSASSON D,ZHANG Dexing,HEWITT G M.Frequent assimilation of mitochondrial DNA by grasshopper nuclear genomes[J].Mol Biol Evol,2000,17(3):406-415.
[29]SAWAMURA K,KOGANEBUCHI K,SATO H,et al.Potential gene flow in natural populations of theDrosophila ananassaespecies cluster inferred from a nuclear mitochondrial pseudogene[J].Mol Phylogenet Evol,2008,48(3):1087-1093.
[30]HLAING T,TUN-LIN W,SOMBOON P,et al.Mitochondrial pseudogenes in the nuclear genome ofAedesaegyptimosquitoes:implications for past and future population genetic studies[J].BMC Genetics,2009,10:11.
[31]MOULTON M J,SONG H,WHITING M F.Assessing the effects of primer specificity on eliminating numt coamplification in DNA barcoding:a case study from Orthoptera(Arthropoda:Insecta)[J].Mol Ecol Resour,2010,10(4):615-627.
[32]ANDRIANOV B V,GORYACHEVA I I,MUGUE N S,et al.Comparative analysis of the mitochondrial genomes inDrosophilavirilisspecies group(Diptera:Drosophilidae)[J].Trends Evol Biol,2010:e4.
[33]MAGNACCA K N,BROWN M J.Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus(Nesoprosopis)bees(Hymenoptera:Colletidae)[J].BMC Evol Biol,2010,10:174.
[34]BORING C A,SHARANOWSKI B J,SHARKEY M J.Maxfischeriinae:a new braconid subfamily(Hymenoptera)with highly specialized egg morphology[J].Systematic Entomology 2011,36:529-548.
[35]周志軍,張艷霞,常巖林,等.暗褐蟈螽不同地理種群間的遺傳分化[J].遺傳,2011,33(1):75-80.
ZHOU Zhijun,ZHANG Yanxia,CHANG Yanlin,et al.Genetic differentiation among different geographic populations ofGampsocleissedakovii[J].Hereditas,2011,33(1):75-80.
[36]BEARD C B,HAMM D M,COLLINS F H.The mitochondrial genome of the mosquitoAnophelesgambiae:DNA sequence,genome organization,and comparisons with mitochondrial sequences of other insects sequences of other insects[J].Insect Mol Biol,1993,2(2):103-124.
[37]HOLT R A,MANI SUBRAMANIAN G,HALPERN A,et al.The genome sequence of the Malaria MosquitoAnopheles gambiae[J].Science,2002,298:129-149.
[38]LEWIS D L,F(xiàn)ARR C L,KAGUNI L S.Drosophilamelanogastermitochondrial DNA:completion of the nucleotide sequence and evolutionary comparisons[J].Insect Mol Biol,1995,4(4):263-278.
[39]ADAMS M D,CELNIKER S E,HOLT R A,et al.The genome sequence ofDrosophilamelanogaster[J].Science,2000,287(5461):2185-2195.
[40]FRIEDRICH M,MUQIM N.Sequence and phylogenetic analysis of the complete mitochondrial genome of the flour beetleTriboliumcastanaeum[J].Mol Phylogenet Evol,2003,26(3):502-512.
[41]TRIBOLIUM GENOME SEQUENCING CONSORTIUM[TGSC].The genome of the model beetle and pestTribolium castaneum[J].Nature,2008,452:949-955.
[42]CROZIER R H,CROZIER Y C.The mitochondrial genome of the honeybeeApismellifera:complete sequence and genome organization sequence and genome organization[J].Genetics,1993,133(1):97-117.
[43]HONEYBEE GENOME SEQUENCING CONSORTIUM[HGSC].Insights into social insects from the genome of the honeybeeApismellifera[J].Nature,2006,443:931-949.
[44]APARICIO S,CHAPMAN J,STUPKA E,et al.Whole-genome shotgun assembly and analysis of the genome ofFugu rubripes[J].Science,2002,297:1301-1310.
[45]ROST B.Twilight zone of protein sequence alignments[J].Protein Eng,1999,12(2):85-94.
[46]ANTUNES A,RAMOS M J.Discovery of a large number of previously unrecognized mitochondrial pseudogenes in fish genomes[J].Genomics,2005,86:708-717.
[47]BEHURA S K.Analysis of nuclear copies of mitochondrial sequences in honey beeApismelliferagenome[J].Mol Biol and Evol,2007,24(7):1492-1505.
[48]PEREIRA S L,BAKER A J.Low number of mitochondrial pseudogenes in the chicken(Gallusgallus)nuclear genome: implications for molecular inference of population history and phylogenetics[J].BMC Evol Biol,2004,4:17.
[49]SUNNUCKS P,HALES D F.Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genusSitobion(Hemiptera:Aphididae)[J].Mol Biol Evol,1996,13(3):510-524.
[50]ZHANG Dexing,HEWITT G M.Highly conserved nuclear copies of the mitochondrial control region in the desert locustSchistocercagregaria:some implications for population studies[J].Mol Ecol,1996,5:295-300.
[51]PONS J,VOGLER A P.Complex pattern of coalescence and fast evolution of a mitochondrialrRNApseudogene in a recent radiation of tiger beetles[J].Mol Biol Evol,2005,22:991-1000.
[52]HAZKANI-COVO E,SOREK R,GRAUR D.Evolutionary dynamics of large numts in the human genome,rarity of independent insertions and abundance of postinsertion duplications[J].J Mol Evol,2003,56:169-174.
[53]TOURMEN Y,BARIS O,DESSEN P,et al.Structure and chromosomal distribution of human mitochondrial pseudogenes[J].Genomics,2002,80(1):71-77.
[54]BEYE M,GATTERMEIER I,HASSELMANN M,et al.Exceptionally high levels of recombination across the honey bee genome[J].Genome Res,2006,16:1339-1344.
[55]YAMAUCHI A.Rate of gene transfer from mitochondria to nucleus:effects of cytoplasmic inheritance system and intensity of intracellular competition[J].Genetics,2005,171:1387-1396.
[56]王繼文.動物線粒體假基因的識別及其在進(jìn)化生物學(xué)中的應(yīng)用[J].動物學(xué)雜志,2004,39(3):103-108.
WANG Jiwen.Numts identification and utility in evolutionary biology[J].Chinese Journal of Zoology,2004,39(3):103-108.
[57]COLLURA R V,AUERBACH M R,STEWART C B.A quick direct method that can differentiate expressed mitochondrial genes from their nuclear pseudogenes[J].Curr Biol,1996,6(10):1337-1339.
[58]CHENG S,HIGUCHI R,STONEKING M.Complete mitochondrial genome amplification[J].Nature Genetics,1994,7:350-351.
[59]SORENSON M D,F(xiàn)LEISCHER R C.Multiple independent transpositions of mitochondrial DNA control region sequences to the nucleus[J].Proc Natl Acad Sci USA,1996,93:15239-15243.
[60]OLSON L E,YODER A D.Using secondary structure to identify ribosomal numts:cautionary examples from the human genome[J].Mol Biol Evol,2002,19(1):93-100.
[61]張鳳英,馬凌波,喬振國,等.青蟹線粒體COⅠ假基因的分離和特征分析[J].遺傳,2006,28(1):43-49.
ZH ANG Fengying,MA Lingbo,QIAO Zhenguo,et al.Separation and characterization of mitochondrialCOⅠpseudogenes inScyllaparamamosain[J].Hereditas,2006,28(1):43-49.
[62]ZISCHLER H,GEISERT H,HAESELER VON A,et al.A nuclear fossil of the mitochondrial D-loop and the origin of modern humans[J].Nature,1995,378:489-492.
[63]H AY J M,SARRE S D,DAUGHERTY C H.Nuclear mitochondrial pseudogenes as molecular outgroups for phylogenetically isolated taxa:a case study inSphenodon[J].Heredity,2004,93:468-475.
[64]SATO A,TICHY H,O'HUIGIN C,et al.On the origin of Darwin's Finches[J].Mol Biol Evol,2001,18(3):299-311.
[65]HAZKANI-COVO E.Mitochondrial insertions into primate nuclear genomes suggest the use of numts as a tool for phylogeny[J].Mol Biol Evol,2009,26(10):2175-2179.
Nuclear mitochondrial pseudogenes in four sequenced insect genomes
YANG Ming-ru,ZHOU Zhi-jun,CHANG Yan-lin,ZHANG Yan-xia
(College of Life Sciences,Hebei University,Baoding 071002,China)
The aim of this study was to have further information about the distribution of nuclear mitochondrial pseudogenes(Numts)in insect genomes,and to avoid misguidance of Numts sequences in the molecular phylogeny based on mt DNA.Sequences alignment(NCBI-Blast N)was carried out with mitochondrial and corresponding nuclear genome sequences in 4 insect species.The results showed:copy number ranges from none in the African malaria mosquitoAnophelesgambiae,few copies in the fruit flyDrosophilamelanogaster,to more than 100 in the flour beetleTriboliumcastaneumand the honeybeeApis mellifera,especially inA.mellifera,Numts spanned the whole mtDNA.The reconstructed frequency ofND2,ND4,ND5,COⅠandlr RNAintegrations into the nucleus were higher than other mitochondrial genes.So,it needed for doubly cautious when using it for the study of phylogenetic relationships.
mt DNA;Numts;g enome
Q96
A
1000-1565(2012)02-0165-08
2011-09-12
教育部高等學(xué)校博士學(xué)科點專項科研基金資助項目(20101301120006)
楊明茹(1984-),女,河北保定人,河北大學(xué)在讀碩士研究生.
周志軍(1980-),男,山西長治人,河北大學(xué)講師,博士,主要從事直翅目線粒體基因組學(xué)研究.E-mail:zhijunzhou@163.com
趙藏賞)