• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    使用激波控制鼓包的跨聲速超臨界機翼減阻研究

    2012-12-02 01:39:42劉學強AsifSaeed
    關鍵詞:航空學院南京航空航天大學鼓包

    楊 洋 劉學強 Asif Saeed

    (1.西北工業(yè)大學航空學院,西安 ,710072,中國;2.上海飛機設計研究院,上海,200240,中國;3.南京航空航天大學航空宇航學院,南京,210016,中國 )

    Nomenclature

    CLCoefficient of lift

    CDCoefficient of drag

    c Chord length

    Ma Mach number

    CpCoefficient of pressure

    Re Reynolds number

    NLF Natural laminar flow

    T Angle of attack Supercritical(SC)

    L/D Lift to drag ratio

    CFD Computational fluid dynamics

    BWB Blended wing body

    INTRODUCTION

    Almost all the modern jet transports in operation today operate in the transonic flow regime,rather than supersonic.A major portion of their mission is for the sole purpose of fuel economy.Invariably the transonic flow regime is associated with the formation of shock waves which give a drag rise called ″wave drag″.This wave drag increases with shock strength and the falloutis flow separation.Consequently the performance of the aircraft is reduced significantly.Therefore it is of paramount importance for any designer to reduce this wavedrag and many methodologies havebeen used previously for shock control.A review of previous research in the subject reveals the work of Qin,et al[1]who presented a parametric study of thevarious shock controls using suction,blowing and shock control contour bumps.This study showed that a well design two-dimensional bump for the RAE 5243(NLF)airfoil significantly increased the lift to drag ratio by reducing theshock strength and consequently the wave drag.

    K?nig,et al[2]demonstrated the advantages of using th ree-dimensional shock control bump on an unswept transonic wing.Experimental and numerical studies carried out on an array bumps placed spanwise on a modern transonic airfoil.Close agreement was achieved between the wind tunnel test and CFD results which indicated an overall drag reduction of 10%.

    Furthermore Ogawa,et al[3]developed threedimensional bumps for a transonic wing for the purpose of drag reduction and buffet delay.By carrying out both experimental and numerical studies at Ma= 1.3 and by using an optimum spanwise distribution of bumps,an overall drag reduction of 30% was achieved.Qin,et al[4]carried out the design and optimization of the two and the three-dimensional shock control bumps for the RAE 5243(NLF)airfoil using a discrete adjoint solver approach.The adjoint solver was a gradient based optimization technique which used a sequential quadratic programming optimizer to find an optimized design point considering sensitivity derivates for a number of design variables.The optimized two-dimensional bumps resulted in a drag reduction of 18.1% while the optimized three-dimensional bump offered a 20.1%drag reduction.However the three-dimensional bumps were found to be very useful over a wide range of off-design operating conditions.

    Sommerer,et al[5]carried out the numerical optimization of adaptive transonic airfoils with variable camber. Here the two-dimensional bumps were analyzed on the DAVA2 airfoil using the two-dimensional Navier-Stokes solver MUFLO.This analysis also showed encouraging results and the airfoils lift to drag characteristics were significantly improved with the addition of the shock control bump.Qin,et al[6]continued their work and presented an adjoint-based optimization of a blended wing body shape with shock control bumps.In addition to the general geometric parameters the bump spacing was also optimized using an adjoint solver for three-dimensional bumps spanwiseon a swept back wing.The result was an overall L/D gain of 12%.

    Sobieczky,et al[7]developed a theory based on shape modification concept analysis for transonic airfoils.The study boiled down to the design and study of the effects of an expansion shoulder bump for wave drag control.Here a leading edge bump was used to increase the aerodynamic efficiency of a supercritical airfoil and thus widening the region of optimum L/D.

    The supercritical airfoil has numerous advantages compared to the conventional airfoil[8]in the transonic flow regime and thus is the preferred choice of designers all over theworld for its application in transonic wings.We present the design and analysis of the two and the three-dimensional shock control bumps for a supercritical airfoil.The design parameters are the various geometric parameters such as bump height,span,crest location,relative crest and bump spacing.The designed three-dimensional bumps are then placed in a spanwisearray over an unswept transonic wing.However this idea is developed with the concept of a variablegeometry wing using smart materials and/or morphing wing technology in which the bumps would simply ″pop-up″during the design Mach number phase of the mission.Therefore the computations are exerted only at a design Mach number and the effect of transition and performance at off-design conditions(Mach numbers and CL)is beyond the scopeof the present paper.

    1 SIMULATION

    1.1 Flow solver

    All simulations are carried out in the FAST solver which was developed in our research group.In FAST,the finite volume method is used for the spatial discretisation,and the Osher scheme is adopted to compute the interface flux.The temporal discretisation is the Runge-Kutta scheme.The turbulence models in FAST are based on Favre averaging the equations governing the flow.Favre averaging introduces additional terms known as Reynolds stresses which aremodeled using the Boussinesq eddy viscosity concept.This eddy viscosity is modeled by the following equation

    where q is the velocity scale and l the length scale.The Baldwin Lomax turbulence model[9]is used in all the simulations.This model is an algebraic turbulence model because the velocity and length scales are obtained from algebraic relations.It is also commonly referred to as a mixinglength model because it employs Prandtl′s mixing-length hypothesis in modeling length and velocity scales.The reason for selecting this model is that it is robust and provides quicker solution as compared to one equation or two equation turbulence models.It is to be noted that for the purpose of this study the Baldwin Lomax model has been formally validated by the comparison of computed surface pressure distributions with the classic ONERA M 6 wing experimental results by Schmitt,et al[10].A structured mess is generated around the wing geometry and simulated at conditions identical to those of the wind tunnel test(T=3.06°,Ma=0.84 and Re=1.2× 106).Plotting the pressure coefficients on the upper and lower surfaces of the M 6 wing at six different spanwise stations and comparing them with the experimental data reveals a fairly good agreement in the compared Cpvalues.Fig.1 presents the results of this exercise,where y/b means the span direction of the wing and x/c the position of the airfoil.

    1.2 Bump geometry

    The manual placement of the bump is by no means a trivial issue,therefore,the shape of the bump is of utmost significance in achieving the desired results.For the two-dimensional bump,four key characteristics,bump height,bump crest(or chordwise location of the bump),bump length and relative crest,are modified.However the bump height and crest play a pivotal role in the design procedure.For the three-dimensional bump,an additional parameter,bump span,is also considered.Fig.2 shows the generalized key geometric parameters of the two-dimensional and the three-dimensional bumps.It is important to note that all of the mentioned geometric parameters above are quantified in terms of the airfoil/wing chord(c).The designed two-dimensional bump geometry is presented in Fig.3.

    Fig.1 Pressure distribution comparison between experimental and simulated results using Baldwin Lomax turbulence model for ONERA M6 wing

    Fig.2 Generalized geometric parameter

    Fig.3 Two-dimensional bump geometry

    2 RESULT

    This section presents the results of the analysis of the two and the three-dimensional bums on the NASA SC(02)-0714 airfoil which is 14%thick phase two supercritical airfoil.All simulations are carried out at Ma=0.78,Re=1.73×107and T= 0°.It is pertinent to mention here that the phase two supercritical airfoils have an inherent finite trailing edge thickness.This thickness is not only beneficial for structural considerations but also contributes to a significant reduction of wave drag[8].In this study the finite trailing edge thickness is maintained not only for capturing real physics of the problem but also as an aid to structural mess generation.

    2.1 Two-dimensional bump

    Fig.3 shows the two-dimensional bump geometry on the airfoil upper surface.

    The results of the two-dimensional bump analysis are depicted in Fig.4.Fig.4(a)shows the development of a strong normal shock wave on the upper surface of the airfoil while Fig.4(b-c)illustrate the effects of the two-dimensionalbump on the shock structure.The effect of shock dissipation by the development of a ″λ-shock″structure is fairly evident.The series of oblique shocks of theλ-shock incurs the same pressure jump as the original normal shock but with reduced total pressure losses hence a lesser wave drag.This phenomenon is further explained by thecomparison of theupper surfacepressure coefficients in Fig.5.

    Fig.4 Result of two-dimensional bump analysis

    Fig.5 Distribution comparison for two-dimensional bump

    The dip and rise of the Cp in the region of the bump is the characteristic of theλ-shock structure,indicating a sudden deceleration followed by a re-acceleration of flow to reach the original minimum pressure of the baseline airfoil.The resulting changes in lift and drag coefficients are presented in Table 1 where two-dimensional bump is listed as 2D Bump.These characteristics are in fact the performance parameters of the bump.

    Table 1 Perf ormance parameter for two-dimensional bump

    The results presented above are encouraging and validate the effectiveness of the shock control bumps for the supercritical airfoil under study.Furthermore they are a great motivator for the design and analysis of three-dimensional shock control bumps.

    2.2 Three-dimensional bump

    Fig.6 demonstrates the designed three-dimensional bump geometry.In addition to the key design parameters like those in the two-dimensional case mentioned earlier,an additional parameter of bump span is used for the design of a three-dimensional bump.

    Fig.6 Three-dimensional bump geometry

    Fig.7 Result of three-dimensional bump analysis

    The simulation results are shown in Fig.7.Like the two-dimensional bump,the three-dimensional bump also exhibits aλ-shock structure in the comparison to the normal shock structure on the upper surface of the wing.However,Fig.8 indicates an effect much more pronounced than that of the two-dimensional case at the bump centerline.The resulting surface pressure″bucket″can be accredited to the larger bump height in case of three-dimensional bumps(almost twice than that of two-dimensional bumps).This clear cut advantage of a three-dimensional shock control bump over the two-dimensional one presents itself in theform of better overall performance parameters as tabulated in Table 2,where 3D Bump is the short-term for threedimensional bump.

    Fig.8 Pressure distribution comparison of baseline wing and three-dimensional bump at bump centerline

    Table 2 Performance parameter for three-dimensional bump

    2.3 Supercritical wing with three-dimensional bump

    Fig.9 Wing geometry with full-length three-dimensional shock contour bump

    Table 3 Three-dimensional bump spacing arrangement and result

    Based on the above results of the standalone three-dimensional bump,a certain confidence is achieved to analyze an unswept wing with NACA SC(02)-0714 airfoil section.The dimensions of the wing are 1 m×1 m and all simulations are carried out at Ma=0.78,Re=1.73×107and T=0°.Fig.9illustrates thewing geometry with a full length array of three dimensional bumps and the surface pressure contours. The only parameter that has still not been determined is the gap or spacing between the three-dimensional bumps,therefore,two arrangements with varying bump spacing are also analyzed.Details of these configurations are provided in Table 3.Optimum performance is achieved by wing 2,providing an overall drag reduction of 14.11%and consequently a lift to drag gain of 16.90%.However,upon closeinspection of the wing 3 results and comparing them with those of wing 2,interesting facts are revealed.Although the drag performance of wing 3 is depleted,there is a significant rise in the lift.This occurrence is explained in Fig.10.The adverse pressure gradient behind the bump crest and the spanwise pressure gradients due to bump spacing create a pair of vortices at the rear surface of the bump which carries on downstream of the bumps. This ″energized flow″ creates boundary layer displacement effects in the spanwise direction and as a result this leads in general to variations of local lift distribution with the consequence of an additional induced drag component,hence the degraded drag performance coupled with a superior lift property.The surface pressure comparison of wing 3 and wing 1 is presented in Fig.11.

    Fig.10 Generation of vortex pair just aft bump of wing 3

    Fig.11 Pressure distribution comparison of wing 3 at bump centerline,between adjacent bumps for wing 3 and wing 1

    3 CONCLUSION

    Design and analysis of both two-dimensional and three-dimensional shock control bumps for a supercritical airfoil are carried out on the basis of some key geometric parameters for the two-dimensional bump first and then for the three-dimensional bump based on an additional geometric parameter.The results obtained from simulation using FAST solver shows that both the two-dimensional and three-dimensional bumps are successful in wavedrag reduction at the design Mach number,however,the three dimensional bump shows a much better performance.This three-dimensional bump is then simulated as an array on a finite span supercritical wing with two different configurations of bump spacing.The optimum configuration returns encouraging results with an overall drag reduction of 14%simultaneously providing a lift to drag ratio gain of 16%.During the design process it is noted that the two-dimensional is more prone to the double-shock phenomena with an increase in bump height hence degrading the performance.On the other hand the three-dimensional bump exhibits greater robustness to increase resulting in a bump height almost twice that of the two-dimensional bump.

    In both the two-dimensional and the threedimensional bumps,the event ofλ-shock structure formation is observed.Theλ-shock structure transforms the original normal shock wave into a series of weaker oblique shock waves rendering the same pressure jump as the original normal shock with reduced total pressure losses.

    Further investigation will look to explore the original″pop-up″bump aspect by means of analysis of a large swept back supercritical wing.The design of such a wing could be modeled on the wings planforms of large commercial jet airliners of the modern area.Also the bumps would be subjected to off-design conditions of Mach number and lift coefficients to determine the effects of transition process.A successful design and integration would ensure enhanced performance of the aircraft by means of an increased lift to dray ratio under cruise conditions,and as the cruise constitutes a major portion of the mission,a significant gain in range and endurance performances can be attained.

    [1] Qin N,Zhu Y,Ashill P R.CFD study of shock control at cranfield[C]//ICAS 2000 Congress.Harrogate,UK:ICAS,2000:2105.1-2105.10.

    [2] K?nig P,Ptzold M,Kr¨amer E.Numerical and experimental validation of three-dimensional shock control bumps[J].Journal of Aircraft,2009,46(2):675-682.

    [3] Ogawa H,Babinsky H,Ptzold M,et al.Shockwave/boundary-layer interaction control using threedimensional bumps for transonic wings[J].AIAA Journal,2008,46(6):1442-1452.

    [4] Qin N,Wong W S,Le Moigne A.Three-dimensional contour bumps for transonic wing drag reduction[J].Journal of Aerospace Engineering,2008,222(5):619-629.

    [5] Sommerer A,Lutz T,Wagner S.Numerical optimization of adaptive transonic airfoils with variable camber[C]//ICAS 2000 Congress.Harrogate,UK:ICAS,2000:2111.1-2111.10.

    [6] Qin N,Wong W S,Le Moigne A.Adjoint-based optimization of a BWB shape with shock control bumps[J].Aeronautical Journal,2007,1117(111):165-171.

    [7] Sobieczky H,Geissler W,Hannemann M.Expansion shoulder bump for wing section viscous/wave drag reduction[C]//IUTAM Symposium on Mechanics of Passive and Active Flow Control.Gttingen,Germany:Kluwer,1998.

    [8] Harris C D.NASAsupercritical airfoils,a matrix of family related airfoils[R].NASA-TP-2969, L-16625,NAS 1.60:2969,1990.

    [9] Baldwin B S,Lomax H.Thin layer approximation and algebraic model for separated turbulent flows[C]//16th Aerospace Sciences Meeting and Exhibit.Reno,USA: AIAA,1978:78-257.

    [10]Schmitt V,Charpin F.Pressure distributions on the ONERA-M 6-Wing at transonic Mach numbers[R].AGARD AR 138,1979.

    猜你喜歡
    航空學院南京航空航天大學鼓包
    南京航空航天大學機電學院
    《西安航空學院學報》征稿啟事
    南京航空航天大學機電學院
    南京航空航天大學
    西安航空學院第二屆科研工作會議召開
    南京航空航天大學生物醫(yī)學光子學實驗室
    《西安航空學院學報》征稿啟事
    某滲濾液收集池底部防滲層鼓包的分析與治理
    一起鍋爐清洗后鼓包事故的原因分析及處理
    換流站電阻冷卻面板鼓包分析
    湖北電力(2016年8期)2016-05-09 09:03:08
    亚洲一区二区三区色噜噜| 露出奶头的视频| 免费看美女性在线毛片视频| x7x7x7水蜜桃| 91精品国产国语对白视频| 97人妻天天添夜夜摸| 欧美日本亚洲视频在线播放| 亚洲av日韩精品久久久久久密| 波多野结衣一区麻豆| 制服人妻中文乱码| 国产午夜福利久久久久久| 久久国产精品男人的天堂亚洲| 老汉色av国产亚洲站长工具| 欧美人与性动交α欧美精品济南到| 欧美另类亚洲清纯唯美| 国产熟女xx| 日韩欧美国产一区二区入口| 精品国产乱码久久久久久男人| 精品无人区乱码1区二区| 日日夜夜操网爽| 激情视频va一区二区三区| 在线永久观看黄色视频| 午夜免费激情av| 黄色丝袜av网址大全| 9热在线视频观看99| 亚洲第一av免费看| 男女之事视频高清在线观看| 国产精品久久电影中文字幕| 亚洲人成网站在线播放欧美日韩| 国产成年人精品一区二区| 这个男人来自地球电影免费观看| 国产aⅴ精品一区二区三区波| 国产精品一区二区精品视频观看| 宅男免费午夜| 久久香蕉激情| 亚洲av片天天在线观看| 亚洲国产精品sss在线观看| 成在线人永久免费视频| 精品久久蜜臀av无| 亚洲国产精品合色在线| 色综合亚洲欧美另类图片| 69av精品久久久久久| 亚洲欧美精品综合久久99| 超碰成人久久| 男女做爰动态图高潮gif福利片 | 色尼玛亚洲综合影院| 一边摸一边抽搐一进一出视频| 啦啦啦免费观看视频1| 性色av乱码一区二区三区2| 成人国语在线视频| 亚洲av五月六月丁香网| 欧美激情 高清一区二区三区| 久久久久九九精品影院| 50天的宝宝边吃奶边哭怎么回事| 国产精品综合久久久久久久免费 | 欧美国产日韩亚洲一区| 久久精品91蜜桃| 岛国视频午夜一区免费看| 91国产中文字幕| 久久人人爽av亚洲精品天堂| 大型黄色视频在线免费观看| 制服丝袜大香蕉在线| 在线av久久热| 一二三四在线观看免费中文在| 两个人免费观看高清视频| av网站免费在线观看视频| 亚洲avbb在线观看| 99久久精品国产亚洲精品| 精品卡一卡二卡四卡免费| 日韩精品青青久久久久久| 国产精品九九99| 国产成人影院久久av| 欧美日韩一级在线毛片| 亚洲一区二区三区不卡视频| 亚洲成人免费电影在线观看| 88av欧美| 18禁黄网站禁片午夜丰满| 中文字幕高清在线视频| 免费少妇av软件| 一个人观看的视频www高清免费观看 | 女警被强在线播放| 丝袜美足系列| 97人妻精品一区二区三区麻豆 | 十八禁人妻一区二区| 成人18禁高潮啪啪吃奶动态图| 热re99久久国产66热| 无限看片的www在线观看| 欧美亚洲日本最大视频资源| 国产一级毛片七仙女欲春2 | 桃红色精品国产亚洲av| 给我免费播放毛片高清在线观看| 桃红色精品国产亚洲av| 在线av久久热| 久久人妻av系列| 9191精品国产免费久久| 欧美日韩瑟瑟在线播放| 日本黄色视频三级网站网址| av天堂在线播放| 久久天堂一区二区三区四区| 国产精品爽爽va在线观看网站 | 在线观看www视频免费| 国产91精品成人一区二区三区| 一区二区三区精品91| 高潮久久久久久久久久久不卡| 国产精品综合久久久久久久免费 | 欧美一级a爱片免费观看看 | 97碰自拍视频| 少妇裸体淫交视频免费看高清 | 国产精品久久久久久人妻精品电影| 国产成人啪精品午夜网站| 欧美精品亚洲一区二区| 国产黄a三级三级三级人| 精品国产一区二区久久| 又黄又粗又硬又大视频| 18禁国产床啪视频网站| 精品无人区乱码1区二区| 熟妇人妻久久中文字幕3abv| 精品乱码久久久久久99久播| 操美女的视频在线观看| 手机成人av网站| 国产私拍福利视频在线观看| 国产国语露脸激情在线看| 91九色精品人成在线观看| 国产xxxxx性猛交| 久久精品91无色码中文字幕| 国产在线精品亚洲第一网站| 女人高潮潮喷娇喘18禁视频| 免费看十八禁软件| 巨乳人妻的诱惑在线观看| 色播亚洲综合网| 久久热在线av| 免费看a级黄色片| av视频在线观看入口| 亚洲精品国产色婷婷电影| 黄色 视频免费看| 国产精品爽爽va在线观看网站 | 久久久久久久久免费视频了| 欧美日本亚洲视频在线播放| 禁无遮挡网站| 国产亚洲精品一区二区www| 国产又色又爽无遮挡免费看| 午夜精品久久久久久毛片777| 亚洲av成人一区二区三| 国产不卡一卡二| 日韩高清综合在线| 韩国av一区二区三区四区| 日韩精品免费视频一区二区三区| 99精品久久久久人妻精品| 精品久久久精品久久久| 欧美激情 高清一区二区三区| 免费在线观看黄色视频的| 成人永久免费在线观看视频| 人人妻人人爽人人添夜夜欢视频| 亚洲免费av在线视频| av免费在线观看网站| 一二三四社区在线视频社区8| 99久久国产精品久久久| 久久国产精品影院| 国产精品精品国产色婷婷| 熟女少妇亚洲综合色aaa.| 夜夜看夜夜爽夜夜摸| 亚洲精品粉嫩美女一区| 日本三级黄在线观看| 亚洲国产欧美日韩在线播放| 日韩欧美免费精品| 欧美一级a爱片免费观看看 | 亚洲国产精品999在线| 亚洲五月天丁香| 啦啦啦韩国在线观看视频| 91成人精品电影| 母亲3免费完整高清在线观看| 91老司机精品| 精品国产一区二区三区四区第35| 一边摸一边抽搐一进一小说| 成人18禁在线播放| 亚洲欧美一区二区三区黑人| 香蕉丝袜av| 一区二区三区精品91| 亚洲一卡2卡3卡4卡5卡精品中文| 国产av一区在线观看免费| 午夜激情av网站| 国产一卡二卡三卡精品| 午夜免费激情av| 夜夜躁狠狠躁天天躁| 一区二区三区高清视频在线| АⅤ资源中文在线天堂| 亚洲五月婷婷丁香| 日韩欧美在线二视频| 欧美日本视频| av天堂在线播放| 日韩视频一区二区在线观看| 一边摸一边抽搐一进一小说| 免费久久久久久久精品成人欧美视频| 欧美日本视频| 午夜福利18| 91av网站免费观看| 欧美一级毛片孕妇| 国产伦一二天堂av在线观看| 少妇 在线观看| 久久精品国产亚洲av香蕉五月| 亚洲九九香蕉| 人人妻人人澡人人看| 一级毛片高清免费大全| 每晚都被弄得嗷嗷叫到高潮| 久久香蕉国产精品| 亚洲色图 男人天堂 中文字幕| 正在播放国产对白刺激| 啦啦啦观看免费观看视频高清 | 美女高潮喷水抽搐中文字幕| 黄片大片在线免费观看| av天堂久久9| 国语自产精品视频在线第100页| 男人舔女人下体高潮全视频| av网站免费在线观看视频| 午夜福利成人在线免费观看| 欧美精品啪啪一区二区三区| 黄色女人牲交| 麻豆av在线久日| www国产在线视频色| 在线观看舔阴道视频| 亚洲少妇的诱惑av| 成人免费观看视频高清| 女警被强在线播放| 国产激情欧美一区二区| 亚洲人成网站在线播放欧美日韩| 免费少妇av软件| 免费看十八禁软件| 九色国产91popny在线| 亚洲 欧美 日韩 在线 免费| 黄色视频不卡| 麻豆国产av国片精品| 国产亚洲精品av在线| 亚洲精品在线观看二区| 91av网站免费观看| 色播亚洲综合网| 中出人妻视频一区二区| 91精品国产国语对白视频| 欧美日韩黄片免| 国产欧美日韩精品亚洲av| 日本一区二区免费在线视频| 国产99久久九九免费精品| 亚洲 国产 在线| 黄色视频,在线免费观看| 国产精品美女特级片免费视频播放器 | 夜夜爽天天搞| 非洲黑人性xxxx精品又粗又长| 免费一级毛片在线播放高清视频 | 久久久久久亚洲精品国产蜜桃av| 精品卡一卡二卡四卡免费| 国产三级在线视频| 亚洲人成77777在线视频| 97超级碰碰碰精品色视频在线观看| 好看av亚洲va欧美ⅴa在| av在线播放免费不卡| 午夜精品在线福利| 脱女人内裤的视频| 午夜精品国产一区二区电影| 女生性感内裤真人,穿戴方法视频| 国产熟女午夜一区二区三区| 精品国内亚洲2022精品成人| 久久久久久免费高清国产稀缺| 一二三四社区在线视频社区8| 99久久国产精品久久久| 波多野结衣巨乳人妻| 午夜影院日韩av| 免费看美女性在线毛片视频| 夜夜夜夜夜久久久久| 中文字幕av电影在线播放| 好男人电影高清在线观看| 99国产综合亚洲精品| 在线av久久热| 国产乱人伦免费视频| 久久精品国产清高在天天线| 亚洲成av人片免费观看| 色播在线永久视频| 国产男靠女视频免费网站| 精品久久久久久久毛片微露脸| av片东京热男人的天堂| 中文字幕精品免费在线观看视频| 国产精品久久久久久亚洲av鲁大| 成人免费观看视频高清| 在线av久久热| 亚洲av五月六月丁香网| 99国产精品免费福利视频| 美女 人体艺术 gogo| 无限看片的www在线观看| 啦啦啦免费观看视频1| 18美女黄网站色大片免费观看| 中文字幕av电影在线播放| 亚洲成人精品中文字幕电影| 日韩大码丰满熟妇| 精品第一国产精品| 波多野结衣高清无吗| 18禁美女被吸乳视频| 黄片播放在线免费| 少妇粗大呻吟视频| 国产精品日韩av在线免费观看 | 手机成人av网站| 国产精品,欧美在线| 久久久精品国产亚洲av高清涩受| 免费在线观看视频国产中文字幕亚洲| 欧美av亚洲av综合av国产av| 视频在线观看一区二区三区| 中文字幕av电影在线播放| 成人三级黄色视频| 免费看十八禁软件| 精品一区二区三区av网在线观看| 亚洲成人久久性| 亚洲熟妇中文字幕五十中出| 久久草成人影院| 欧美精品亚洲一区二区| 精品乱码久久久久久99久播| 久久久国产成人精品二区| 少妇 在线观看| 国产精品二区激情视频| 久久香蕉激情| 激情在线观看视频在线高清| 亚洲熟妇中文字幕五十中出| 老司机午夜十八禁免费视频| 久久久久国产精品人妻aⅴ院| 欧美黑人精品巨大| 女警被强在线播放| 欧美绝顶高潮抽搐喷水| 久久天堂一区二区三区四区| 两人在一起打扑克的视频| 91麻豆精品激情在线观看国产| 亚洲精品美女久久久久99蜜臀| 可以在线观看的亚洲视频| 国产成+人综合+亚洲专区| 国产不卡一卡二| 嫁个100分男人电影在线观看| 久久久久精品国产欧美久久久| 午夜福利影视在线免费观看| 午夜a级毛片| 国产欧美日韩综合在线一区二区| 美女国产高潮福利片在线看| 久久精品aⅴ一区二区三区四区| 在线观看66精品国产| 色综合站精品国产| 91大片在线观看| 欧美亚洲日本最大视频资源| 国产亚洲精品久久久久5区| 黄片播放在线免费| 免费看a级黄色片| 国产精品久久视频播放| 日本在线视频免费播放| 女人高潮潮喷娇喘18禁视频| 久久久久久大精品| www.精华液| 91字幕亚洲| 99riav亚洲国产免费| 韩国av一区二区三区四区| 1024香蕉在线观看| 国产单亲对白刺激| 12—13女人毛片做爰片一| 亚洲av熟女| 91精品国产国语对白视频| 婷婷六月久久综合丁香| 女警被强在线播放| 精品福利观看| 视频区欧美日本亚洲| 午夜成年电影在线免费观看| 999久久久国产精品视频| 电影成人av| 精品久久久久久久人妻蜜臀av | 国产一区二区三区综合在线观看| 午夜福利成人在线免费观看| 国产高清视频在线播放一区| av超薄肉色丝袜交足视频| 国产成人精品久久二区二区免费| 久久婷婷人人爽人人干人人爱 | 亚洲av成人不卡在线观看播放网| 国产精品久久视频播放| 亚洲国产日韩欧美精品在线观看 | 波多野结衣高清无吗| 嫁个100分男人电影在线观看| 欧美 亚洲 国产 日韩一| 国产一区二区激情短视频| 午夜成年电影在线免费观看| 亚洲 国产 在线| 中国美女看黄片| 国产亚洲精品av在线| 欧美黑人欧美精品刺激| 大码成人一级视频| 久久久久久人人人人人| 满18在线观看网站| 黄色毛片三级朝国网站| 亚洲视频免费观看视频| 日本一区二区免费在线视频| 精品不卡国产一区二区三区| 亚洲无线在线观看| av天堂久久9| 巨乳人妻的诱惑在线观看| 18禁黄网站禁片午夜丰满| 精品不卡国产一区二区三区| 丝袜美腿诱惑在线| 黄色a级毛片大全视频| 在线观看一区二区三区| 国产国语露脸激情在线看| 一级a爱视频在线免费观看| 久久中文字幕人妻熟女| 国产高清videossex| 成人三级黄色视频| 国产国语露脸激情在线看| 亚洲欧美激情在线| 亚洲精品中文字幕一二三四区| 91精品国产国语对白视频| 欧美老熟妇乱子伦牲交| 亚洲成国产人片在线观看| 国产成人欧美| 国产精品 国内视频| 免费在线观看日本一区| 久久亚洲精品不卡| 国产麻豆69| 久久婷婷成人综合色麻豆| 一级片免费观看大全| 日日夜夜操网爽| 一进一出好大好爽视频| 久久草成人影院| 嫩草影视91久久| 69精品国产乱码久久久| 女同久久另类99精品国产91| 亚洲九九香蕉| 91精品国产国语对白视频| 男女床上黄色一级片免费看| 欧美中文综合在线视频| 久久久久亚洲av毛片大全| 欧美成狂野欧美在线观看| 午夜激情av网站| 欧美日韩亚洲综合一区二区三区_| 啦啦啦韩国在线观看视频| 亚洲精品久久成人aⅴ小说| 免费在线观看亚洲国产| 999久久久精品免费观看国产| 在线观看午夜福利视频| 女同久久另类99精品国产91| 久久天躁狠狠躁夜夜2o2o| 色老头精品视频在线观看| 叶爱在线成人免费视频播放| 国内精品久久久久精免费| av视频免费观看在线观看| 欧美丝袜亚洲另类 | 国产伦一二天堂av在线观看| 色精品久久人妻99蜜桃| 国产日韩一区二区三区精品不卡| 午夜福利欧美成人| 亚洲一区高清亚洲精品| 免费在线观看影片大全网站| 这个男人来自地球电影免费观看| 日韩国内少妇激情av| 亚洲人成77777在线视频| 啦啦啦观看免费观看视频高清 | 午夜成年电影在线免费观看| 色在线成人网| 18禁黄网站禁片午夜丰满| 一区二区三区激情视频| 69av精品久久久久久| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品国产精品久久久不卡| 最近最新中文字幕大全电影3 | 亚洲成人久久性| 丝袜人妻中文字幕| 757午夜福利合集在线观看| 男女床上黄色一级片免费看| 日韩欧美国产在线观看| 国产精品香港三级国产av潘金莲| 久久这里只有精品19| 999精品在线视频| 日韩大码丰满熟妇| 天堂动漫精品| 国产亚洲欧美精品永久| 国产亚洲精品第一综合不卡| 国产成人一区二区三区免费视频网站| 国产一区二区三区视频了| 久久久久九九精品影院| 国产乱人伦免费视频| 国产成人精品无人区| 精品久久久精品久久久| 深夜精品福利| 九色国产91popny在线| 亚洲第一青青草原| 国产精品永久免费网站| 国产不卡一卡二| 性欧美人与动物交配| 欧美亚洲日本最大视频资源| 99riav亚洲国产免费| 亚洲色图av天堂| 国产成人精品无人区| 又黄又粗又硬又大视频| 大陆偷拍与自拍| 精品高清国产在线一区| 国产三级黄色录像| 啦啦啦观看免费观看视频高清 | 91大片在线观看| 亚洲视频免费观看视频| 国产精品永久免费网站| 男女做爰动态图高潮gif福利片 | 亚洲自偷自拍图片 自拍| 国产一区二区三区在线臀色熟女| 啦啦啦韩国在线观看视频| 亚洲精品美女久久av网站| 九色国产91popny在线| 国产欧美日韩一区二区三| 欧美国产日韩亚洲一区| 国产主播在线观看一区二区| 欧美成人免费av一区二区三区| 日韩成人在线观看一区二区三区| 午夜老司机福利片| 成人国产一区最新在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产欧美日韩在线播放| av福利片在线| 18禁观看日本| 国产欧美日韩综合在线一区二区| 日韩免费av在线播放| 一进一出抽搐动态| 亚洲成人免费电影在线观看| 这个男人来自地球电影免费观看| 亚洲欧美精品综合一区二区三区| av超薄肉色丝袜交足视频| 97人妻天天添夜夜摸| 满18在线观看网站| 天堂影院成人在线观看| 欧美老熟妇乱子伦牲交| 国产日韩一区二区三区精品不卡| 人人妻人人爽人人添夜夜欢视频| 国产日韩一区二区三区精品不卡| 亚洲,欧美精品.| 久久久久久久久免费视频了| 黄片小视频在线播放| 欧美久久黑人一区二区| 国产91精品成人一区二区三区| 久久人妻av系列| 男女床上黄色一级片免费看| 高潮久久久久久久久久久不卡| 亚洲男人天堂网一区| 50天的宝宝边吃奶边哭怎么回事| 99精品欧美一区二区三区四区| 亚洲欧美日韩高清在线视频| 99在线人妻在线中文字幕| 看免费av毛片| 国产亚洲欧美在线一区二区| 国产成人精品久久二区二区免费| 免费高清在线观看日韩| 久久精品亚洲精品国产色婷小说| 免费女性裸体啪啪无遮挡网站| 日韩精品中文字幕看吧| 国产高清有码在线观看视频 | 成人免费观看视频高清| 欧美乱码精品一区二区三区| 性色av乱码一区二区三区2| 午夜激情av网站| 日本a在线网址| 操美女的视频在线观看| 18禁观看日本| 精品欧美一区二区三区在线| 宅男免费午夜| 国产成人免费无遮挡视频| 日韩视频一区二区在线观看| 色老头精品视频在线观看| 国产色视频综合| 97碰自拍视频| 国产激情久久老熟女| 高潮久久久久久久久久久不卡| 日本精品一区二区三区蜜桃| 久久精品国产综合久久久| 男女下面插进去视频免费观看| 中文亚洲av片在线观看爽| 非洲黑人性xxxx精品又粗又长| 美女午夜性视频免费| 精品一区二区三区av网在线观看| 女性生殖器流出的白浆| 岛国在线观看网站| 国产精华一区二区三区| 午夜免费成人在线视频| 欧美中文综合在线视频| 天堂√8在线中文| 国产熟女xx| a级毛片在线看网站| 国产一级毛片七仙女欲春2 | 亚洲黑人精品在线| 免费一级毛片在线播放高清视频 | 亚洲av熟女| 亚洲专区国产一区二区| 青草久久国产| 午夜视频精品福利| 精品无人区乱码1区二区| 一级a爱片免费观看的视频| 法律面前人人平等表现在哪些方面| 亚洲成人国产一区在线观看| 日日爽夜夜爽网站| 91av网站免费观看| 亚洲精品一卡2卡三卡4卡5卡| 如日韩欧美国产精品一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 狂野欧美激情性xxxx| 久久精品aⅴ一区二区三区四区| 两个人看的免费小视频| 女性生殖器流出的白浆| 99国产精品一区二区三区| 久久久久九九精品影院| 一进一出抽搐gif免费好疼| 操美女的视频在线观看| 精品一品国产午夜福利视频| 久久人人爽av亚洲精品天堂| 久久久久久大精品| 日韩精品中文字幕看吧| 成年人黄色毛片网站| 婷婷精品国产亚洲av在线| 一卡2卡三卡四卡精品乱码亚洲| 88av欧美| av电影中文网址| 一个人观看的视频www高清免费观看 | 欧美中文综合在线视频| 中文字幕人妻丝袜一区二区|