崔世友,夏禮如,邱海榮
(江蘇沿江地區(qū)農(nóng)科所,江蘇省南通市耐鹽植物公共技術(shù)服務(wù)平臺,江蘇南通226541)
植物耐鹽性研究進展
崔世友,夏禮如,邱海榮
(江蘇沿江地區(qū)農(nóng)科所,江蘇省南通市耐鹽植物公共技術(shù)服務(wù)平臺,江蘇南通226541)
土壤鹽漬化是全球農(nóng)業(yè)面臨的主要非生物逆境之一。鹽脅迫中一連串的事件增加了磷脂酶D(PLD)的活性,接著產(chǎn)生高量的磷脂酸(PA),PA與MPK6結(jié)合并增強其活性,激活的MPK6可與SOS1結(jié)合并使其磷酸化;該過程將SOS、MAPK和PLD信號途徑整合在一起。在植物耐鹽性研究中,人們常常假設(shè)鹽逆境下過多的Na+引起生長和產(chǎn)量的下降,對耐氯研究重視不夠。從鹽逆境信號轉(zhuǎn)導(dǎo)途徑的整合與耐氯性等方面綜述了植物耐鹽性研究的進展。
鹽逆境;信號轉(zhuǎn)導(dǎo);耐氯性
面對不斷增長的人口,要維持目前的糧食供應(yīng)水平,到2025年和2050年全球糧食產(chǎn)量需分別增加38%和57%[1]。大多數(shù)可耕地已經(jīng)用于種植,通過耕地面積的擴張增產(chǎn)糧食幾乎是不可能的,因此目標是增加單位面積的產(chǎn)量。據(jù)估計,世界耕地面積的15%因土壤侵蝕以及理化性狀變劣而退化,包括土壤鹽漬化[1]。近年來發(fā)展鹽土農(nóng)業(yè)得到了各國廣泛的重視[2-3],筆者從鹽逆境信號轉(zhuǎn)導(dǎo)途徑和耐氯性研究2個方面介紹了植物耐鹽性研究的新進展。
植物防衛(wèi)鹽分的一種主要方法是將其從細胞中排除,通過液胞的區(qū)隔化或從質(zhì)膜外流。擬南芥SOS1蛋白是一種Na+/H+逆轉(zhuǎn)運蛋白[4],可被由SOS2蛋白激酶(SnrK3類蛋白)與SOS3(Ca2+感受蛋白)組成的蛋白復(fù)合體所激活。鹽逆境增加了胞內(nèi)Ca2+濃度,進而激活SOS3,隨后與SOS2結(jié)合并激活之,SOS3/SOS2復(fù)合體激活SOS1,產(chǎn)生Na+的外運。轉(zhuǎn)基因植物中SOS1蛋白的過表達增加了植物的耐鹽性[5]。
鹽逆境也激活了促分裂素原活化蛋白激酶(MAPK)信號傳導(dǎo)途徑,該途徑包括蛋白激酶的一系列級聯(lián),由生物或非生物逆境引發(fā),也包含于發(fā)育過程中[6]。這些信號級聯(lián)特性研究得最清楚的是酵母高滲透性甘油(High Osmolarity Glycerol Response 1,HOG1)途徑,為應(yīng)答超滲透條件傳遞甘油積累的信號,HOG1可使Na+/H+逆轉(zhuǎn)運蛋白磷酸化,該逆轉(zhuǎn)運蛋白的活性依賴于HOG1的存在[7]。在植物中,MAPK途徑的組分在鹽逆境下是上調(diào)轉(zhuǎn)錄或酶活性增強[8]。尤其是擬南芥的MPK6和MPK4[9],這些激酶可被上游的蛋白激酶MKK2部分地激活,其突變體是鹽敏感的[10]。不過對鹽逆境中MAPK信號的理解主要還是描述性的,該信號如何在植物鹽逆境中實際發(fā)揮功能還遠未真正了解。
第3個組分是磷脂酶D(PLD),在擬南芥和其他植物中,PLD酶由一個多基因家族編碼,已知鹽逆境誘導(dǎo)該家族一些成員的表達。與質(zhì)膜有關(guān)的PLD酶從磷脂酰膽堿釋放磷脂酸(phosphatidic acid,PA),PA是許多不同逆境如活性氧的產(chǎn)生和誘導(dǎo)氣孔關(guān)閉應(yīng)答的第二信使。此外,PLD突變體是鹽分過敏感的[11]。在PA與MAPK信號之間也存在關(guān)聯(lián),因為在動物細胞中,增加PA濃度可激活MAPK激酶激酶(MAPKKK)Raf1。在植物中,PA與乙烯組成性三重應(yīng)答(Constitutive Triple Response 1,CTR1)結(jié)合并抑制其活性,后者是乙烯信號傳導(dǎo)中的MAPKKK[12],PA在大豆傷害誘導(dǎo)MAPK的激活中也起作用[13]。
為將這些不同的信號整合在一起,Yu等[14]開展了一系列研究。首先通過生理分析以確認plda1突變體和mpk6突變體確實是鹽敏感的,鹽處理誘導(dǎo)擬南芥的PLD活性,進而研究了鹽處理后所產(chǎn)生PA的特性。因為PA可與許多不同的蛋白結(jié)合,包括MAPK信號途徑的組分[15]。在一個關(guān)鍵性的實驗中,研究了重組MPK6蛋白是否確實與不同形式固定的PA結(jié)合。研究者發(fā)現(xiàn)MPK6特異性地與那些PA分子的結(jié)合,且鹽分處理后得到強化;實驗還表明脫落酸信號蛋白ABI1也與PA結(jié)合[16]。此外,還發(fā)現(xiàn)這些特定形式的PA會刺激激免疫沉淀MPK6激酶活性,這些生化發(fā)現(xiàn)通過遺傳方面的研究而得到進一步證實,MPK6激酶活性通過鹽處理而得到增強,而在plda1突變體中則未增強。外源PA和鹽分添加給plda1和mpk6突變體,PA挽救了鹽敏感的plda1表型而不是mpk6表型,這些結(jié)果表明因PLD而產(chǎn)生的PA對于MPK6所賦予的耐鹽性是重要的[14]。
通過以上一系列的實驗建立了鹽逆境、PLD活性和MPK6活性間可信的聯(lián)系,研究者以此做了進一步的推論:在酵母中,假如HOG1將Nha1 Na+/H+逆轉(zhuǎn)運蛋白磷酸化,MPK6同樣地與Na+/H+逆轉(zhuǎn)運蛋白SOS1互作嗎?對于重組的SOS1蛋白和重組的以及免疫沉淀MPK6,研究者發(fā)現(xiàn)MPK6也與磷酸化的SOS1互作,而在來自鹽逆境植株的MPK6免疫沉淀以及將PA添加到對照植株的免疫沉淀中時,其磷酸化得到增強。
由此可將鹽脅迫植物生物學(xué)的幾個不同元素匯集在一起,鹽脅迫中一連串的事件增加了PLD活性(也許是通過增強鈣的濃度)[17],接著產(chǎn)生高量的PA,PA與MPK6結(jié)合并增強其活性,激活的MPK6可與SOS1結(jié)合并使其磷酸化。不過還有許多問題沒有澄清,如通過MPK6使SOS1磷酸化對于增強逆轉(zhuǎn)運蛋白活性是足夠的且必須的嗎?其中還含有其他MAP激酶嗎?SOS2/SOS3與MPK6之間是什么關(guān)系?需要回答的一個主要問題是PA如何增強MAPK6活性?MAPK活化可接受的模型是上游的MAPKK使其激活域的蘇氨酸和酪氨酸殘基磷酸化,不過,Yu等的實驗則是添加PA至來自非脅迫植株免疫沉淀的MPK6后而增強MPK活性[14];可能MPK6已經(jīng)處于磷酸化狀態(tài),而PA旨在加強該激酶的活性構(gòu)象。更為復(fù)雜的事實是,盡管MKK9是MPK6的上游激活子,但mkk9突變體幼苗是耐鹽的[18]。很明顯,其中的一些重要的細節(jié)缺失了,但是Yu等的工作在整合植物逆境生物學(xué)中3個分離的元素中向前邁出了重要的一步[19]。
NaCl進入植物細胞刺激了胞內(nèi)Ca的增加,這觸發(fā)了通過蛋白激酶SOS2和鈣受體SOS3對質(zhì)膜SOS1的刺激,磷脂酶D(PLD)活性也因Ca2+而增強,產(chǎn)生磷脂酸(PA),PA與MPK6結(jié)合并增加其活性,MPK6可使SOS1磷酸化,可能增強了SOS1活性并導(dǎo)致Na+從細胞中外流。
了解作物耐高濃度NaCl的機制有助于改良鹽土下的作物產(chǎn)量。鹽逆境滲透階段在有毒離子大量積累前即可延遲出葉、抑制葉片擴展、促進葉片衰老[20-21],不過這可能是一種瞬間效應(yīng),長期暴露于高鹽分,一旦Na+和Cl-積累至高濃度時就會加重傷害。Na+和Cl-的離子平衡是減輕高等植物NaCl逆境的重要機制。人們常常假設(shè)鹽分下過多的Na+引起生長和產(chǎn)量的下降[22-25],進而對Na+離子進入細胞的機制進行了大量的研究,耐鹽性的排Na+機制已在分子水平上得到認識[26-28]。不過,在鹽逆境下生長的植物組織中常常發(fā)現(xiàn)高濃度的Cl-[29-30],而對鹽逆境中過多Cl-的可能毒性卻關(guān)注很少。
2.1 鹽逆境中Cl-害和Na+害具有同等重要性
盡管Cl-在鹽土中是一種主要的陰離子,但是對高濃度Cl-對耐鹽性的重要性以及耐Cl-機制的了解,比對Na+運輸少很多[31-32]。既然Na+和Cl-在胞質(zhì)中積累到高濃度就會產(chǎn)生代謝毒性,則在研究中就應(yīng)給予同樣的關(guān)注[21,32-34],。
氯是高度植物必需的微量營養(yǎng)之一,調(diào)節(jié)胞質(zhì)中的酶活性,在光合作用水的光解過程中起活化劑的作用,并參與根和葉的細胞分裂,以及細胞和液泡內(nèi)外的滲透調(diào)節(jié)和膨壓維持,作為一種抗衡陰離子(counter anion)在細胞內(nèi)外的流動直接決定了胞內(nèi)外pH梯度、膜電勢和相關(guān)電生理過程的變化[33-34]。
高濃度Cl-的對植物有毒,其臨界毒性濃度對敏感物種為4~7mg·g-1,而對耐Cl-物種則為15~50mg·g-1[33-34]。Cl-轉(zhuǎn)運體的控制和莖排Cl-與許多物種的耐鹽性有關(guān),尤其是豆科植物如三葉草[35-36]、苜蓿[37]、大豆[38]和蓮[39]以及多年生樹木如柑桔和葡萄[40-41]。在蕓豆中發(fā)現(xiàn)葉片嚴重失綠和光合作用下降[42],高濃度Cl-引起生長速率下降。有關(guān)大豆的研究表明該物種對高濃度Cl-敏感[43-44]。研究表明豆科植物耐鹽性的一個重要的生理機制是莖排氯,7個豆科Lotus物種莖中氯含量與以LD50(50%植株死亡的天數(shù))所表示的耐鹽性間相關(guān)密切,決定系數(shù)達0.65[45]。
Slabu等[46]認為生長于高濃度NaCl下的蠶豆,Na+是主要的毒性離子,因為其干擾K+的吸收,打斷了有效的氣孔調(diào)節(jié),產(chǎn)生非生產(chǎn)性水分丟失以及壞死;而Cl-由于葉綠素降解而誘發(fā)失綠毒性癥狀。但該研究并未測定植物生長參數(shù)以檢測Na+和Cl-的相對重要性。
根據(jù)大量小麥和鷹嘴豆田間試驗的分析,Dang等[47]認為土壤中的Cl-濃度在減少生長和產(chǎn)量中比Na+更重要,所估測的表土臨界Cl-濃度(定義為生長或產(chǎn)量減少10%時的濃度)為490mg Cl-·kg-1土。他們發(fā)現(xiàn)隨著表土鹽分水平的增加,普通小麥、硬粒小麥和鷹嘴豆最年輕成熟葉中Cl-濃度的變化比Na+濃度的變化大[48],表明Cl-毒性對生長比Na+毒性相對更重要。
高Na+和高Cl-都能減少蠶豆的生長,但植物對Cl-比對Na+更敏感。生長和光合作用的減少在NaCl逆境下更大,其效應(yīng)主要為加性。高NaCl濃度的鹽分可通過高濃度的Na+和高濃度Cl-的積累而同時減少生長,但2種離子的效應(yīng)有差異,高Cl-濃度由于葉綠素降解而減少光合能力和量子產(chǎn)量,其原因可能來自高Cl-濃度對PSII的結(jié)構(gòu)影響;而高Na+則是干擾了K+和Ca2+營養(yǎng)的吸收,擾亂了有效的氣孔調(diào)節(jié),光合作用和生長下降。這些結(jié)果表明Cl-毒性在鹽逆境下生長和產(chǎn)量降低中的重要性可能被低估了[21]。在隨后的大麥研究中也得到了類似的結(jié)果[49]。
2.2 Cl-吸收中的轉(zhuǎn)運體
CCC:陽離子氯離子共運子;CHX:陽離子/H+交換子;CLC:電壓門控Cl-通道;CNGC:換核苷門控通道;GLR:谷氨酸類受體;HKT:高親和性K+轉(zhuǎn)運子,KCO:K+外向整流通道;KHX:K+/H+交換子;KIR:Shaker類K+內(nèi)向整流子;KOR:Shaker類外向整流子;KUP/HAK:K+吸收通透酶;NHX:Na+/H+交換子;NSCC:非選擇性陽離子通道;TPK:二孔K+通道。圖1 水稻鹽逆境期間Na+、K+和Cl-穩(wěn)態(tài)平衡中的主要基因家族[51]
由于細胞質(zhì)膜存在內(nèi)負外正的膜電勢,因此植物細胞對Cl-的吸收和液泡對Cl-的分隔是逆電化學(xué)勢梯度的主動運輸過程,需要消耗一定的能量。一般認為Cl-進入細胞需依賴質(zhì)膜上運輸?shù)鞍?Cl-/2H+共運子)或借助于陰離子(Cl-)通道才能完成。Cl-進入液泡常與其膜上質(zhì)子泵H+-ATPase和H+-PPase驅(qū)動的H+跨膜轉(zhuǎn)運相伴隨,并通過其膜上的Cl-/H+逆轉(zhuǎn)運子來完成,或通過陰離子(Cl-)通道來實現(xiàn)[34,50]。圖1列出了水稻鹽逆境期間Na+、K+和Cl-穩(wěn)態(tài)平衡中的主要基因家族。
第二類潛在的Cl-轉(zhuǎn)運體為陽離子氯共運子(cation chloride cotranspoters,CCCs),在擬南芥中由一個基因編碼,在水稻中則由2個基因編碼。AtCCC在根和莖組織中表達,可能為2Cl-:K+:Na+共轉(zhuǎn)運體。擬南芥中AtCCC功能缺失導(dǎo)致根:莖Cl-比的改變,但Cl-的凈吸收增加,從而拮抗AtCCC在該離子吸收中的作用[55]。這樣,Cl-吸收的確切機制以及其中的蛋白仍是需要回答的2個問題。
2.3 Cl-通道在液胞Cl-區(qū)隔化中的作用
土根邊界Na+的吸收主要通過非選擇性陽離子通道如CNGCs和來自HKT家族的載體完成,在鹽生植物中K+如AKT1也吸收Na+。AtHKT1;1控制莖稈中Na+的積累和Na+從韌皮部返回,HKt2;1介導(dǎo)水稻中Na+的高親和吸收,也參與木質(zhì)部Na+的承載,HKT1;5位于水稻韌皮部髓細胞,減少木質(zhì)部Na+濃度進而減少莖中Na+的承載,Na+外流進入液胞和質(zhì)外體通過逆轉(zhuǎn)運系統(tǒng)如液胞膜上的NHX1和質(zhì)膜上的SOS1進行,其機制在物種間具有保守性。SOS1也與其他的逆轉(zhuǎn)運如CHXs一起介導(dǎo)木質(zhì)部Na+的承載。氯的吸收和運輸仍未清楚,氯通道(CLCs)可能在氯區(qū)隔化進液胞中起作用,氯陰離子共運子(CCCs)可能介導(dǎo)木質(zhì)部Cl-的承載,Cl-吸收系統(tǒng)的機制和特征未知。
[1]Wild A.Soils,land and food:managing the land during the twenty-first century[M].Cambridge,UK:Cambridge University Press,2003.
[2]Rozema J,Flowers T.Crops for a salinized world[J].Science,2008,322:1478-1480.
[3]Fedoroff N V,Battisti D S,Beachy R N,et al.Radically rethinking agriculture for the 21st century[J].Science,2010,327:833-834
[4]Wu S J,Ding L,Zhu J K.SOS1,a genetic locus essential for salt tolerance and potassium acquisition[J].Plant Cell,1996,8:617-627.
[5]Shi H,Lee B H,Wu S J,et al.Overexpression of a plasma membrane Na+/H+antiporter gene improves salt tolerance inArabidopsisthaliana[J].NatureBiotechnology,2002,21:81-85.
[6]Rodriguez MC,Petersen M,Mundy J.Mitogen-activated protein kinase signaling in plants[J].Annual Review of Plant Biology,2010,61:621-649.
[7]Proft M,Struhl K.MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction[J].Cell,2004,118:351-361.
[8]Nakagami H,Pitzschke A,Hirt H.Emerging MAP kinase pathways in plant stress signalling[J].Trends in Plant Science,2005,10:339-346.
[9]Ichimura K,Mizoguchi T,Yoshida R,et al.Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6[J].Plant Journal,2000,24:655-665.
[10]Teige M,Scheikl E,Eulgem T,et al.The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis[J].Molecular Cell1,2004,5:141-152.
[11]Bargmann B O,Munnik T.The role of phospholipase D in plant stress responses[J].Current Opinion in Plant Biology,2006,9:515-522.
[12]Testerink C,Larsen P B,van der Does D,et al.Phosphatidic acid binds to and inhibits the activity ofArabidopsisCTR1[J].Journal of Experimental Botany,2007,58:3905-3914.
[13]Lee S,Hirt H,Lee Y.Phosphatidic acid activates a wound-activated MAPK inGlycinemax[J].Plant Journal,2001,26:479-486.
[14]Yu L,Nie J,Cao C,et al.Phosphatidic acid mediates salt stress response by regulation of MPK6 inArabidopsisthaliana[J].New Phytologist,2010,188:762-773.
[15]Testerink C,Dekker H L,Lim Z Y,et al.Isolation and identification of phosphatidic acid targets from plants[J].Plant Journal,2004,39:527-536.
[16]Zhang W,Qin C,Zhao J,et al.Phospholipase D alpha 1-Derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling[J].Proceedings of the National Academy of Sciences,USA,2004,101:9508-9513.
[17]Pappan K,Zheng S,Wang X.Identification and characterization of a novel plant phospholipase D that requires polyphosphoinositides and submicromolar calcium for activity inArabidopsis[J].Journal of Biological Chemistry,1997,272:7048-7054.
[18]Alzwiy IA,Morris P C.A mutation in theArabidopsisMAP kinase kinase 9 gene results in enhanced seedling stress tolerance[J].Plant Science,2007,173:302-308.
[19]Peter C Morris.Integrating lipid signalling,mitogen-activated protein kinase cascades and salt tolerance[J].New Phytologist,2010,188:640-643.
[20]Rajendran K,Tester M,Roy S J.Quantifying the three main components of salinity tolerance in cereals[J].Plant,Cell and Environment,2009.32:237.
[21]Tavakkoli E,Rengasamy P,Mcdonald G K.High concentrations of Na+and Cl-ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress[J].Journal of Experimental Botany,2010,61:4449-4459
[22]Kingsbury R,Epstein E.Salt sensitivity in wheat.A case for specific ion toxicity[J].Plant Physiology,1986,80:651-654.
[23]Chi Lin C,Huei Kao C.Relative importance of Na+,Cl-,and abscisic acid in NaCl induced inhibition of root growth of rice seedlings[J].Plant and Soil,2001,237:165-171.
[24]Tsai Y C,Hong C Y,Liu L F,et al.Relative importnace of Na+and Cl-in NaCl-induced antioxidant systems in roots of rice seedlings[J].Physiologia Plantarum,2004,122:86-94.
[25]Hong C Y,Chao Y Y,Yang M Y,et al.Na+but not Cl-or osmotic stress is involved in NaCl-induced expression of glutathione reductase in roots of rice seedlings[J].Journal of Plant Physiology,2009,166:1598-1606.
[26]Amtmann A,Sanders D.Mechanisms of Na uptake by plant cells[J].Advances in Botanical Research,1998,29:75-112.
[27]Tester M,Davenport R.Na+tolerance and Na+transport in higher plants[J].Annals of Botany,2003,91:503-527.
[28]Apse M P,Blumwald E.Na+transport in plants[J].FEBS Letters,2007,581:2247-2254.
[29]Gorham J.Salt tolerance in the Triticeae:ion discrimination in rye and triticale[J].Journal of Experimental Botany,1990,41:609-614.
[30]Kingsbury R,Epstein E.Salt sensitivity in wheat.A case for specific ion toxicity[J].Plant Physiology,1986,80:651-654.
[31]Britto D T,Ruth T J,Lapi S,et al.Cellular and whole-plant chloride dynamics in barley:insights into chloride-nitrogen interactions and salinity responses[J].Planta,2004,218:615-622.
[32]Teakle N L,Tyerman S D.Mechanisms of Cl transport contributing to salt tolerance[J].Plant,Cell and Environment,2010,33:566-589.
[33]Xu G,Magen H,Tarchitzky J,et al.Advances in chloride nutrition of plants[J].Advances in Agronomy,2000,68:97-150.
[34]White P J,Broadley M R.Chloride in soils and its uptake and movement within the plant:a review[J].Annals of Botany,2001,88:967-988.
[35]Winter E.Salt tolerance of Trifolium alexandrinum L.II.Ion balance in relation to its salt tolerance[J].Australian Journal of Plant Physiology,1982,9:227-237.
[36]Rogers M E,Noble C L,Pederick R J.Identifying suitable forage legume species for saline areas[J].Australian Journal of Experimental Agriculture,1997,37:639-645.
[37]Sibole J V,Cabot C,Poschenrieder C,et al.Efficient leaf partitioning,an overriding condition for abscisic acid-controlled stomatal and leaf growth responses to NaCl salinization in two legumes[J].Journal of Experimental Botany,2003,54:2111-2119.
[38]Luo Q,Yu B,Liu Y.Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G.soja under NaCl stress[J].Journal of Plant Physiology,2005,162,1003-1012.
[39]Teakle N L,Flowers T J,Real D,et al.Lotus tenuis tolerates the interactive effects of salinity and waterlogging by ‘excluding’ Na+and Cl-from the xylem[J].Journal of Experimental Botany,2007,58:2169-2180.
[40]Romero-Aranda R,Moya J L,Tadeo F R,et al.Physiological and anatomical disturbances induced by chloride salts in sensitive and tolerant citrus:beneficial and detrimental effects of cations[J].Plant,Cell and Environment,1998,21:1243-1253.
[41]Moya J L,Gomez-Cadenas A,Primo-Millo E,et al.Chloride absorption in salt-sensitive Carrizo citrange and salt-tolerant Cleopatra mandarin citrus rootstocks is linked to water use[J].Journal of Experimental Botany,2003,54:825-833.
[42]Hajrasuliha S.Accumulation and toxicity of chloride in bean plants[J].Plant and Soil,1980,55:133-138
[43]Lauchli A,Wieneke J Z.Studies on growth and distribution of Na,K and CI in soybean varieties differing in salt tolerance[J].Pflanzenernaehrung Bodenkunde,1979,142:3-13.
[44]Parker M B,Gascho G J,Gaines TP.Chloride toxicity of soybeans grown on atlantic coast flat woods soils[J].Agronomy Journal,1983,75:439-443.
[45]Sanchez D H,Pieckenstain F L,Szymanski J,et al.Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics[J].PLOS one,2011,6 (2),e17094
[46]Slabu C,Z?rb C,Steffens D,et al.Is salt stress of faba bean (Viciafaba) caused by Na+or Cl-toxicity?[J].Journal of Plant Nutrition and Soil Science,2009,172:644-650.
[47]Dang Y P,Dalal R C,Mayer D G,et al.High subsoil chloride concentrations reduce soil water extraction and crop yield on vertisols in north-eastern Australia[J].Australian Journal of Agricultural Research,2008,59:321-330.
[48]Dang Y P,Dalal R C,Routley R,et al.Subsoil constraints to grain production in the cropping soils of the north-eastern region of Australia:an overview[J].Australian Journal of Experimental Agriculture,2006,46:19-35.
[49]Tavakkoli E,Fatehi F,Coventry S,et al.Additive effects of Na+and Cl-ions on barley growth under salinity stress[J].Journal of Experimental Botany,2011,62(6):2189-2203
[50]Hasegawa P M,Bressan R A,Zhu J K,et al.Plant cellular and molecular responses to high salinity[J].Annu Rev Plant Physiol Mol Biol,2000,51:463-499.
[51]Mian A A,Senadheera P,Maathuis F J M.Improving crop salt tolerance:anion and cation transporters as genetic engineering targets[J].Plant Stress,2011,5(Special Issue 1):64-72
[52]Flower T J,Colmer T D.The mechanism of salt tolerance in plant[J].New Phytologist,2002,179:945-963.
[53]Hechenberger M,Schwappach B,Fisher W N,et al.A family of putative chloride channel fromArabidopsisand functional complementation of a yeast strain with aCLCgene disruption[J].Journal of Biological Chemistry,1996,271:33632-33638.
[54]Diédhiou C J,Golldack D.Salt-dependent regulation of chloride channel transcript in rice[J].Plant Science,2006,170:793-800.
[55]Colmenero-Flores J M,Martinez G,Gamba G,et al.Identification and functional characterization of cation-chloride cotransporters in plant[J].The Plant Journal,2007,50:278-292.
[56]De Angeli A,Thomine S,Frachisse J M,et al.Anion channels and transporters in plant cell membranes[J].FEBS Letters,2007,581:2367-2374.
[57]Diédhiou C J.Mechanisms of salt tolerance:sodium,chloride and potassium homeostasis in two rice lines with differenct tolerance to salinity stress[D].Germany:University of Bielefeld,2006.
[58]Li W Y F,Wong F L,Tsai S N,et al.Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells[J].Plant,Cell and Environment,2006,29:1122-1137.
[59]Nakamura A,Fukuda A,Sakai S,et al.Molecular cloning,functional expression and subcellular localization of two putative vacuolar voltage-gated chloride channels in rice (OryzasativaL.)[J].Plant Cell Physiology,2006,47:32-42.
2012-08-22
江蘇省自主創(chuàng)新基金項目。
崔世友(1964-),男,江蘇海安人,博士,研究員,研究方向為分子遺傳與作物育種、鹽土農(nóng)業(yè)。
10.3969/j.issn.1673-1409(S).2012.10.005
Q945.78
A
1673-1409(2012)10-S017-06