董藝凝,陳海琴,劉小鳴,張 灝,陳 衛(wèi)
(江南大學食品學院,江蘇無錫214122)
耐熱β-半乳糖苷酶的研究進展
董藝凝,陳海琴,劉小鳴,張 灝,陳 衛(wèi)*
(江南大學食品學院,江蘇無錫214122)
耐熱-半乳糖苷酶因其具有較高的作用溫度和良好的熱穩(wěn)定性,在乳制品生產領域展現(xiàn)出廣闊的應用前景,其理論及應用價值正逐漸成為近年來的研究熱點。從耐熱-半乳糖苷酶的來源、酶學性質、結構特征、催化機制及定向進化研究方面綜述了耐熱-半乳糖苷酶的研究進展,并對其應用及研究前景進行了展望。
耐熱-半乳糖苷酶,結構特征,催化機制,定向進化
β-半乳糖苷酶(EC 3.2.1.23,俗稱乳糖酶)可催化半乳糖苷鍵(β-D-galactosyl bond)的水解。β-半乳糖苷酶在乳制品工業(yè)中有兩項主要的應用,一是水解乳中的乳糖,二是用于功能性食品中低聚半乳糖(galacto-oligosaccharides)的合成。耐熱β-半乳糖苷酶沒有嚴格的定義,它是相對于常溫微生物來源的β-半乳糖苷酶界定的,一般把最適溫度在50℃以上的β-半乳糖苷酶稱作耐熱β-半乳糖苷酶。近年來,耐熱β-半乳糖苷酶在乳制品生產中具有顯著的優(yōu)勢,并逐漸引起人們的研究興趣。本文主要綜述了耐熱β-半乳糖苷酶的研究現(xiàn)狀,以期為耐熱β-半乳糖苷酶研究發(fā)展開拓思路。
耐熱β-半乳糖苷酶主要來源于一些高溫菌和中溫細菌,如耐熱嫌氣菌、棲熱菌、嗜熱菌和古細菌等。真菌中霉菌乳糖酶也具有較高作用溫度,但酵母菌中未見報道。表1列舉了幾種不同微生物來源的耐熱β-半乳糖苷酶及其酶學性質。其中,嗜熱細菌是耐熱β-半乳糖苷酶的一個重要來源,嗜熱細菌生長溫度一般在55~65℃,酶最適溫度55~70℃。如嗜熱鏈球菌[1]、嗜熱脂肪芽孢桿菌[2]等。
研究報道表明許多棲熱菌(Thermus)也能編碼熱穩(wěn)定性的β-半乳糖苷酶。1972年,Ulrich等[14]首次對棲熱菌(Thermus sp.T2)來源的耐熱β-半乳糖苷酶的酶學性質進行了表征,該酶最適作用溫度80℃,最適pH5.0;中性環(huán)境可保持良好的穩(wěn)定性,pH7.0,70℃加熱10min可保持100%酶活。1998年,Vian等[15]將Thermus sp.T2來源的耐熱β-半乳糖苷酶在大腸桿菌中進行重組表達,重組酶的耐熱性能保持良好,70℃加熱1h酶活保留率為50%。而Ohtsu等[3]從日本Atagawa溫泉中分離到一種棲熱菌(Thermus sp.A4),其耐熱β-半乳糖苷酶具有極好的熱穩(wěn)定性,可在70℃加熱20h保持酶活不受損失。Dion等[16]從Thermus thermophilus HB27中克隆并表達了一種耐熱β-半乳糖苷酶,可以催化β-D-半乳糖苷、β-D-葡萄糖苷和β-D-果糖苷衍生物水解;最適溫度88℃,中性條件下,pH7.0,80℃加熱10min可保持100%酶活。
另外,來自Caldicellulosiruptor saccharolyticus,Sterigmatomyceselviae,Thermotoga maritime以 及Thermus aquaticu的耐熱β-半乳糖苷酶的最適作用溫度均可以達到80℃以上。沃氏火球菌(Pyrococcus woesei)最適作用溫度93℃,最適pH5.4,85℃和93℃加熱4h酶活分別保留89%和85%[17-18]。礦泉古生菌中硫磺礦硫化葉菌(Sulfolobus solfataricus)也能編碼一種極耐熱的β-半乳糖苷酶,最適溫度高于90℃[19-20]。另外,熱產硫磺梭菌(Clostridium thermosulfurogenes EM1)β-半乳糖苷酶,最適pH7.0,在70℃長時間加熱酶活仍穩(wěn)定[21]。
表1 不同微生物來源的耐熱-半乳糖苷酶及其酶學性質Table 1 Thermos table β-galactosidases from different microbial sources and its enzymatic properties
水解酶基于氨基酸序列相似性被分類為不同家族,到目前為止,共有115個糖苷水解酶家族(Glycoside Hydrolase Family)分屬于14個超家族(Super Family)GH-A-GH-N。其中,GH-A超家族由18個水解酶家族組成(1,2,5,10,17,26,30,35,39,42,50,51,53,59,72,79,86,113),β-半乳糖苷酶屬于其中GH-1,GH-2,GH-35和GH-42(http://www.cazy.org/Glycoside-Hydrolases.html)。目前已報道的耐熱β-半乳糖苷酶多屬于糖苷水解酶42家族(GH-42)[22]。該家族所屬乳糖酶很多來源于極性微生物(如嗜熱[23]、嗜冷[4,24]、嗜鹽微生物[25]等),因此該家族的乳糖酶結構具有理論研究代表性。GH-42家族乳糖酶具有典型的TIM(Distored triosephosphate isomerase)barrel特征,即由8個重復的β折疊接α螺旋(β/α)8單元構成酶的催化結構域[26]。該水解酶家族的催化機制屬于典型的保持型催化(Retaining glycoside hydrolases),氨基酸序列長度為600~700aa,分子量均在70~80ku之間。這一家族中每個成員都具有兩個保守的谷氨酸作為催化氨基酸。催化中心通常位于TIM barrel的第4和第7個β片層結構上,因此GH-42基于結構域特征被分類為4/7超家族(4/7 Super Family)[27]。
糖苷水解酶有兩種經(jīng)典的催化機制,即保持型(retaining)機制和反轉型(inverting)機制,由Koshland在56年前提出并一直沿用至今。這一理論主要基于糖苷水解酶在催化過程中會出現(xiàn)兩種不同的立體化學產物,即產物的異頭碳構象與供體底物的相同或不同。水解酶家族的結構特征并不直接決定酶的立體化學催化活性,很多超家族中都同時具有保持型和反轉型糖苷水解酶。但分屬同一家族中的酶往往具有相同的催化機制。其中,耐熱β-半乳糖苷酶所屬的GH-42家族中已報道的糖苷水解酶均屬保持型。
保持型水解酶遵循兩步反應的雙替換機制(twostep double-displacement mechanism),包括糖苷-酶復合物過渡態(tài)的形成和水解,每步反應均通過酸堿催化完成[28]。這個過程需要兩個含羧基的關鍵氨基酸參與,一個作為親核基團攻擊底物異頭碳形成糖苷-酶復合物;另一個羧基基團作為酸堿催化劑,在第一步反應中使羰基氧質子化,第二步反應中催化脫去一分子水。在兩個催化關鍵殘基之間需達到一個較小的距離(0.55nm),以滿足親核攻擊反應發(fā)生的條件。
已有的研究表明,GH-42家族β-半乳糖苷酶對乳糖的水解活性大多很弱或是缺失。究其原因為,耐熱β-半乳糖苷酶所屬微生物多生長在營養(yǎng)貧瘠的環(huán)境中,如溫泉[3,15,29]、土壤(Bacillus,Streptomyces spp.)及高鹽環(huán)境[25,30]等,據(jù)此推測進化過程中耐熱的β-半乳糖苷酶類利用乳糖并以乳糖作為主要碳源的機會很少,因而乳糖不是這類β-半乳糖苷酶的最適作用底物,故多數(shù)耐熱β-半乳糖苷酶表現(xiàn)出水解活性弱的特點[31]。目前針對耐熱β-半乳糖苷酶功能的改造主要集中在提高其乳糖水解率和低聚半乳糖(galactooligosaccharides)的合成量。這兩個生產領域分別應用到了耐熱β-半乳糖苷酶的水解催化活性和轉糖苷活性,二者有著緊密聯(lián)系,糖苷鍵在乳糖酶的催化作用下斷裂后,當糖苷受體為水分子時催化結果即表現(xiàn)為糖苷鍵的水解;與之對應,當糖苷受體為另一糖分子時則表現(xiàn)為糖苷的轉移。2010年Yeong-Su Kim等[32]從降低水解產物對乳糖酶抑制作用角度對C. saccharolyticus來源的耐熱β-半乳糖苷酶進行改造,通過預測乳糖酶抑制劑半乳糖與酶的結合位點,并對這些位點的氨基酸進行丙氨酸替換。研究發(fā)現(xiàn)Phe-349位點是影響半乳糖對酶抑制作用的關鍵位點,并針對F349進行定點突變,得到的F349S突變體酶在含有半乳糖抑制劑反應體系中乳糖水解率高達99%。2009年,德國學者Placier等[33]采用隨機突變的方法對嗜熱脂肪芽孢桿菌來源的β-半乳糖苷酶進行改造,篩選得到轉糖苷活性提高的突變體R109K。通過對Arg-109位點進行點飽和突變,成功獲得低聚半乳糖(Galacto-oligosaccharide)合成能力提高的突變體R109W。
耐熱β-半乳糖苷酶與常溫及低溫乳糖酶類相比,其在乳品生產工藝中有著顯著的優(yōu)勢。大多數(shù)的耐熱β-半乳糖苷酶的最適作用溫度在60℃以上,高溫下熱穩(wěn)定性良好,能夠有效降低生產工藝中微生物污染的風險。同時,耐熱β-半乳糖苷酶具有較高的抗化學變性作用,在室溫下有較長的貯存期。另外,較高的作用溫度使耐熱β-半乳糖苷酶的催化反應具有較高的初始反應速率和底物溶解濃度,可以提高反應速度,降低反應體系粘度及水解產物對反應的抑制作用,有利于提高生產效率。因而,耐熱β-半乳糖苷酶多表現(xiàn)出良好的轉糖苷活性。其中來自于Alicyclobacillus acidocaldarius的耐熱β-半乳糖苷酶轉糖苷活性最高可達592U/mg[34]。圍繞耐熱β-半乳糖苷酶高溫下生產優(yōu)勢的研究報道很多,但將其應用到生產的研究還不是很多,僅有個別重組表達的耐熱β-半乳糖苷酶用于低聚乳糖生產的研究報道,包括Geobacillus stearothermophilus[33]、Pyrococcus furiosus[35]以及Thermus sp.[36]來源的耐熱β-半乳糖苷酶。雖然耐熱β-半乳糖苷酶在生產及貯存方面的優(yōu)點越來越引起人們的關注,但由于熱穩(wěn)定性的酶大都來源于嗜熱微生物,這些微生物往往難以進行大規(guī)模培養(yǎng),或需要高溫發(fā)酵設備。利用基因工程技術構建能高效表達耐熱酶的常溫重組工程菌,可有效解決這一難題。因為常溫重組工程菌在發(fā)酵過程中產生的宿主蛋白絕大多數(shù)對熱不穩(wěn)定,只要將工程菌的發(fā)酵液進行熱處理就可方便地純化異源耐熱酶蛋白,易于大規(guī)模生產及純化。但未來還需要在耐熱β-半乳糖苷酶高效表達系統(tǒng)構建領域進行不斷的探索,這也將是實現(xiàn)耐熱β-半乳糖苷酶應用價值的一項重要課題。
[1]Molotov SV,Duzhii DE,Danilevich VN,et al.Cloning of the Streptococcus thermophilus beta-galactosidase gene and its expression in Escherichia coli and Bacillus subtilis cells[J].Mol Gen Mikrobiol Virusol,1990(4):10-14.
[2]Chen W,Chen H,Xia Y,et al.Production,purification,and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus[J].J Dairy Sci,2008,91(5):1751-1758.
[3]Ohtsu N,Motoshima H,Goto K,et al.Thermostable betagalactosidasefrom an extreme thermophile,Thermus sp.A4:enzyme purification and characterization,and gene cloning and sequencing [J].Biosci Biotechnol Biochem,1998,62(8):1539-1545.
[4]Gutshall KR,Trimbur DE,Kasmir JJ,et al.Analysis of a novel gene and beta-galactosidase isozyme from a psychrotrophic Arthrobacter isolate[J].J Bacteriol,1995,177(8):1981-1988.
[5]Hinz SW,Brock VD,Beldman LA,et al.Beta-galactosidase from Bifidobacterium adolescentis DSM20083 prefers beta(1,4) -galactosides over lactose[J].Appl Microbiol Biotechnol,2004,66(3):276-284.
[6]YuanT,Yang P,Wang Y,et al.Heterologous expression of a gene encoding a thermostable beta-galactosidase from Alicyclobacillus acidocaldarius[J].Biotechnol Lett,2008,30(2):343-348.
[7]Biswas S,Kayastha AM,Seckler R.Purification and characterization of a thermostable beta-galactosidase from kidney beans(Phaseolus vulgaris L.)cv.PDR14[J].J Plant Physiol,2003,160(4):327-337.
[8]BatraN,Singh J,Banerjee UC,et al.Production and characterization of a thermostable beta-galactosidase from Bacillus coagulans RCS3[J].Biotechnol Appl Biochem,2002,36(1):1-6.
[9]Wanarska M,Kur J,Pladzyk R,et al.Thermostable Pyrococcus woesei beta-D-galactosidase—high level expression,purification and biochemical properties[J].Acta Biochim Pol,2005,52(4):781-787.
[10]Pisani FM,Rella R,Raia CA,et al.Thermostable betagalactosidase from the archaebacterium Sulfolobus solfataricus. Purification and Properties[J].Eur J Biochem,1990,187(2):321-328.
[11]Lee JH,Kim YS,Yeom SJ,et al.Characterization of a glycoside hydrolase family 42 beta-galactosidase from Deinococcus geothermalis[J].Biotechnol Lett,2010.
[12]Shaikh SA,Khire JM,Khan MI.Characterization of a thermostable extracellular beta-galactosidase from a thermophilic fungus Rhizomucor sp[J].Biochim Biophys Acta,1999,1472(1-2):314-322.
[13]Katrolia P,Zhang M,Yan Q,et al.Characterisation of a thermosable family 42 beta-galactosidase(BgalC)family from Thermotoga maritima showing efficient lactose hydrolysis[J].Food Chemistry,2011,125:614-621.
[14]Ulrich JT,McFeters GA,Temple KL.Induction and characterization of-galactosidase in an extreme thermophile[J].J Bacteriol,1972,110(2):691-698.
[15]Vian A,Carrascosa AV,Garcia JL,et al.Structure of the beta-galactosidase gene from Thermus sp.strain T2:expression in Escherichia coli and purification in a single step of an active fusion protein[J].Appl Environ Microbiol,1998,64(6):2187-2191.
[16]Dion M,F(xiàn)ourage L,Hallet JN,et al.Cloning and expression of a beta-glycosidase gene from Thermus thermophilus.Sequence and biochemical characterization of the encoded enzyme[J]. Glycoconj J,1999,16(1):27-37.
[17]Daabrowski S,Maciunska J,Synowiecki J.Cloning and nucleotide sequence of the thermostable beta-galactosidase gene from Pyrococcus woesei in Escherichia coli and some properties of the isolated enzyme[J].Mol Biotechnol,1998,10(3):217-222.
[18]Dabrowski S,Sobiewska G,Maciunska J,et al.Cloning,expression,and purification of the His(6)-tagged thermostable beta-galactosidase from Pyrococcus woesei in Escherichia coli and some properties of the isolated enzyme[J].Protein Expression and Purification,2000,19(1):107-112.
[19]Cobucci-PonzanoB,Aurilia V,Riccio G,et al.A new archaeal beta-glycosidase from Sulfolobus solfataricus:seeding a novel retaining beta-glycan-specific glycoside hydrolase family along with the human non-lysosomal glucosylceramidase GBA2[J].J Biol Chem,2010,285(27):20691-20703.
[20]Cannio R,de Pascale D,Rossi M,et al.Gene expression of a thermostable beta-galactosidase in mammalian cells and its application in assays of eukaryotic promoter activity[J].Biotechnol Appl Biochem,1994,19(2):233-244.
[21]Burchhardt G,Bahl H.Cloning and analysis of the betagalactosidase-encoding gene from Clostridium thermosulfurogenes EM1[J].Gene,1991,106(1):13-19.
[22]Naumov DG,Karreras M.New program PSI protein classifier automatizes the PSI-BLAST results analysis[J].Mol Biol(Mosk),2009,43(4):709-721.
[23]Hirata H,F(xiàn)ukazawa T,Negoro S,et al.Structure of a betagalactosidase gene of Bacillus stearothermophilus[J].J Bacteriol,1986,166(3):722-727.
[24]Coombs JM,Brenchley JE.Biochemical and phylogenetic analyses of a cold-active beta-galactosidase from the lactic acid bacteriumCarnobacteriumpiscicolaBA[J].ApplEnvironMicrobiol,1999,65(12):5443-5450.
[25]Holmes ML,Scopes RK,Moritz RL,et al.Purification and analysis of an extremely halophilic beta-galactosidase from Haloferax alicantei[J].Biochim Biophys Acta,1997,1337(2):276-286.
[26]Breton C,Snajdrova L,Jeanneau C,et al.Structures and mechanisms of glycosyltransferases[J].Glycobiology,2006,16(2):29R-37R.
[27]Cantarel BL,Coutinho PM,Rancurel C,et al.The Carbohydrate-Active EnZymes database(CAZy):an expert resource for Glycogenomics[J].Nucleic Acids Res,2009,37(Database issue):D233-238.
[28]Ly HD,Withers SG.Mutagenesis of glycosidases[J].Annu Rev Biochem,1999,68:487-522.
[29]KangSK,Cho KK,Ahn JK,et al.Three forms of thermostable lactose-hydrolase from Thermus sp.IB-21:cloning,expression,and enzyme characterization[J].J Biotechnol,2005,116(4):337-346.
[30]Sheridan PP,Brenchley J E.Characterization of a salt-tolerant family 42 beta-galactosidase from a psychrophilic antarctic Planococcus isolate[J].Appl Environ Microbiol,2000,66(6):2438-2444.
[31]Shipkowski S,Brenchley JE.Bioinformatic,genetic,and biochemical evidence that some glycoside hydrolase family 42 beta-galactosidases are arabinogalactan type I oligomer hydrolases [J].Appl Environ Microbiol,2006,72(12):7730-7738.
[32]Kim YS,Yeom SJ,Oh DK.Reduction of galactose inhibition via the mutation of beta-galactosidase from Caldicellulosiruptor saccharolyticus for lactose hydrolysis[J].Biotechnol Lett,2010.
[33]Placier G,Watzlawick H,Rabiller C,et al.Evolved betagalactosidases from Geobacillus stearothermophilus with improved transgalactosylation yield for galacto-oligosaccharide production [J].Appl Environ Microbiol,2009,75(19):6312-6321.
[34]Di Lauro B,Strazzulli A,Perugino G,et al.Isolation and characterization of a new family 42 beta-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius:identification of the active site residues[J].Biochim Biophys Acta,2008,1784(2):292-301.
[35]Bruins ME,Strubel M,van Lieshout JFT,et al.Oligosaccharide synthesis by the hyperthermostable β-glucosidase from Pyrococcus furiosus:kinetics and modelling[J].Enzyme and Microbial Technology,2003,33(1):3-11.
[36]Akiyama K,Takase M,Horikoshi K,et al.Production of galactooligosaccharides from lactose using a beta-glucosidase from Thermus sp.Z-1[J].Biosci Biotechnol Biochem,2001,65(2):438-441.
Research progress in thermostable β-galactosidases
DONG Yi-ning,CHEN Hai-qin,LIU Xiao-ming,ZHANG Hao,CHEN Wei*
(School of Food Science and Technology,Jiangnan University,Wuxi 214122,China)
Thermostable β-galactosidases have become commercially important in the field of diary industry, owing to their high catalytic temperature and stability.Because of their significant value in theoretical research and application,thermostable β-galactosidases have
a great deal of attention.In this review,the research progress on thermostable β-galactosidases were discussed,including the sources of microorganism, characteristics,structural properties,catalytic mechanism and directed evolution of thermostable β-galactosidases. The industrial needs for thermostable-galactosidases and improvements required to their application in the future were also suggested.
thermostable β-galactosidase;structure properties;catalytic mechanism;directed evolution
TS201.2+5
A
1002-0306(2012)01-0384-04
2011-01-10 *通訊聯(lián)系人
董藝凝(1980-),女,博士研究生,研究方向:食品生物技術。
中央高校基本科研業(yè)務費專項資金(JUSRP11017,JUSRP31002)。