• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrodeposition of Gold from Non-cyanide Bath Using 5,5′-Dimethylhydantoin-gold Complex

    2012-11-09 10:42:56YANGXiaoWeiZHANGYunWangANMaoZhongZHANGLin

    YANG Xiao-WeiZHANG Yun-WangAN Mao-ZhongZHANG Lin*,

    (1Research Center of Laser Fusion,China Academy of Engineering Physics,Mianyang,Sichuan,621900,China)

    (2School of Chemical Engineering and Technology,Harbin Institute of Technology,Harbin 150001,China)

    Electrodeposition of Gold from Non-cyanide Bath Using 5,5′-Dimethylhydantoin-gold Complex

    YANG Xiao-Wei1,2ZHANG Yun-Wang1AN Mao-Zhong2ZHANG Lin*,1

    (1Research Center of Laser Fusion,China Academy of Engineering Physics,Mianyang,Sichuan,621900,China)

    (2School of Chemical Engineering and Technology,Harbin Institute of Technology,Harbin150001,China)

    The effect of plating time and brightening additives (composed of saccharin,butynediol and sodium dodecyl sulfate)on the properties of gold deposits plated from a non-cyanide bath with 5,5′-dimethylhydantoin (DMH)as the complexing agent was investigated by using scanning electron microscopy (SEM)and linear sweep voltammetry measurements.The results indicate that surface morphologies of gold electrodeposits are not markedly affected and do not change significantly with increasing deposition time,and brightening additives increase the cathodic polarization of bath and refine the grains of electrodeposits.The gold deposition rate in basic bath containing HAuCl4,DMH,K3PO4,KH2PO4is 0.3 μm·min-1,and the high deposition rate is not influenced by the introduction of brightening additives.The properties of electrodeposits were evaluated by X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).The results show that the gold electrodeposits have a preferential orientation along(111)direction and are composed of pure Au0state.The electrochemical behavior of Au(Ⅱ)in the bath onto glassy carbon electrode(GCE)at 45℃was studied by cyclic voltammetry and standard rotating disk.The results indicate that the electrodeposition of metallic Au in the bath is an irreversible process and is controlled by the diffusion of Au(Ⅱ)onto GCE.The stability of the DMH-gold bath is also discussed.

    gold electrodeposition;non-cyanide;5,5′-dimethylhydantoin;cyclic voltammograms;rotating discelectrode

    The combination of excellent electrical conductivity,solderability and bondability with high corrosion resistance has led to the widespread adoption of gold as a standard material for numerous applications in microelectronic,optoelectronic and microsystem technologies[1-4].However,due to the high intrinsic cost of gold,it is important and advantageous to identify the type of plating baths which can offer the best gold deposits for a deposition process.

    For many decades,cyanide-containing baths for gold electrodeposition have been used.On the one hand,the gold (Ⅱ) cyanide complex has a stability constant of 1039,which makes the solution very stable, and cyanide salts are also very cheap.On the other hand,cyanide is very poisonous even at a very low concentration,which can lead to difficulties in plating operation and waste disposal[5-6].Therefore,the demand for non-cyanide gold electroplating processeshas increased significantly.A number of attempts to producegold electrolytesfrom iodide,hydroxide, thiosulfate,sulfite and phosphoric acid were made[7-9].Of these,sulfite is the most commonly used complex for gold deposition as an alternative to the cyanide electrolyte and has been widely studied and utilized.It can produce fine,smooth and bright gold deposits and is non-toxic and suitable for plating soft gold in the micro-electronics industry. However, the disadvantage of sulfite electrolyte is instability.To counteract this stability problem,many Au(Ⅱ) sulfite baths are operated at pH≥8 or have been added various additives (such as 2, 2′-dipyridine, ethylenediamine or aromatic nitro-compounds)[10-12].More recently,a non-cyanide bath containing both thiosulfate and sulfite as complexing agentswas reported.It was found that mixed sulfite bath had higherstability than eitherthe pure sulfite or thiosulfate bath,and did not require the use of stabilizers.However,the preparation procedure was very complicated,not only in terms of controlling the pH value,but also in terms of the mixing sequence[13].In addition to sulphite and sulphite-thiosulphate baths, gold plating bath employing 5, 5′-dimethylhydantoin (DMH)was also been proposed[14]. The DMH is nontoxic and can form stable complex with Au(Ⅱ).The addition of thallium ions,as a grain refiner have been found to reduce the grain size and increase the brightness of deposits.Under optimum plating conditions the deposits are smooth,uniform and dense.However,there is a serious problem with this electrolyte.Toxicity of thallium (human poison; lethal dose approximately 0.1 mg·m-3)is of concern.In a subsequent study,our group developed a similar electrolyte using DMH as complexing agent.However, thallium was not used as grain refiner by the previous researchers.This novel electrolyte is highly stable, non-toxic and also can produce thick gold electrodeposits.The high plating rate which has been little published is very important in some industrial fields of gold plating.The aim of our present work is to develop bright gold deposits with the thickness of (18±2)μm,while the deposits plated from this novel electrolyte can satisfy the specific thickness demand of gold plating applications.

    This paper reports a new hydantoin based pure gold electroplating process with excellent stability.The effects of the plating time and composition of gold plating bath using various brightening additives on deposition are investigated. The process characterization, including deposit morphology, thickness,composition and solution stability is presented.The electrochemical behavior is evaluated by cyclic voltammetry and polarisation measurements.

    1 Experimental

    1.1 Gold electroplating

    The basic bath was prepared by dissolving 0.625 mol·L-1of DMH in deionised water.Once dissolved, the pH value of the solution was adjusted to 9~10 with the addition of KOH,followed by the addition of 0.05 mol·L-1of HAuCl4.The [AuCl4]-subsequently underwent a homogeneous reduction reaction to form a DMH-gold ligand in solution:

    This solution was light yellow initially,within a few hours under stirring it became transparent until the HAuCl4was fully complexed with DMH.The solution stayed transparent with a faint yellowish color for the whole testing period.Then,0.4 mol·L-1of K3PO4was added to the solution and the pH value of the final electrolyte was adjusted to 9~10 by the addition of KH2PO4.Besides the basic bath,other electroplating baths were prepared by adding brightening additives (composed of saccharin, butynediol and sodium dodecyl sulfate).

    The composition and operating conditions of the gold electrodeposition bath used in this study were listed in Table 1.The substrates used were copper sheets (10 mm×10 mm×0.1 mm)pretreated by immersion in a solution of 50%hydrochloric acid,and rinsed with distilled water.Copper,ascathode material,was used because it was isostructural with gold with a nearly identical lattice content,which avoided surface from cracks and minimized microstrain in the deposit.

    Table 1 Compositions and conditions of plating bath using the DMH-gold complex

    1.2 Electrochemical evaluation

    Cyclic and linear sweep voltammetry measurements were carried out in a three-electrode glass cell on a GAMRY Reference 600 electrochemical workstation.A glassy carbon electrode (GCE)and a rotating disk electrode (RDE)with a working surface of 0.07 cm2(φ=0.3 cm)were used as the working electrode(WE),the RDE was also a GCE embedded in teflon in conjunction with a speed control unit,the counter electrode (CE)was a platinum plate and the reference electrode was a saturated calomel electrode (SCE).The bath temperature was maintained at 45℃ by thermostat control.The cathodic polarisation curves were recorded at a scanning rate of 1 mV·s-1,and rotation speed of the RDE ranged from 50 to 400 rad·s-1.Cyclic voltammetry sweepswere recorded as a function of scan rate from 10 to 90 mV·s-1.

    1.3 Characterizations of gold electrodeposits

    The surface and cross-sectional morphologies of the samples were measured by field emission scanning electron microscopy (FE-SEM,Hitachi S4700)at 25 kV working voltage.The X-ray diffraction(XRD) analysis was carried out with a scanning rate of 0.02° ·s-1with Cu Kα radiation (λ=0.154 18 nm).The chemical composition of the deposits was probed using Physical Electronics, PHI 5700 EICA X-ray photoelectron spectroscopy(XPS)with Al Kα(1 486.6 eV)monochromatic source.Data was taken after 120 s of ion etching.All energy values were corrected using C1s at 284.62 eV as a reference.

    2 Results and discussion

    2.1 Effect of plating time on microstructures of electrodeposits

    Because the main aim of developing this bath is to apply it to some thick gold plating fields,the deposition rate is desired to be as high as possible.Our investigation reveals that the plating rate in the bath without or with brightening additives both can reach about 0.3 μm·min-1,which is very effective for achieving our purpose.After electrodeposition,the copper substrates are covered by gold film with a golden-brown or bright golden-brown color.And it alsocan be noted thatallsampleshavebeen completely covered with films and are uniform in appearance.To investigate the influences of plating time,the SEM plan views of gold deposits plated from the bath without or with brightening additives at 1.5 A·dm-2for different plating time were studied.

    For a constant deposition time of 10 min(Fig.1a), the films are continuous and adherent to the substrate.They consist of large gold particles about 0~0.5 μm average diameter,frequently aggregate in clusters with typical sizes in the range of 0.5~1 μm.Increasing the deposition time to 40~60 min (Fig.1b and c)the number and size of gold particles are not changed significantly and the morphology of the film is not modified,indicating that the properties of DMH-gold plating bath is very stable.Overall,from Fig.1a,b and c,on can see that the deposits plated in basic bath consist of dense and relatively smooth homogeneous particles,and the morphology and particle size are only varied slightly with the deposition time.The surface morphologies of deposits are shown in Fig.1d, e and f.By applying different deposition time,i.e.10, 40 and 60 min,it also can be seen that the number and size of gold particles are changed significantly with the extension of deposition time.The only difference is that the gold grains become smaller compared with that of deposits plated in basic bath and the gold film is bright golden-brown in color.So, it can be concluded that from Fig.1 the morphologies of gold deposits plated in bath without or with brightening additives are varied slightly with the deposition time.The properties of DMH-gold plating bath and the technology process are very stable and viable for plating for long time.

    The effect of deposition time on the crosssectional morphologies of gold deposits formed in DMH-gold bath without or with brightening additives can be ascertained by comparing the films depicted in Fig.2.

    The SEM images of deposits display a compact film,with almost no defects in the deposited regions. In the SEM images of gold deposits shown in Fig.2a and c synthesized by 40-min depositions,the consecutive depositions of gold reach thickness of 12.10 and 10.57 μm,respectively.The thickness of the deposits increase with increasing deposition time, and the deposit thickness is increased to 21.47 and 20.20 μm when samples are electrodeposited for 60 min shown in Fig.2b and d,respectively.It also noted that the average thickness calculated from the weight gain of gold deposits is in agreement with the thickness shown in the micrograph (Fig.2).Therefore, these results suggest that the gold average deposition rates in both baths are similar(about 0.3 μm·min-1), which can achieve the purpose of electroplating thick gold deposit.The maximum thickness of gold deposits with uniform appearance plated in DMH-gold bath can reach about 24 μm,and the samples are plated about 80 min at 1.5 A·dm-2.If the plating time is prolonged,the uniformity and colorofthe gold deposits will become worse.So the controllable range of deposition thickness plated in the DMH-gold bath in this work is 0~24 μm.

    2.2 Effect of the addition of brightening additives in the basic bath

    Before discussing the effect of additives on deposit morphology,it will be useful to present their effecton the electrode response during Au (Ⅱ)reduction.

    Fig.3 shows polarization curves for gold deposition obtained in the absence of additives(a)and in the presence of brightening additive(b~e).Fig.3b is the magnified resultofFig.3a forthe scanning potential range from-0.45 V to-0.60 V.

    Comparison of curves(a)and (b)~(e)shown in Fig.3b indicates that the curves obtained in the solutions containing additives are polarized toward more negative potential relative to that of an additivefree bath.The cathodic potential of-0.55 V is the lowest for curve (e).The results shown in Fig.3 suggest that the adsorption of brightening additives at the electrode surface would be expected to inhibit gold reduction.In general, a higher cathodic polarization accelerates the growth of finer grains.Then,preliminary gold deposition studies show that the addition of brightening additives to the basic bath leads to brighter gold deposits.And the optimum composition of brightening additive in the DMH-gold bath is 0.55 mmol·L-1of saccharin,1.2 mmol·L-1of butynediol and 0.17 mmol·L-1of sodium dodecyl sulfate.

    Fig.3 LSV curves of various baths at the scanning rate of 1 mV·s-1

    Fig.4.SEM images of gold electrodeposited from various baths at 1.5 A·dm-2for 10 min on copper sheets:(a)basic bath;(b)basic bath+1.2 mmol·L-1of butynediol; (c)basic bath+0.55 mmol·L-1of saccharin;(d)basic bath+0.17 mmol·L-1of sodium dodecyl sulfate;(e)basic bath+1.2 mmol·L-1of butynediol+0.55 mmol·L-1of saccharin+0.17 mmol·L-1of sodium dodecyl sulfate.

    The deposit shown in Fig.4a clearly shows a rough surface because of the absence of additives in basic bath.Deposit (a)is golden-brown in color and has obvious gold grains in larger size.In fact,it is impossible to produce commercially acceptable deposits from a simple DMH-gold electrolyte without any additives.In Fig.4b and c,the number and size of large gold particles decrease and agglomeration of grains is found for the gold deposits plated from bath b and bath c(containing 1.2 mmol·L-1of butynediol or 0.55 mmol· L-1of saccharin).This phenomenon is attributable to the absorption of butynediol or saccharin at the cathode and the grains of deposit b and deposit c are finer than that of deposit a.The result is consistent with the results in Fig.3.In order to gain much smaller grains and smoother micro-surface,0.17 mmol·L-1of sodium dodecyl sulfate was added into bath a and the corresponding SEM morphologies is shown in Fig.4d.From a comparison of Fig.4d and a,the addition of sodium dodecyl sulfate in bath a does not show significant influences on the resultant morphology.As shown in Fig.4e,after the addition of sodium dodecyl sulfate,butynediol and saccharin to bath a,the deposits morphology is markedly different.The large gold particles disappear and the surface of deposit e is smoother, more compact, and finer grained.Accordingly,the presence of additives promots the more negative shift in the gold deposition potential on cathodic polarization ofcurve (e).The above phenomenon is due to the strongest absorption of three additives on the cathode,thus exhibiting the strongest effect on the morphology of gold deposits.

    Fig.4 shows SEM images of gold deposits plated at 1.5 A·dm-2for 10 min on copper sheets from bath without(a)or with brightening additive(b~e),respectively

    2.3 Electrochemical behavior of[Au(DMH)4]-in gold plating bath

    Cyclic voltammograms data for the bath with brightening additives at various scan rates on a GCE at 45℃ are shown in Fig.5.

    Fig.5 Cyclic voltammograms of[Au(DMH)4]-in gold plating bath with brightening additives at various scan rates on a GCE at 45℃

    From Fig.5,a single cathodic reduction wave is observed near-0.6 V on the negative scan from 0 to-0.8 V.Therefore, the cathodic wave corresponds to the reduction of Au(Ⅱ) to Au.As shown in Fig.5,the cathodic peak current increases and the cathodic peak potential shifts negatively with increasing the scan rate v,indicating that reduction of Au(Ⅱ) on GCE is an irreversible process[15].

    Linear sweep voltametry was performed to study the effect of agitation on the deposition behavior of gold.The polarisation data forgold deposition from the DMH-gold bath with brightening additives at a RDE at different rotation speeds are illustrated in Fig.6.Comparing the polarization curves at different rotation speeds,it can be seen that agitation is very important for gold deposition.At 0 rad·s-1(no agitation),the limiting current density is low (~0.125 A·dm-2)and is reached almost immediately after gold started to deposit.The limiting current density increases with increasing agitation.A plot of limiting currentdensity,Jdobtained from linear sweep voltametry as a function of ω1/2(ω is the rotation speed,rad·s-1) for the reduction of Au(Ⅱ) on a RDE is shown in Fig.7.According to Levich equation,when the electrode reaction is controlled by diffusion processes,the relationship between the limiting current Idand rotation speed (ω)can be expressed as Eq.(2)[16]:

    Fig.6 Polarization curves of gold deposition from the bath with brightening additives at a RDE at different rotation speeds

    where n is the number of exchanged electrons,F is the Faraday constant,A is the electrode area in cm2(0.07 cm2),C*is the gold concentration in mol·cm-3,D is the diffusion coefficient in cm2·s-1,γ is the dynamic viscosity in Pa·s and ω is the rotation speedinrad·s-1.As shown in Eq.(2),there is a linear relationship between Idand ω1/2.Moreover, Fig.7 shows that the plots of the variation of limiting currentdensity,Jdobtained from linear sweep voltametry against ω1/2are linear.It can be inferred that the electrodeposition of gold is controlled by the diffusion process.So,it can be concluded that the reduction of Au(Ⅱ) to Au on a GCE is an irreversible and diffusion-controlled process.

    Fig.7 Limiting current density,Jdvs.ω1/2for the reduction of Au(Ⅱ)in gold plating bath

    2.4 Properties of gold electrodeposits

    The XRD pattern of the gold electrodeposits is shown in Fig.8.The gold electrodeposits include five obvious diffraction peaks of Au(111),(200),(220),(311) and (222)associated with face-centered cubic(fcc) structure,indicatingthatthe face-centered cubic structure of gold is preserved in the gold electrodeposits.The diffraction peak intensity corresponding to the(111) plane is larger than the other peaks,indicating that the electrodeposits have well preferred orientation along (111)direction.This is because the(111)surface is the most densely packed and hence the energetically most favorable for the surface growth for the fcc gold,as reportedintheliterature[17].

    Fig.8 XRD pattern of gold electrodeposits obtained from the bath with brightening additives at 1.5 A·dm-2 for 10 min on a copper substrate

    To confirm the chemical state of the gold in the electrodeposits,an XPS experiment was carried out on the surface of electrodeposits as shown in Fig.9.The high-resolution Au 4f peaks show a spin-orbit doublet with two attributions at binding energy of 85.0 eV and 88.4 eV,which can be attributed to Au0state indicating that the gold electrodeposits are composited of pure Au0state.

    Fig.9 XPS spectra of gold electrodeposits obtained from the bath with brightening additives at 1.5 A·dm-2 for 10 min on a copper substrate

    2.5 Studies on bath stability

    Cyclic voltammogram for gold deposition at a GCE from a solution prepared by dissolving HAuCl4(0.05 mol·L-1)in a potassium phosphate buffer(pH 9~10)was shown in Fig.10a.In order to study the voltammogram of gold deposition from [Au(DMH)4]-, DMH (0.625 mol·L-1)was added to the solution of HAuCl4(0.05 mol·L-1),as shown in Fig.10b.The potential was first scanned from 1.0 to-1.5 V and then back to 1.0 V at a rate of 100 mV·s-1.The voltammograms exhibit that a single cathodic wave corresponds to the reduction of Au(Ⅱ) to Au and an area of hydrogen evolution is beyond-1.3 V.A noteworthy feature of the two curves is that the aurate ion in the absence of the ligand is reduced at more positive potentials,suggesting that the DMH-does not undergo ligand exchange,at least during the course of the voltammetric experiment,and so [Au(DMH)4]-is very stable in bath.

    Fig.10 Cyclic voltammograms for gold electrodeposition in two baths

    In order to study the stability of the gold plating bath,fresh bath and bath standing over 6 months were investigated.The loss of bath stability is confirmed by a color change and decomposition of the solution.The fresh bath is transparent with a faint yellowish color, while the bath standing over 6 months is no discernible change in the color and no decomposition phenomenon ofthe bath can be observed.So there are no significant visible changes occurred in the bath standing over 6 months compared to the fresh bath.

    3 Conclusions

    The thick,compact and smooth pure gold electrodeposits were plated from a non-cyanide bath using DMH as complexing agent.The optimum bath with good stability is composed of 0.05 mol·L-1HAuCl4, 0.625 mol·L-1DMH,0.4 mol·L-1K3PO4,calculated KH2PO4,0.55 mmol·L-1of saccharin,1.2 mmol·L-1of butynediol and 0.17 mmol·L-1of sodium dodecyl sulfate.Brightening additives increase the cathodic polarization and refine the grains of deposits.The results of cyclic voltammograms and linear sweep voltametrys show that the reduction of Au(Ⅱ)to Au on a GCE is an irreversible process and controlled by the diffusion of Au(Ⅱ).XRD pattern indicates that the gold deposites have a preferential orientat ion along (111)direction.

    Acknowledgements:The authors would like to thank the Research Center of Laser Fusion under China Academy of Engineering Physics in Mianyang for the financial support.

    [1]Haferkamp H,Niemeyer M,Boehm R,et al.Mater.Sci. Forum,2000,350:31-35.

    [2]Gemmler A,Keller W,Ritcher H,et al.Plat.Surf.Finish, 1994,81(8):52-58

    [3]Liu J,Duan J L,Toimil M E,et al.Nanotechnology,2006,17 (8):1922-1926

    [4]Christie I R,Cameron B P,et al.Gold Bull.,1994,27(1):12-20

    [5]Osaka T,Kodera A,Misato T,et al.J.Electrochem.Soc., 1997,144(10):3462-3469

    [6]Masaru K,Kazutaka S,Yuta M,et al.Electrochim Acta, 2007,53(1):11-15

    [7]Natter H,Hempelmann R,et al.Electrochim Acta,2003,49: 51-61

    [8]Osaka T,Kodera A,Misato T,et al.J.Electrochem.Soc., 1997,144(10):3462-3469

    [9]Green T A,Liew M J,Roy S,et al.J.Electrochem.Soc., 2003,150(3):104-110

    [10]Honma H,Hagiwara K,et al.J.Electrochem.Soc.,1995, 142(1):81-87

    [11]Morrisey R J,Versatile A,et al.Plat.Surf.Finish,1993,80 (4):75-79

    [12]Honma H,Kagaya Y,et al.J.Electrochem.Soc.,1993,140 (9):135-137

    [13]Liew M J,Sobri S,Roy S,et al.Electrochimica Acta, 2005,51(5):877-881

    [14]Ohtani Y,Sugawara K,Nemoto K J,et al.Surface Finish. Soc.Japan,2006,57(2):167-171

    [15]Jayakumar M,Venkatesan K A,Srinivasan T G,et al. Electrochimica Acta,2007,52(24):7121-7127

    [16]LU J F(盧俊峰).Thesis for the Doctorate of Harbin Institute ofTechnology University(哈爾濱工業(yè)大學(xué)博士論文).2007.

    [17]Wang J G,Tian M L,Mallouk T E,et al.J.Phys.Chem., 2004,108:841-845

    5,5′-二甲基乙內(nèi)酰脲體系電沉積金

    楊瀟薇1,2張?jiān)仆?安茂忠2張 林*,1

    (1中國工程物理研究院激光聚變研究中心,綿陽 621900)
    (2哈爾濱工業(yè)大學(xué)化工學(xué)院,哈爾濱 150001)

    開發(fā)了以5,5′-二甲基乙內(nèi)酰脲(DMH)為配位劑的無氰電鍍金工藝。利用掃描電鏡(SEM)和線性掃描伏安曲線對電鍍時(shí)間和添加劑(由丁炔二醇、糖精和十二烷基硫酸鈉組成)對鍍金層表面、斷面形貌和鍍液性能的影響進(jìn)行了測試,結(jié)果表明隨著電鍍時(shí)間的延長鍍金層表面形貌幾乎沒有發(fā)生變化,光亮劑的加入增大了陰極極化同時(shí)使鍍金層結(jié)晶變得細(xì)致均勻,在由HAuCl4,DMH,K3PO4和KH2PO4組成的基礎(chǔ)鍍液中金的沉積速度可達(dá)0.3 μm·min-1,鍍液中添加劑的加入沒有影響金的沉積速度。利用X射線衍射技術(shù)(XRD)和X射線光電子能譜技術(shù)(XPS)對鍍金層性能進(jìn)行了測試,結(jié)果表明鍍金層沿著(111)晶面擇優(yōu)生長并且由純金組成。利用循化伏安曲線和旋轉(zhuǎn)圓盤電極對Au(Ⅱ)在鍍液中的電化學(xué)還原機(jī)制進(jìn)行了研究,結(jié)果表明當(dāng)研究電極為玻碳電極(GCE),鍍液溫度為45℃時(shí),鍍液中金的電沉積過程是受擴(kuò)散控制的不可逆的過程。同時(shí)利用循環(huán)伏安曲線對鍍金液的穩(wěn)定性進(jìn)行了分析。

    電沉積金;無氰;5,5′-二甲基乙內(nèi)酰脲;循環(huán)伏安;旋轉(zhuǎn)圓盤電極

    TQ153.1

    A

    1001-4861(2012)12-2617-09

    2012-03-16。收修改稿日期:2012-06-19。

    中國工程物理研究院激光聚變研究中心資助項(xiàng)目。*

    。E-mail:address:zhlmy@sina.com

    五月伊人婷婷丁香| 在线天堂最新版资源| 精品国内亚洲2022精品成人| 少妇人妻精品综合一区二区| 搡老妇女老女人老熟妇| 99热网站在线观看| 欧美日韩在线观看h| 黄色配什么色好看| 欧美变态另类bdsm刘玥| 国产在视频线在精品| 国产中年淑女户外野战色| 69人妻影院| 亚洲内射少妇av| 最近最新中文字幕免费大全7| 国产一区二区三区av在线| 国内少妇人妻偷人精品xxx网站| 久久精品国产亚洲av涩爱| 男女那种视频在线观看| 国产亚洲一区二区精品| 热99re8久久精品国产| 亚洲精品国产av成人精品| 成人午夜高清在线视频| 有码 亚洲区| 国产欧美另类精品又又久久亚洲欧美| 少妇丰满av| 日韩一本色道免费dvd| 色网站视频免费| 少妇熟女aⅴ在线视频| 久久人妻av系列| 久久99热6这里只有精品| 在现免费观看毛片| 99国产精品一区二区蜜桃av| 一个人免费在线观看电影| 久久久久久大精品| 久久这里只有精品中国| 国产亚洲5aaaaa淫片| 寂寞人妻少妇视频99o| 大香蕉久久网| 久久亚洲国产成人精品v| 一级爰片在线观看| 国产精品精品国产色婷婷| 国产精品国产三级专区第一集| 免费观看在线日韩| 精品国产一区二区三区久久久樱花 | 欧美三级亚洲精品| 免费av不卡在线播放| 色5月婷婷丁香| 十八禁国产超污无遮挡网站| 桃色一区二区三区在线观看| 51国产日韩欧美| 中文乱码字字幕精品一区二区三区 | 国产精品久久久久久久电影| 黄色配什么色好看| 国产免费男女视频| 亚洲欧美精品综合久久99| 99在线视频只有这里精品首页| 精品免费久久久久久久清纯| av国产免费在线观看| 女人久久www免费人成看片 | 国产一区二区在线观看日韩| 中文天堂在线官网| 国产精品一区二区在线观看99 | 禁无遮挡网站| 我要搜黄色片| 久久久久久国产a免费观看| 97超视频在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 日韩精品有码人妻一区| 欧美日本亚洲视频在线播放| 亚洲精品久久久久久婷婷小说 | www日本黄色视频网| 2021天堂中文幕一二区在线观| 身体一侧抽搐| 女人久久www免费人成看片 | 精品久久久久久久久av| 天堂√8在线中文| 日日撸夜夜添| 国产不卡一卡二| 亚洲精品aⅴ在线观看| 国产老妇女一区| 不卡视频在线观看欧美| 国产精品99久久久久久久久| 人人妻人人看人人澡| 午夜精品一区二区三区免费看| 午夜精品一区二区三区免费看| 在线播放国产精品三级| 国产精品久久久久久久久免| 久久久久性生活片| 99热全是精品| 欧美xxxx性猛交bbbb| 国产亚洲av嫩草精品影院| 亚洲aⅴ乱码一区二区在线播放| 99在线人妻在线中文字幕| 亚洲国产欧洲综合997久久,| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲av.av天堂| 男女下面进入的视频免费午夜| 亚洲精品久久久久久婷婷小说 | 国产午夜精品久久久久久一区二区三区| 小说图片视频综合网站| 日本熟妇午夜| 成年版毛片免费区| 日韩国内少妇激情av| 两性午夜刺激爽爽歪歪视频在线观看| 国产免费男女视频| 麻豆成人av视频| 午夜免费男女啪啪视频观看| 日韩一区二区视频免费看| 一级爰片在线观看| 亚洲天堂国产精品一区在线| 精品久久久噜噜| 日韩视频在线欧美| 国产欧美日韩精品一区二区| 久久精品熟女亚洲av麻豆精品 | 精品免费久久久久久久清纯| 欧美一区二区亚洲| 亚洲av电影在线观看一区二区三区 | 插阴视频在线观看视频| 能在线免费看毛片的网站| 美女国产视频在线观看| 人妻制服诱惑在线中文字幕| 91狼人影院| 日韩成人伦理影院| 日日摸夜夜添夜夜添av毛片| 久久久欧美国产精品| 91狼人影院| 人妻制服诱惑在线中文字幕| 欧美高清成人免费视频www| 亚洲成av人片在线播放无| 国产精品不卡视频一区二区| av在线亚洲专区| 国产毛片a区久久久久| 国产精品1区2区在线观看.| 国产老妇女一区| 99视频精品全部免费 在线| 在线观看66精品国产| 国内精品美女久久久久久| 亚洲精品aⅴ在线观看| 波多野结衣高清无吗| 国产真实伦视频高清在线观看| 中文欧美无线码| 美女大奶头视频| 99久久精品热视频| 亚洲国产欧美在线一区| 成人漫画全彩无遮挡| 国产精品爽爽va在线观看网站| 中文精品一卡2卡3卡4更新| 国产成年人精品一区二区| 国产黄a三级三级三级人| 男女国产视频网站| 在线观看美女被高潮喷水网站| 我要搜黄色片| 丰满少妇做爰视频| 久99久视频精品免费| 欧美丝袜亚洲另类| 99热6这里只有精品| 晚上一个人看的免费电影| 久久精品国产鲁丝片午夜精品| 中文在线观看免费www的网站| 最近最新中文字幕大全电影3| 成人综合一区亚洲| 午夜精品一区二区三区免费看| 欧美日本视频| 国产熟女欧美一区二区| 亚洲精品aⅴ在线观看| 国产一区二区三区av在线| 久久精品久久久久久噜噜老黄 | 51国产日韩欧美| 亚洲人成网站在线播| 国产在视频线在精品| 免费观看精品视频网站| 波多野结衣巨乳人妻| 亚洲成色77777| 亚洲欧美精品自产自拍| 日日啪夜夜撸| 在线观看一区二区三区| 国产精品一区二区三区四区久久| 男女国产视频网站| 偷拍熟女少妇极品色| 国产精品嫩草影院av在线观看| 久久精品国产亚洲网站| 亚洲精品456在线播放app| 老师上课跳d突然被开到最大视频| 免费观看精品视频网站| 国产成人freesex在线| 精品熟女少妇av免费看| 中文欧美无线码| 国产高清视频在线观看网站| 一级二级三级毛片免费看| 久久综合国产亚洲精品| 免费观看的影片在线观看| 国产高清有码在线观看视频| 亚洲,欧美,日韩| 久久久亚洲精品成人影院| 校园人妻丝袜中文字幕| 美女内射精品一级片tv| 美女国产视频在线观看| 看非洲黑人一级黄片| 亚洲18禁久久av| 青青草视频在线视频观看| 亚洲精品影视一区二区三区av| 99久久无色码亚洲精品果冻| 男人的好看免费观看在线视频| 能在线免费观看的黄片| 干丝袜人妻中文字幕| 精品久久久噜噜| 国产精品99久久久久久久久| 永久网站在线| 免费观看a级毛片全部| 中文精品一卡2卡3卡4更新| 18禁在线播放成人免费| 两个人视频免费观看高清| 最近2019中文字幕mv第一页| 亚洲人与动物交配视频| 麻豆乱淫一区二区| 精品99又大又爽又粗少妇毛片| 欧美97在线视频| 一个人看的www免费观看视频| 久久精品人妻少妇| 国产成人91sexporn| 美女xxoo啪啪120秒动态图| 日本一二三区视频观看| 亚洲成人久久爱视频| a级毛色黄片| 观看免费一级毛片| 91精品一卡2卡3卡4卡| 美女脱内裤让男人舔精品视频| 久久精品人妻少妇| 久久亚洲精品不卡| 欧美性猛交黑人性爽| 久久国内精品自在自线图片| 亚洲一区高清亚洲精品| 夜夜爽夜夜爽视频| 国产毛片a区久久久久| 天天躁夜夜躁狠狠久久av| 美女国产视频在线观看| 日本免费a在线| 久久99热这里只频精品6学生 | 免费电影在线观看免费观看| 国产极品天堂在线| 男人舔奶头视频| 91久久精品电影网| 亚洲中文字幕一区二区三区有码在线看| 国语自产精品视频在线第100页| 欧美变态另类bdsm刘玥| 青春草视频在线免费观看| 国产色爽女视频免费观看| 亚洲不卡免费看| av线在线观看网站| 特大巨黑吊av在线直播| 国产片特级美女逼逼视频| videossex国产| 久久99热这里只频精品6学生 | 亚洲国产欧美在线一区| 日韩精品有码人妻一区| 久久99精品国语久久久| 亚洲精品乱码久久久久久按摩| 日本黄大片高清| 国产av码专区亚洲av| 91午夜精品亚洲一区二区三区| 久久精品久久久久久噜噜老黄 | 精品国内亚洲2022精品成人| 九草在线视频观看| 91午夜精品亚洲一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 国产精品人妻久久久久久| 色网站视频免费| 免费看a级黄色片| 有码 亚洲区| 亚洲综合精品二区| 又爽又黄无遮挡网站| 天堂av国产一区二区熟女人妻| 精品熟女少妇av免费看| 精品国产三级普通话版| 亚洲国产欧美人成| 亚洲综合精品二区| 直男gayav资源| 成人高潮视频无遮挡免费网站| 国产av在哪里看| 国产av不卡久久| 一边摸一边抽搐一进一小说| 一级av片app| 伦精品一区二区三区| 国产av在哪里看| 国产成人福利小说| 亚洲精品国产av成人精品| 乱码一卡2卡4卡精品| 老司机影院毛片| av在线观看视频网站免费| 91久久精品国产一区二区三区| 国产精品熟女久久久久浪| 精品久久久久久久久久久久久| 欧美人与善性xxx| 又粗又爽又猛毛片免费看| 床上黄色一级片| 国产老妇伦熟女老妇高清| 国产高清三级在线| 九九在线视频观看精品| 欧美日韩精品成人综合77777| av在线天堂中文字幕| 99热全是精品| 中文字幕av在线有码专区| 国产三级中文精品| 一边亲一边摸免费视频| 精品人妻熟女av久视频| 欧美97在线视频| av在线蜜桃| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 免费搜索国产男女视频| 麻豆av噜噜一区二区三区| 国产又色又爽无遮挡免| 日韩一本色道免费dvd| 成人特级av手机在线观看| 亚洲成人久久爱视频| 日韩一区二区视频免费看| 亚洲精品aⅴ在线观看| 日本猛色少妇xxxxx猛交久久| 最近手机中文字幕大全| 男女那种视频在线观看| 夜夜看夜夜爽夜夜摸| 精品午夜福利在线看| 男人和女人高潮做爰伦理| 国产高清三级在线| 免费无遮挡裸体视频| 精品久久久久久久久亚洲| 在线观看美女被高潮喷水网站| 成年免费大片在线观看| 中文资源天堂在线| 国产三级在线视频| 校园人妻丝袜中文字幕| 午夜福利高清视频| 亚州av有码| 在现免费观看毛片| 免费人成在线观看视频色| 男女啪啪激烈高潮av片| 少妇的逼好多水| 少妇人妻精品综合一区二区| 国产精品电影一区二区三区| 大话2 男鬼变身卡| 国产一区二区在线av高清观看| 国产人妻一区二区三区在| 国产成人午夜福利电影在线观看| 日韩一本色道免费dvd| 美女xxoo啪啪120秒动态图| 久久99热6这里只有精品| 午夜久久久久精精品| 黄色一级大片看看| 午夜a级毛片| 插阴视频在线观看视频| 亚洲人成网站高清观看| 成人毛片60女人毛片免费| 精品久久久久久久久av| 少妇熟女欧美另类| 色5月婷婷丁香| 日本色播在线视频| 六月丁香七月| 国产 一区 欧美 日韩| 国产女主播在线喷水免费视频网站 | 国产伦一二天堂av在线观看| 成人三级黄色视频| 18禁在线无遮挡免费观看视频| 久久久a久久爽久久v久久| 成人毛片60女人毛片免费| 中国国产av一级| 女的被弄到高潮叫床怎么办| 色网站视频免费| 国产成人福利小说| 久久久久性生活片| 黄色配什么色好看| 亚洲一级一片aⅴ在线观看| 久久久国产成人免费| 秋霞伦理黄片| 国产真实伦视频高清在线观看| 亚洲国产精品成人综合色| 蜜桃久久精品国产亚洲av| 人人妻人人澡人人爽人人夜夜 | 你懂的网址亚洲精品在线观看 | 国产日韩欧美在线精品| 亚洲精品自拍成人| 青青草视频在线视频观看| 亚洲国产精品国产精品| 欧美三级亚洲精品| 男女国产视频网站| 久久精品国产99精品国产亚洲性色| 成年版毛片免费区| 亚洲av成人av| 韩国高清视频一区二区三区| 三级经典国产精品| 99在线人妻在线中文字幕| 欧美3d第一页| 美女脱内裤让男人舔精品视频| 日本猛色少妇xxxxx猛交久久| 麻豆精品久久久久久蜜桃| 欧美激情久久久久久爽电影| 亚洲精品色激情综合| 欧美色视频一区免费| 国产亚洲精品av在线| 草草在线视频免费看| 国产精品一区www在线观看| 久久久久久久久中文| 免费播放大片免费观看视频在线观看 | 精品免费久久久久久久清纯| 久久久久久久久久久丰满| 国产精品一区二区性色av| 深爱激情五月婷婷| 老师上课跳d突然被开到最大视频| 久久欧美精品欧美久久欧美| 99国产精品一区二区蜜桃av| 国产大屁股一区二区在线视频| 国内少妇人妻偷人精品xxx网站| 国产黄色小视频在线观看| 国产 一区 欧美 日韩| 久久99精品国语久久久| 好男人视频免费观看在线| 成人欧美大片| av免费观看日本| 久久久色成人| 麻豆成人av视频| 国产精品人妻久久久影院| 建设人人有责人人尽责人人享有的 | 日本爱情动作片www.在线观看| 十八禁国产超污无遮挡网站| 91午夜精品亚洲一区二区三区| 精品久久久久久久末码| 99热精品在线国产| 看非洲黑人一级黄片| 毛片女人毛片| 伦精品一区二区三区| 日韩三级伦理在线观看| 99热全是精品| 国产高清不卡午夜福利| 中文字幕熟女人妻在线| 国产亚洲av嫩草精品影院| 99九九线精品视频在线观看视频| 如何舔出高潮| 亚洲中文字幕一区二区三区有码在线看| 亚洲av电影在线观看一区二区三区 | 午夜精品一区二区三区免费看| 国产真实伦视频高清在线观看| 亚洲av免费高清在线观看| 欧美+日韩+精品| 亚洲自偷自拍三级| 欧美成人免费av一区二区三区| 国产免费一级a男人的天堂| 丝袜美腿在线中文| 国产精品野战在线观看| 99久久精品热视频| 青春草国产在线视频| 人体艺术视频欧美日本| 桃色一区二区三区在线观看| 国产精品麻豆人妻色哟哟久久 | 亚洲真实伦在线观看| 18禁裸乳无遮挡免费网站照片| 尾随美女入室| 亚州av有码| 99久国产av精品| 国产乱人视频| 丰满少妇做爰视频| 91精品一卡2卡3卡4卡| 亚洲自偷自拍三级| 如何舔出高潮| 久久久亚洲精品成人影院| 一区二区三区免费毛片| 国产精品不卡视频一区二区| 在线免费观看的www视频| 国产精品久久久久久久久免| 麻豆久久精品国产亚洲av| 国产免费视频播放在线视频 | 欧美潮喷喷水| 精品久久久久久电影网 | 亚洲av中文av极速乱| 美女内射精品一级片tv| 日韩在线高清观看一区二区三区| 美女黄网站色视频| 中文字幕制服av| 亚洲精品久久久久久婷婷小说 | 高清在线视频一区二区三区 | 久久久成人免费电影| 人妻系列 视频| 欧美三级亚洲精品| 国产高清国产精品国产三级 | 欧美变态另类bdsm刘玥| 久久久久久伊人网av| 久久精品国产99精品国产亚洲性色| 国产极品精品免费视频能看的| 天美传媒精品一区二区| av专区在线播放| 少妇被粗大猛烈的视频| 久久人人爽人人片av| 三级国产精品欧美在线观看| 91精品伊人久久大香线蕉| 色5月婷婷丁香| 亚洲av成人av| 在线播放国产精品三级| 国产 一区精品| 国产片特级美女逼逼视频| 波野结衣二区三区在线| 免费看美女性在线毛片视频| 国产淫语在线视频| 色吧在线观看| 九九爱精品视频在线观看| 美女大奶头视频| 精品无人区乱码1区二区| 高清午夜精品一区二区三区| 一二三四中文在线观看免费高清| 免费一级毛片在线播放高清视频| 亚洲国产精品专区欧美| 女的被弄到高潮叫床怎么办| 免费看a级黄色片| 国产真实乱freesex| 亚洲av日韩在线播放| av国产久精品久网站免费入址| 欧美不卡视频在线免费观看| 综合色av麻豆| 午夜视频国产福利| 中文精品一卡2卡3卡4更新| 国产av一区在线观看免费| 看非洲黑人一级黄片| 成人二区视频| 蜜臀久久99精品久久宅男| 国产美女午夜福利| 三级国产精品欧美在线观看| 久久久久九九精品影院| 欧美最新免费一区二区三区| 免费看美女性在线毛片视频| 亚洲人成网站在线观看播放| 国产一区二区在线av高清观看| 国产成人精品一,二区| 国产精品国产三级国产av玫瑰| 国产在线一区二区三区精 | av在线天堂中文字幕| 久久久久久久久中文| 国产精品三级大全| 亚洲在线观看片| 亚洲av福利一区| 丝袜喷水一区| 免费电影在线观看免费观看| 亚洲精品乱码久久久v下载方式| 亚洲成人中文字幕在线播放| 久久精品久久久久久久性| 日韩精品青青久久久久久| 久99久视频精品免费| 亚洲精品aⅴ在线观看| 国内精品宾馆在线| 日本免费在线观看一区| 插阴视频在线观看视频| 波野结衣二区三区在线| 国产免费视频播放在线视频 | 久久久久国产网址| 美女xxoo啪啪120秒动态图| 91精品一卡2卡3卡4卡| or卡值多少钱| 国产精品不卡视频一区二区| 九九热线精品视视频播放| 久久这里有精品视频免费| 国产男人的电影天堂91| 国产 一区 欧美 日韩| 99久久中文字幕三级久久日本| 99久久成人亚洲精品观看| 搡女人真爽免费视频火全软件| 99热这里只有精品一区| 久久精品久久久久久噜噜老黄 | 能在线免费看毛片的网站| 欧美不卡视频在线免费观看| 一二三四中文在线观看免费高清| 久久鲁丝午夜福利片| 丝袜美腿在线中文| 亚洲经典国产精华液单| 毛片一级片免费看久久久久| 国产精品.久久久| 丝袜美腿在线中文| 国产白丝娇喘喷水9色精品| 久久精品久久精品一区二区三区| 欧美人与善性xxx| 最近中文字幕高清免费大全6| 搞女人的毛片| 综合色丁香网| 久久久久久久久久成人| 国产精品女同一区二区软件| 国产伦理片在线播放av一区| 在线观看美女被高潮喷水网站| 国产伦在线观看视频一区| 亚洲av电影在线观看一区二区三区 | 寂寞人妻少妇视频99o| 久久久久网色| 精品一区二区三区人妻视频| 日本欧美国产在线视频| 日韩欧美 国产精品| 乱系列少妇在线播放| 亚洲av中文av极速乱| 久久人人爽人人片av| 亚洲真实伦在线观看| 日本黄色片子视频| 免费观看a级毛片全部| 欧美成人午夜免费资源| 高清日韩中文字幕在线| 亚洲人成网站高清观看| 亚洲内射少妇av| 亚洲国产日韩欧美精品在线观看| 在线观看美女被高潮喷水网站| 亚洲最大成人中文| 一二三四中文在线观看免费高清| 人人妻人人澡人人爽人人夜夜 | 欧美日韩精品成人综合77777| 亚洲av不卡在线观看| av免费观看日本| 亚洲国产精品久久男人天堂| 国产成人免费观看mmmm| 日韩视频在线欧美| 成人特级av手机在线观看| 国产伦理片在线播放av一区| 久久99热这里只频精品6学生 | 亚洲成人精品中文字幕电影| 女的被弄到高潮叫床怎么办| 99久久精品热视频|