• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-dimensional structures of virulence proteins of Legionellaestablish targets for new antibacterials

    2012-10-26 05:47:26GuidoHansenRolfHilgenfeld
    微生物與感染 2012年1期

    Guido Hansen,Rolf Hilgenfeld,3,4

    1.Institute of Biochemistry,Center for Structural and Cell Biology in Medicine,University of Lübeck,Lübeck 23538,Germany;2.German Centre for Infection Research (DZIF),University of Lübeck,Lübeck 23538,Germany;3.Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai 201203,China;4.Laboratory for Structural Biology of Infection and Inflammation,c/o DESY,Hamburg 22603,Germany

    1 Introduction

    In 1977, Legionella pneumophila (L.pneumophila)was identified as the causative agent of an atypical and severe form of pneumonia designated Legionnaires’disease[1]. The bacteria have since been recognized as an increasingly important pathogen in health-care-,community-,and domestically-acquired pneumonia.Legionellaspp.are Gram-negativeγ-proteobacteria that parasitize protozoan host cells such as Acanthamoeba,Hartmannella,and Tetrahymena in their natural fresh-water habitat.In addition,many Legionella species are able to efficiently multiply in artificial warm-water systems such as spapools, airconditioners,indoor fountains,and cooling towers.As many of these devices produce aerosols that are potentially inhaled,Legionella can enter human hosts and cause infections after uptake into alveolar macrophages[2].However,only pathogenic Legionella strains are able to avoid phagosomelysosome fusion and replicate inside human host cells.The interaction of virulent Legionella with phagocytic host cells involves several steps:(1)adhesion to the host-cell surface;(2)uptake;(3)escape from the innate immune response;(4)establishment of a replicative vacuole;and(5)intracellular multiplication and egress from the host cells[3].However,the underlying virulence mechanisms are complex and far from being fully understood.

    X-ray crystallography has proved a valuable tool to reveal the molecular basis of virulence in a number of important pathogens. To date,structures of 46 Legionella proteins are available in the Protein Data Bank,yet,only 10of those represent confirmed virulence factors. Thus,structural information of Legionella proteins important for pathogenicity is still scarce,despite considerable progress during the last decade.Here,we review two structures of Legionella virulence proteins,F(xiàn)eoB and DegQ,determined very recently.In addition,we discuss the best characterized virulence protein of Legionella,the macrophage infectivity potentiator(Mip)protein,which was the first Legionella protein with known three-dimensional structure.In contrast to Mip,a confirmed drug target,the structures of FeoB and DegQ present new potential targets with unique possibilities for the development of effective antibacterials.

    2 Mip,F(xiàn)eoB and DegQ

    2.1 Mip

    Mip is a virulence protein that has been found in several intracellular pathogens such as L.pneumophila,Chlamydia spp.,Neisseria gonorrhoeae,Trypanosoma cruzi,and Burkholderia pseudomallei[4-8].Its key feature is an intrinsic peptidyl-prolyl cis/trans isomerase (PPIase;EC 5.2.1.8)activity which is conferred by a FK506-binding protein(FKBP)domain.This activity is efficiently inhibited by the immunosuppressive drugs FK506 (tacrolimus) and rapamycin(sirolimus)[9].The C-terminal FKBP domain of Mip from L.pneumophila (LpMip)shares~35%amino acid sequence identity with human FKBP12and is required for virulence[10,11].L.pneumophila mutants lacking Mip cannot efficiently infect human macrophages[4]or mononuclear phagocytes[12],and show suboptimal growth in the fresh-water host organisms Hartmannella and Terahymena[13].In a guinea pig model system for Legionnaires’disease,it has been shown that Mip contributes to successful dissemination of L.pneumophila throughout the lung,most likely by interacting with collagen IV[11].Involvement in host-cell infection has also been reported for Mip proteins from other pathogens[6,7,14].

    LpMip was the first Mip protein to be structurally characterized.At a resolution of 2.4?,the X-ray crystal structure revealed that LpMip forms a non-globular V-shaped homodimer which is stabilized exclusively by contacts between the N-terminal domains of two LpMip molecules[15](Fig.1A).Dimer formation depends on the interaction of helicesα1andα2of one LpMip molecule with the equivalent helices of the other,together forming a shared antiparallel four-h(huán)elix bundle.Most of the interactions between the helices are of hydrophobic nature and include a feature that we called a“methionine zipper”.A linker helix of 65 ?length connects the N-terminal domain with the C-terminal FKBP domain.PPIase activity and dimerization of LpMip is essential for efficient multiplication in Acanthamoeba and for full virulence in the guinea pig model system[16].Very similar results have been reported for the Mip homologue FKBP22 from Shewanella sp.[17]. In both systems,engineered monomeric protein variants were used to show that binding affinity and PPIase activity on protein substrates is strongly dependent on dimerization[16,17].However,the molecular basis for these findings is not fully understood.The close proximity of two ligand-binding sites located in the FKBP domains might offer an advantage in the competition with host FKPBs for substrates.It is also possible that dimeric V-shaped FKPB proteins like LpMip might‘embrace’substrate proteins with their long linker helices to bring the catalytic FKBP domains into position.Interestingly,the Mip homologue in Trypanosoma cruzi (Tc Mip)does not seem to depend on dimerization.Trypanosoma cruzi causes Chagas’disease(American trypanosomiasis),which,according to the World Health Organization(WHO),afflicts 10million people in Central and South America.The crystal structure of TcMip revealed a common FKBP core shared with LpMip[18].However,significant structural variations are present in regions N-and C-terminal of this core region.Most importantly,Tc Mip lacks the two helicesα1andα2necessary for the formation of the four-h(huán)elix bundle that is responsible for the formation of the LpMip dimer[15,18].As a result,Tc Mip is monomeric.Unlike Legionella,Trypanosomasecrete Mip into the medium prior to uptake into host cells,in order to increase infectivity[7]. Thus, the observed structural differences between LpMip and Tc Mip might reflect distinct functions during the life cycle of both pathogens.However,in both species,the precise molecular mechanism of action responsible for the Mip-dependent increase of virulence remains elusive and has to be addressed in future experiments.

    X-ray and nuclear magnetic resonance (NMR)structures of FK506and rapamycin in complex with the FKBP domain of LpMip allowed the identification and detailed characterization of the ligand-binding site[15,19].Both ligands bind to a hydrophobic pocket between the centralβ-sheet and helixα4of the FKBP domain.This pocket accommodates the pipecoline ring of rapamycin(Fig.1B)and FK506[15,19].Other groups of the ligands involved in interactions with the protein are the ester linkage,the dicarbonyl group,and the pyranosyl ring(Fig.1B).As most residues of the ligand-binding site are well conserved in Mip proteins from different species,it can be assumed that,in general,agiven drug molecule exhibits a single,well-defined binding mode shared by most if not by all Mip proteins.It is therefore likely that new antibacterials targeting Mip will be useful for the therapy of a diverse set of bacterial infections,making the development of such drug molecules even more rewarding.As FK506and rapamycin have immunosuppressive properties,these drugs themselves may not be suitable for treating bacterial infections.However,structural information derived from the available ligand complexes is vital for the rational design of inhibitory molecules that lack unfavorable effects on the immune system.On the basis of structural and biochemical data,a first step towards the development of selective low-molecular-weight Mip inhibitors has recently been reported[20].In this approach,a series of compounds sharing a common pipercoline moiety as an anchoring group were evaluated with respect to their ability to inhibit the PPIase activity of LpMip.As these compounds lack the macrocyclic portion of rapamycin,it is unlikely that they will exhibit immunosuppressive effects.A promising candidate for further lead development was identified[20]and awaits further characterization in cell-based and guinea pig model systems.

    Fig.1 Structures of Mip fromLegionella pneumophila

    2.2 Ferrous iron transporter(FeoB)

    Availability of sufficient amounts of iron is critical for optimal growth of many bacterial species.In fact,depletion of free iron is an elegant way of eukaryotic cells to prevent the replication of invading pathogens.To counteract this strategy,many pathogenic bacteria have evolved systems to efficiently scavenge ferric(Fe3+)as well as ferrous (Fe2+)iron.In Legionella,the secreted low-molecular-weight siderophore,legiobactin,chelates Fe3+,following re-uptake of the complexed metal by a specific active transport mechanism[21]. Ferrous iron(Fe2+)is critical for L.pneumophila growth under low-oxygen conditions in host cells and in the mammalian lung[22]. The transmembrane protein FeoB is responsible for Fe2+uptake and has been shown to contribute to virulence in a number of pathogenic bacteria[22,23].It consists of an intracellular N-terminal region of~270amino acid residues (NFeoB) and a C-terminal membrane-embedded domain of ~500residues(CFeoB).Biochemical studies suggested that NFeoB harbors a GTP-binding/GTPase domain(G domain)and an additional domain which functions as guanine nucleotide dissociation inhibitor(GDI)[24].

    Recently,we have determined the structure of NFeoB from L.pneumophila (NFeoBLp)to a resolution of 2.5 ?[25].NFeoB is a monomeric GTPase with characteristic G domain fold and an additional intramolecular GDI domain(Fig.2A).Interestingly and unusually for GTPases,the G5 motif,which is typically involved in the recognition of the guanine base in the nucleotide-binding site,adopts a closed conformation even in ligand-free state.Furthermore,the structure suggests how conformational changes upon nucleotide binding might affect the associated GDI and transmembrane regions to facilitate the regulated uptake of Fe2+.

    Before 2009,no structural information on NFeoB from any species was available.However,the simultaneous release of structures of NFeoB from Escherichia coli (E.coli)(PDB codes:3I8S,3I8X,and 3I92)by our group and of the FeoB G domain from Methanococcus jannaschii(PDB codes:2WJG,2WJH,2WJI,and 2WJJ)by K?ster,et al.[26]was closely followed by a remarkable avalanche of structures in the field.In fact,14new coordinate sets comprising NFeoB from five additional bacterial species(Thermotoga maritima[27];L.pneumophila[25];Streptococcus thermophila[28]; Pyrococcus furiosus[29]; and Klebsiella pneumoniae[29];E.coli[30])have been published subsequently (Tab.1). Moreover,in many cases NFeoB proteins have been crystallized in ligand-free as well as in nucleotide-bound forms,facilitating the detailed analysis of the effect of GTP binding and hydrolysis.Therefore,today,NFeoB can be regarded as a structurally very well characterized system.

    The overall fold of NFeoB is identical in all species(root mean square deviation typically<1?).However,as the structures show important differences in functionally relevant elements and in their oligomerization mode,conflicting mechanistic models for NFeoB have been proposed.In the following,the most striking deviations are presented and briefly discussed:(1) Regions typically involved in nucleotide recognition in eukaryotic G proteins lack defined conformational changes in different ligation states of most NFeoBs.For instance,the switch I element,which is responsible for the interaction with theγ-phosphate of GTP and a bound Mg2+ion in prototypical GTPases,is either flexible or adopts a conformation usually found in the GDP-bound or ligand-free state.This interesting feature offers an explanation for the relatively weak nucleotide-binding affinity of NFeoB when compared to eukaryotic GTPases.Although there is some evidence that switch I might contain a Fe2+or potassium-binding site[28,29],its function is unclear.Surprisingly,in NFeoB from Streptococcus thermophilain complex with mant-GMPPNP,the typical conformation with switch I contacting the nucleotide was observed(Fig.2B).Therefore,it cannot be fully excluded that switch I in NFeoB functions as nucleotide sensor and that the unusual conformation of switch I in the GTP-bound state found in most NFeoB structures represents an artifact caused by crystal contacts or the absence of an essential co-factor (such as potassium or

    Fe2+)during crystallization.(2)The molecular assembly found in crystals of ligand-free and nucleotide-bound forms of NFeoB from E.coli gave rise to a compelling mechanistic model.According to this model,three NFeoB molecules oligomerize to allow Fe2+ions to access a central channel of about 20?length,that facilitates regulated iron uptake.In ligand-free and GDP-bound forms of NFeoB,this channel is blocked,while a narrow opening was observed in the mant-GTP-bound structure.A similar arrangement of molecules has also been found in crystals of ligand-free and GTP-analog-bound NFeoB of Klebsiella pneumoniae[29],supporting this socalled trimer-Fe2+-gating model. However, the remaining 14NFeoB structures including NFeoBLpdo not display such trimeric assemblies,but form monomers or different dimeric species.The strong conservation of structure within the FeoB family suggests that iron uptake follows a common mechanism and hence for the trimer-Fe2+-gating model to be correct,and the trimer should be the dominating oligomeric species in most if not all crystal forms of NFeoB.This is obviously not the case.Notably,even for NFeoB proteins that form trimers in the crystal lattice,such trimers have never been confirmed to exist in solution.These results therefore raise questions about the validity of trimer-Fe2+-gating in general or its applicability to all NFeoB proteins.

    Tab.1 Structural data on FeoB proteins

    Fig.2 Structures of NFeoB

    2.3 Protein quality control protein(DegQ)

    Besides overcoming the shortage of iron and other essential nutrients,intracellular Legionella have to evade defense mechanisms of the host cells aiming to actively destroy invading pathogens.In hostile environments as encountered in phagosomes of professional macrophages,Legionella needs to prevent the excessive accumulation of misfolded proteins in the periplasm.In many prokaryotes,members of the HtrA family of proteins deal with this problem,promoting correct folding or efficient removal of misfolded or damaged periplasmatic proteins[31].Accordingly, HtrA proteins have been identified as virulence proteins affecting intracellular survival of many pathogenic bacteria[32].DegQ is an HtrA-family member with dual functions,combining chaperone and protease activities to facilitate refolding or degradation of misfolded proteins,respectively.DegQ is related to DegP,which represents a second HtrA protein with partially overlapping functions[33]. Both proteins share a common domain organization with an N-terminal trypsin-like protease domain preceding two PDZ domains(PDZ1and PDZ2).Whereas in E.coli DegP and DegQ are present,many prokaryotes including Legionella spp.lack a DegP homologue,stressing the importance of DegQ for protein homeostasis in the periplasm.

    Very recently,we reported the X-ray crystal structure of DegQ from Legionella fallonii (DegQLf)at a resolution of 2.15?[34].Interestingly,DegQLfforms large oligomers consisting of 12protein molecules in solution as well as in the crystal lattice (Fig.3A).The DegQLf12-mer displays tetrahedral symmetry and is composed of 4tightly interlocked homotrimers as basic building blocks.Whereas these homotrimers are stabilized by interactions between three protease domains,and formation of the 12-mer depends on contacts between PDZ domains of neighboring 3-mers.The overall organization of the particle resembles a hollow sphere with a protein shell enclosing a large internal cavity of~70?diameter.All 12 protease active sites line the inner wall of the particle and are therefore not directly accessible from the outside.However,six lateral pores(~14?x~28?)located in the protein shell connect the internal cavity with bulk solvent.To probe the functional properties of the DegQ 12-mer,we designed truncated protein variants that lack the C-terminal PDZ2domain (DegQLfΔPDZ2)or both PDZ domains (DegQLfΔPDZ1&2).As expected from the crystal structure,both variants were unable to form 12-mers and were proteolytically inactive.However,chaperone activity was not affected.Thus,in DegQLf,the PDZ domains are necessary for 12-mer formation which in turn is essential for protease but not for chaperone activity.Results from another DegQLfvariant lacking specific residues of PDZ2stabilizing the 12-mer confirmed these findings[34].

    The structure of DegQLfshows that many aspects of architecture are shared between HtrA family members but also reveals that regulation of protease activity is fundamentally different in DegQ and DegP.In the well-characterized DegP system,6-mers[35](Fig.3B)represent important protease-resting states, preventing deleterious proteolytic activity.The presence of unfolded proteins triggers the disassembly of 6-mers into two 3-mers and subsequent reassembly into active 12-mers or 24-mers[36-38](Fig.3C),dependent on the size and the concentration of the substrates.These larger oligomeric forms are responsible for the degradation of defective proteins under stress conditions[36,38].Although,as in DegP,12-mers are the protease-active form of DegQLf,we could not find any experimental evidence for DegQLf6-mers to exist.Instead,in the absence of unfolded proteins,DegQLf12-mers,3-mers and a smaller fraction of monomers were observed[34].The protease active sites in DegQLf3-mers are accessible,thus potentially harmful proteolytic activity needs be controlled in a different manner as in DegP 6-mers.To understand why 3-meric forms of DegQLfare inactive,we determined the structure of DegQLfΔPDZ2. This structure revealed an intrinsic flexibility of the remaining PDZ1domain,allowing a rotation of approximately 180°with respect to the protease domain.This rotation places the protease active site and a regulatory substrate-binding site located in the PDZ1domain on opposite faces of the 3-mer,effectively shutting down proteolytic activity.DegQLfshares a second regulatory mechanism with other HrtA family members.The protease active site in substrate-free HtrA proteins predominantly adopts a distinct OFF conformation,with the substrate binding cleft blocked by loop L1.A productive ON conformation can be assumed only after binding of an unfolded substrate to the regulatory site of a neighboring PDZ1domain.As a result,an intrinsic activation cascade is triggered along loops L3,LD,and L1/L2,which are located in between PDZ1and protease active site.Very similar molecular-switch mechanisms have been found in DegS[39],DegP[40],and Deg1of Arabidopsis thaliana[41].

    Fig.3 Structures of oligomeric forms of HtrA proteins as surface representations

    Shortly after the publication of our work on DegQLf[34], the biochemical and structural characterization of DegQ from E.coli(DegQEc)has been reported by another group[42].DegQ proteins from Legionellafalloniiand E.coli share an amino acid sequence identity of 41%.Like DegQLf,the E.coli homologue is able to form protease-active higher-order oligomers which are regulated by the conserved molecular switch described above.However,other structural and functional aspects are not shared.In stark contrast to the corresponding variant of DegQLf,DegQEcΔPDZ2is still able to form proteolytically active 12-mers.Moreover,6-meric and 24-meric forms,which were absent in all our DegQLppreparations[34],have been observed forThus,in many ways DegQEcresembles DegPEc,the second chaperone-protease of the E.coli periplasm.Because expression of the degQEcgene is not inducible by high temperatures[33],it has been proposed that DegQEchas house-keeping functions,counteracting pH-mediated accumulation of unfolded proteins[42].In the presence of an excess of unfolded periplasmatic proteins,DegPEcis upregulated to provide the required additional refolding/degradation capacity.Like Legionella fallonii,many prokaryotes lack a DegP homologue,with DegQ being the only periplasmatic chaperoneprotease responsible for protein homeostasis in these species.It is therefore not surprising that DegQLfand DegQEcdiffer in important aspects of oligomerization and function.Future research will reveal if unique features of DegQLfare prototypical for solitary prokaryotic HtrA chaperone-proteases.

    3 Conclusion and future perspectives

    About 35years have passed since L.pneumophila was identified as a new human pathogen.However,medical and public interest have increased over the years,and according to the European Work Group for Legionella Infections(EWGLI),more than 32000cases of Legionnaires’disease resulting in 2600deaths have been reported in Europe in the 11years between 1995and 2005.Still,it is very likely that the number of cases of Legionnaires’disease is vastly underreported.In 2009,a study to rigorously analyze the incidence of severe pneumonia caused by Legionellassp.was conducted[43].Using diagnosis tools specifically aimed to identify Legionellaspecies,15000-30000cases of Legionnaires’disease per year were estimated for Germany alone[43].Therefore,the associated health-care problem seems to be much more severe than anticipated.

    If correctly diagnosed,most cases of Legionnaires’disease can be treated successfully with fluoroquinolones and macrolides,such as levofloxacin[44]and azithromycin[45]. So far,there are no reports that Legionella spp.develop resistance to antibiotic therapy in clinical settings.However,resistance to many clinically relevant drugs including macrolides,quinolones,and rifampicin can be induced in laboratory experiments[46-49].To counteract emerging resistance,it is therefore vital to develop new drugs,ideally directed against new target proteins of Legionella.In this respect,LpMip represents an excellent example for structure-guided drug design.The reported Mip structures reveal a detailed picture of the active site that could be targeted by future drugs.Furthermore,complexes with FK506and rapamycin[15,19]allowed the identification and chemical exploration of a first lead structure[20].Similar approaches,especially when combined with structure determination of complexes between Mip and inhibitory molecules,hold great promise for the successful development of Mip inhibitors acting as efficient antibiotics.Furthermore,the availability of additional structural data on Mip proteins from different species,in particular inhibitor complexes,is highly desirable to facilitate an in-depth understanding of this protein family.

    Over the last years,structural information on new virulence proteins of Legionella spp.has slowly been accumulating.Among others,the recently determined structures of DegQ and NFeoB offer unique starting points for the development of innovative antibacterials.Analogous to Mip,in these systems the catalytically active sites represent potential binding sites for inhibitory molecules.However,as both proteins depend on large-and small-scale conformational changes,these could also be targeted.New substances could,for example,interfere with the assembly of active DegQ particles or block the signal transduction from the nucleotide-binding site to the transmembrane region of FeoB.We hope that public availability of structural information on new virulence proteins of Legionella will support efforts to shed light on basal mechanisms of pathogenicity and act as a primer for the development of new antibiotics.

    Acknowledgements

    We thank R.Wrase for help with the preparation of figures for this manuscript.

    [1]McDade JE,Shepard CC,F(xiàn)raser DW,Tsai TR,Redus MA,Dowdle WR.Legionnaires’disease:isolation of a bacterium and demonstration of its role in other respiratory disease[J].N Engl J Med,1977,297(22):1197-1203.

    [2]Fields BS, Benson RF, Besser RE. Legionella and Legionnaires’disease:25years of investigation[J].Clin Microbiol Rev,2002,15(3):506-526.

    [3]WHO.Legionella and the Prevention of Legionellosis[M].Geneva:World Health Organization Press,2007.

    [4]Cianciotto NP,Eisenstein BI, Mody CH,Toews GB,Engleberg NC.A Legionella pneumophila gene encoding a species-specific surface protein potentiates initiation of intracellular infection [J].Infect Immun,1989,57(4):1255-1262.

    [5]Leuzzi R,Serino L,Scarselli M,Savino S,F(xiàn)ontana MR,Monaci E,Taddei A,F(xiàn)ischer G,Rappuoli R,Pizza M.Ng-MIP,a surface-exposed lipoprotein of Neisseria gonorrhoeae,has a peptidyl-prolyl cis/trans isomerase (PPIase)activity and is involved in persistence in macrophages [J].Mol Microbiol,2005,58(3):669-681.

    [6]Lundemose AG, Kay JE, Pearce JH. Chlamydia trachomatis Mip-like protein has peptidyl-prolyl cis/trans isomerase activity that is inhibited by FK506and rapamycin and is implicated in initiation of chlamydial infection [J].Mol Microbiol,1993,7(5):777-783.

    [7]Moro A,Ruiz-Cabello F,F(xiàn)ernández-Cano A,Stock RP,González A.Secretion by Trypanosoma cruzi of a peptidylprolyl cis-trans isomerase involved in cell infection [J].EMBO J,1995,14(11):2483-2490.

    [8]Norville IH,O’Shea K,Sarkar-Tyson M,Zheng S,Titball RW,Varani G,Harmer NJ.The structure of a Burkholderia pseudomallei immunophilin-inhibitor complex reveals new approaches to antimicrobial development[J].Biochem J,2011,437(3):413-422.

    [9]Fischer G,Bang H,Ludwig B,Mann K,Hacker J.Mip protein of Legionella pneumophila exhibits peptidyl-prolylcis/trans isomerase(PPlase)activity [J].Mol Microbiol,1992,6(10):1375-1383.

    [10]Helbig JH,K?nig B,Knospe H,Bubert B,Yu C,Lück CP,Riboldi-Tunnicliffe A,Hilgenfeld R,Jacobs E,Hacker J,F(xiàn)ischer G.The PPIase active site of Legionella pneumophila Mip protein is involved in the infection of eukaryotic host cells [J].Biol Chem,2003,384(1):125-137.

    [11]Wagner C,Khan AS,Kamphausen T,Schmausser B,Unal C,Lorenz U,F(xiàn)ischer G,Hacker J,Steinert M.Collagen binding protein Mip enables Legionella pneumophila to transmigrate through a barrier of NCI-H292lung epithelial cells and extracellular matrix[J].Cell Microbiol,2007,9(2):450-462.

    [12]Wintermeyer E,Ludwig B,Steinert M,Schmidt B,F(xiàn)ischer G,Hacker J.Influence of site specifically altered Mip proteins on intracellular survival of Legionella pneumophila in eukaryotic cells[J].Infect Immun,1995,63(12):4576-4583.

    [13]Cianciotto NP,F(xiàn)ields BS.Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages[J].Proc Natl Acad Sci USA,1992,89(11):5188-5191.

    [14]Horne SM,Kottom TJ,Nolan LK,Young KD.Decreased intracellular survival of an fkpA mutant of Salmonella typhimurium Copenhagen[J].Infect Immun,1997,65(2):806-810.

    [15]Riboldi-Tunnicliffe A,K?nig B,Jessen S, Weiss MS,Rahfeld J,Hacker J,F(xiàn)ischer G,Hilgenfeld R.Crystal structure of Mip,aprolylisomerase from Legionella pneumophila[J].Nat Struct Biol,2001,8(9):779-783.

    [16]K?hler R,F(xiàn)angh?nel J,K?nig B,Lüneberg E,F(xiàn)rosch M,Rahfeld JU,Hilgenfeld R,F(xiàn)ischer G,Hacker J,Steinert M.Biochemical and functional analyses of the Mip protein:influence of the N-terminal half and of peptidylprolyl isomerase activity on the virulence of Legionella pneumophila[J].Infect Immun,2003,71(8):4389-4397.

    [17]Budiman C,Bando K,Angkawidjaja C,Koga Y,Takano K,Kanaya S.Engineering of monomeric FK506-binding protein 22with peptidyl prolyl cis-trans isomerase.Importance of a V-shaped dimeric structure for binding to protein substrate[J].FEBS J,2009,276(15):4091-4101.

    [18]Pereira PJ,Vega MC,González-Rey E,F(xiàn)ernández-Carazo R,Macedo-Ribeiro S,Gomis-Rüth FX,González A,Coll M.Trypanosoma cruzi macrophage infectivity potentiator has a rotamase core and a highly exposed alpha-h(huán)elix[J].EMBO Rep,2002,3(1):88-94.

    [19]Ceymann A,Horstmann M,Ehses P,Schweimer K,Paschke AK,Steinert M,F(xiàn)aber C.Solution structure of the Legionella pneumophila Mip-rapamycin complex[J].BMC Struct Biol,2008,8:17.

    [20]Juli C,Sippel M,J?ger J,Thiele A,Weiwad M,Schweimer K,R?sch P,Steinert M,Sotriffer CA,Holzgrabe U.Pipecolic acid derivatives as small-molecule inhibitors of the Legionella MIP protein[J].J Med Chem,2011,54(1):277-283.

    [21]Liles MR,Scheel TA,Cianciotto NP.Discovery of a nonclassical siderophore,legiobactin,produced by strains of Legionella pneumophila.J Bacteriol,2000,182 (3):749-757.

    [22]Cianciotto NP.Iron acquisition by Legionella pneumophila[J].Biometals,2007,20(3-4):323-331.

    [23]Kammler M,Sch?n C,Hantke K.Characterization of the ferrous iron uptake system of Escherichia coli [J].J Bacteriol,1993,175(19):6212-6219.

    [24]Eng ET, Jalilian AR, Spasov KA, Unger VM.Characterization of a novel prokaryotic GDP dissociation inhibitor domain from the G protein coupled membrane protein FeoB[J].J Mol Biol,2008,375(4):1086-1097.

    [25]Petermann N,Hansen G,Schmidt CL,Hilgenfeld R.Structure of the GTPase and GDI domains of FeoB,the ferrous iron transporter of Legionella pneumophila [J].FEBS Lett,2010,584(4):733-738.

    [26]K?ster S,Wehner M,Herrmann C,Kühlbrandt W,Yildiz O.Structure and function of the FeoB G-domain from Methanococcus jannaschii.J Mol Biol,2009,392(2):405-419.

    [27]Hattori M,Jin Y,Nishimasu H,Tanaka Y,Mochizuki M,Uchiumi T,Ishitani R,Ito K,Nureki O.Structural basis of novel interactions between the small-GTPase and GDI-like domains in prokaryotic FeoB iron transporter [J].Structure,2009,17(10):1345-1355.

    [28]Ash MR,Guilfoyle A,Clarke RJ,Guss JM,Maher MJ,Jormakka M.Potassium-activated GTPase reaction in the G protein-coupled ferrous iron transporter B [J].J Biol Chem,2010,285(19):14594-14602.

    [29]Hung KW,Chang YW,Eng ET,Chen JH,Chen YC,Sun YJ,Hsiao CD,Dong G,Spasov KA,Unger VM,Huang TH.Structural fold,conservation and Fe(II)binding of the intracellular domain of prokaryote FeoB[J].J Struct Biol,2010,170(3):501-512.

    [30]Guilfoyle A,Maher MJ,Rapp M,Clarke R,Harrop S,Jormakka M.Structural basis of GDP release and gating in G protein coupled Fe2+transport[J].EMBO J,2009,28(17):2677-2685.

    [31]Clausen T,Southan C,Ehrmann M.The HtrA family of proteases:implications for protein composition and cell fate[J].Mol Cell,2002,10(3):443-455.

    [32]Ingmer H,Brondsted L.Proteases in bacterial pathogenesis[J].Res Microbiol,2009,160(9):704-710.

    [33]Waller PR,Sauer RT.Characterization of degQ and degS,Escherichia coli genes encoding homologs of the DegP protease[J].J Bacteriol,1996,178(4):1146-1153.

    [34]Wrase R,Scott H, Hilgenfeld R, Hansen G. The Legionella HtrA homologue DegQ is a selfcompartmentizing protease that forms large 12-meric assemblies[J].Proc Natl Acad Sci USA,2011,108(26):10490-10495.

    [35]Krojer T,Garrido-Franco M,Huber R,Ehrmann M,Clausen T.Crystal structure of DegP(HtrA)reveals a new protease-chaperone machine [J]. Nature,2002,416(6879):455-459.

    [36]Krojer T,Sawa J,Sch?fer E,Saibil HR,Ehrmann M,Clausen T.Structural basis for the regulated protease and chaperone function of DegP[J].Nature,2008,453(7197):885-890.

    [37]Jiang J,Zhang X,Chen Y,Wu Y,Zhou ZH,Chang Z,Sui SF. Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins[J].Proc Natl Acad Sci USA,2008,105(33):11939-11944.

    [38]Kim S,Grant RA,Sauer RT.Covalent linkage of distinct substrate degrons controls assembly and disassembly of DegP proteolytic cages[J].Cell,2011,145(1):67-78.

    [39]Sohn J,Grant RA,Sauer RT.OMP peptides activate the DegS stress-sensor protease by a relief of inhibition mechanism [J].Structure,2009,17(10):1411-1421.

    [40]Krojer T,Sawa J,Huber R,Clausen T.HtrA proteases have a conserved activation mechanism that can be triggered by distinct molecular cues[J].Nat Struct Mol Biol,2010,17(7):844-852.

    [41]Kley J,Schmidt B,Boyanov B,Stolt-Bergner PC,Kirk R,Ehrmann M,Knopf RR,Naveh L,Adam Z,Clausen T.Structural adaptation of the plant protease Deg1to repair photosystem II during light exposure [J].Nat Struct Mol Biol,2011,18(6):728-731.

    [42]Sawa J,Malet H,Krojer T,Canellas F,Ehrmann M,Clausen T.Molecular adaptation of the DegQ protease to exert protein quality control in the bacterial cell envelope[J].J Biol Chem,2011,286(35):30680-30690.

    [43]von Baum H,Ewig S,Marre R,Suttorp N,Gonschior S,Welte T,Lück C,Competence Network for Community Acquired Pneumonia Study Group. Community-acquired Legionella pneumonia:new insights from the German competence network for community acquired pneumonia[J].Clin Infect Dis,2008,46(9):1356-1364.

    [44]Yu VL,Plouffe JF,Pastoris MC,Stout JE,Schousboe M,Widmer A,Summersgill J,F(xiàn)ile T,Heath CM,Paterson DL,Chereshsky A.Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey [J].J Infect Dis,2002,186(1):127-128.

    [45]Plouffe JF,Breiman RF,F(xiàn)ields BS,Herbert M,Inverso J,Knirsch C,Kolokathis A,Marrie TJ,Nicolle L,Schwartz DB.Azithromycin in the treatment of Legionella pneumonia requiring hospitalization [J].Clin Infect Dis,2003,37(11):1475-1480.

    [46]Dowling JN,McDevitt DA,Pasculle AW.Isolation and preliminary characterization of erythromycin-resistant variants of Legionella micdadei and Legionella pneumophila[J].Antimicrob Agents Chemother,1985,27(2):272-274.

    [47]Jonas D,Engels I,Hartung D,Beyersmann J,F(xiàn)rank U,Daschner FD.Development and mechanism of fluoroquinolone resistance in Legionella pneumophila [J].J Antimicrob Chemother,2003,51(2):275-280.

    [48]Moffie BG, Mouton RP.Sensitivity and resistance of Legionella pneumophila to some antibiotics and combinations of antibiotics[J].J Antimicrob Chemother,1988,22(4):457-462.

    [49]Nielsen K, Hindersson P, Hoiby N,Bangsborg JM.Sequencing of the rpoB gene in Legionella pneumophila and characterization of mutations associated with rifampin resistance in the Legionellaceae [J].Antimicrob Agents Chemother,2000,44(10):2679-2683.

    亚洲av成人一区二区三| 久久香蕉国产精品| 激情在线观看视频在线高清 | 韩国精品一区二区三区| 欧美人与性动交α欧美软件| 成人手机av| 99热只有精品国产| 亚洲精品成人av观看孕妇| 久久人人爽av亚洲精品天堂| 久久久久久久精品吃奶| 久久久久久久国产电影| 丰满迷人的少妇在线观看| 欧美色视频一区免费| 亚洲精品自拍成人| av超薄肉色丝袜交足视频| 久久天躁狠狠躁夜夜2o2o| 亚洲av日韩在线播放| 叶爱在线成人免费视频播放| 黄频高清免费视频| 亚洲av电影在线进入| 国产xxxxx性猛交| 三上悠亚av全集在线观看| 亚洲精品中文字幕在线视频| 国产精品久久久久成人av| 高潮久久久久久久久久久不卡| 黄色a级毛片大全视频| 99国产精品一区二区三区| 岛国毛片在线播放| 老司机在亚洲福利影院| 91九色精品人成在线观看| 9191精品国产免费久久| 亚洲午夜理论影院| 少妇猛男粗大的猛烈进出视频| 国产在线精品亚洲第一网站| 精品午夜福利视频在线观看一区| 18禁黄网站禁片午夜丰满| 国产精华一区二区三区| 又大又爽又粗| 亚洲精品自拍成人| 在线看a的网站| 欧美日韩亚洲综合一区二区三区_| videosex国产| 国产免费av片在线观看野外av| 日韩 欧美 亚洲 中文字幕| 国产一区有黄有色的免费视频| 亚洲精品在线观看二区| 大型黄色视频在线免费观看| 久久久久久免费高清国产稀缺| 三上悠亚av全集在线观看| 日韩精品免费视频一区二区三区| 黄色视频不卡| 亚洲av第一区精品v没综合| 狠狠狠狠99中文字幕| 人成视频在线观看免费观看| 人成视频在线观看免费观看| 69av精品久久久久久| 51午夜福利影视在线观看| 亚洲人成77777在线视频| 欧美激情极品国产一区二区三区| 中文字幕人妻丝袜一区二区| 欧美黄色片欧美黄色片| 久久天堂一区二区三区四区| 欧美午夜高清在线| 国产精品久久久人人做人人爽| 老熟女久久久| 黑人巨大精品欧美一区二区蜜桃| 国产成人欧美| 999久久久国产精品视频| 成人特级黄色片久久久久久久| 麻豆成人av在线观看| a级毛片黄视频| 亚洲色图av天堂| 国产在视频线精品| 欧美乱色亚洲激情| 色综合婷婷激情| 精品国内亚洲2022精品成人 | 精品欧美一区二区三区在线| 久久久国产成人精品二区 | 无人区码免费观看不卡| 在线观看免费午夜福利视频| av福利片在线| 日韩一卡2卡3卡4卡2021年| 国产激情久久老熟女| √禁漫天堂资源中文www| 国产日韩一区二区三区精品不卡| 国产1区2区3区精品| 好看av亚洲va欧美ⅴa在| 国产99白浆流出| 丁香欧美五月| 99re6热这里在线精品视频| 亚洲精品中文字幕一二三四区| 在线观看日韩欧美| 亚洲avbb在线观看| 黄色a级毛片大全视频| 在线观看舔阴道视频| 成人精品一区二区免费| 亚洲精品久久午夜乱码| 在线观看免费高清a一片| 欧美久久黑人一区二区| 精品少妇久久久久久888优播| 夜夜躁狠狠躁天天躁| 精品第一国产精品| 欧美久久黑人一区二区| 亚洲在线自拍视频| 淫妇啪啪啪对白视频| 99精品在免费线老司机午夜| 一级毛片女人18水好多| 少妇猛男粗大的猛烈进出视频| 黑人操中国人逼视频| 91在线观看av| 无限看片的www在线观看| 黄色成人免费大全| 亚洲午夜精品一区,二区,三区| 9热在线视频观看99| 亚洲欧美精品综合一区二区三区| 黄色成人免费大全| 国产无遮挡羞羞视频在线观看| 身体一侧抽搐| 国产精品影院久久| 啦啦啦免费观看视频1| 丰满的人妻完整版| 日韩欧美三级三区| 国产男女超爽视频在线观看| 性色av乱码一区二区三区2| 国产成人精品无人区| 老鸭窝网址在线观看| 欧美亚洲日本最大视频资源| 一级a爱视频在线免费观看| 婷婷成人精品国产| tube8黄色片| 在线观看免费视频网站a站| 人人妻人人爽人人添夜夜欢视频| 亚洲精品美女久久av网站| 大陆偷拍与自拍| 亚洲av电影在线进入| 人人妻人人澡人人爽人人夜夜| 国产免费现黄频在线看| 十八禁网站免费在线| 亚洲精品中文字幕一二三四区| 久久香蕉激情| 国产精品秋霞免费鲁丝片| 亚洲第一欧美日韩一区二区三区| 一级片'在线观看视频| 免费久久久久久久精品成人欧美视频| 国产高清国产精品国产三级| 久久ye,这里只有精品| 黄片播放在线免费| 99精品在免费线老司机午夜| 成人精品一区二区免费| 在线观看免费高清a一片| 欧美性长视频在线观看| 曰老女人黄片| 少妇 在线观看| 天堂俺去俺来也www色官网| 999精品在线视频| 老熟女久久久| 精品亚洲成国产av| 国产在线观看jvid| 中文字幕人妻丝袜一区二区| 成人免费观看视频高清| 黄频高清免费视频| 久久99一区二区三区| 这个男人来自地球电影免费观看| 久久精品成人免费网站| 两性夫妻黄色片| 精品午夜福利视频在线观看一区| 精品高清国产在线一区| 欧美国产精品va在线观看不卡| 亚洲专区国产一区二区| ponron亚洲| 国产男靠女视频免费网站| 国产在线观看jvid| 日韩欧美一区视频在线观看| 欧美黑人欧美精品刺激| 香蕉丝袜av| 亚洲国产欧美一区二区综合| 超色免费av| 亚洲色图 男人天堂 中文字幕| av片东京热男人的天堂| 欧洲精品卡2卡3卡4卡5卡区| 人人妻人人添人人爽欧美一区卜| netflix在线观看网站| 久久久久国产精品人妻aⅴ院 | 99re在线观看精品视频| 久久精品国产清高在天天线| 日韩熟女老妇一区二区性免费视频| 亚洲av电影在线进入| 性色av乱码一区二区三区2| 久久亚洲真实| 国产成人影院久久av| bbb黄色大片| 国产亚洲欧美精品永久| 日日爽夜夜爽网站| 一本综合久久免费| 麻豆成人av在线观看| 老熟女久久久| 人妻 亚洲 视频| 另类亚洲欧美激情| 国产午夜精品久久久久久| 日韩欧美免费精品| 男人的好看免费观看在线视频 | 欧美精品啪啪一区二区三区| 国产一区二区三区视频了| 久久国产乱子伦精品免费另类| 欧美黑人精品巨大| 亚洲熟妇熟女久久| 狠狠狠狠99中文字幕| 成人黄色视频免费在线看| 欧美成人免费av一区二区三区 | www日本在线高清视频| 激情视频va一区二区三区| 久久精品国产a三级三级三级| 美女高潮喷水抽搐中文字幕| 香蕉丝袜av| 日韩大码丰满熟妇| 热99re8久久精品国产| 丰满人妻熟妇乱又伦精品不卡| 成人精品一区二区免费| 老司机在亚洲福利影院| 亚洲精品在线美女| 国产成人系列免费观看| 欧美日本中文国产一区发布| 99国产精品一区二区蜜桃av | av免费在线观看网站| 91字幕亚洲| 欧美老熟妇乱子伦牲交| 丝袜美腿诱惑在线| 国产精品综合久久久久久久免费 | 亚洲视频免费观看视频| 日韩欧美免费精品| 久久精品91无色码中文字幕| 精品午夜福利视频在线观看一区| 精品国内亚洲2022精品成人 | 色在线成人网| 色在线成人网| 亚洲精品粉嫩美女一区| 国产伦人伦偷精品视频| 免费在线观看黄色视频的| 高潮久久久久久久久久久不卡| 黄网站色视频无遮挡免费观看| 久久中文看片网| 男女之事视频高清在线观看| www.精华液| 亚洲精品国产区一区二| 久久久水蜜桃国产精品网| 久久久精品国产亚洲av高清涩受| av电影中文网址| 99久久人妻综合| 天天添夜夜摸| 狂野欧美激情性xxxx| 不卡av一区二区三区| 精品久久久久久,| 亚洲av第一区精品v没综合| 高潮久久久久久久久久久不卡| 久久久精品区二区三区| 在线天堂中文资源库| 欧美日韩福利视频一区二区| 欧美国产精品一级二级三级| 少妇猛男粗大的猛烈进出视频| 美女国产高潮福利片在线看| 精品久久久久久,| 久久久久久久久久久久大奶| 国产人伦9x9x在线观看| 亚洲午夜精品一区,二区,三区| 国产99白浆流出| 日韩 欧美 亚洲 中文字幕| 色94色欧美一区二区| 一区二区三区精品91| 亚洲综合色网址| 一区二区三区国产精品乱码| 欧美成人午夜精品| 宅男免费午夜| 国产精品久久久久久人妻精品电影| 久99久视频精品免费| 9色porny在线观看| 色婷婷久久久亚洲欧美| 一a级毛片在线观看| 超色免费av| 50天的宝宝边吃奶边哭怎么回事| 丰满饥渴人妻一区二区三| av有码第一页| 一级作爱视频免费观看| 精品少妇久久久久久888优播| 妹子高潮喷水视频| 日韩成人在线观看一区二区三区| 大香蕉久久网| 国产熟女午夜一区二区三区| xxx96com| 精品国产亚洲在线| 精品人妻在线不人妻| 精品国产乱码久久久久久男人| 国产极品粉嫩免费观看在线| 黄片播放在线免费| 精品福利观看| 国产精品国产av在线观看| 满18在线观看网站| 极品人妻少妇av视频| 人妻丰满熟妇av一区二区三区 | 不卡av一区二区三区| 涩涩av久久男人的天堂| 俄罗斯特黄特色一大片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品成人av观看孕妇| 深夜精品福利| 亚洲性夜色夜夜综合| 操出白浆在线播放| 最近最新中文字幕大全电影3 | 亚洲精品国产精品久久久不卡| 日韩欧美免费精品| 极品人妻少妇av视频| 国产激情欧美一区二区| 久久久久久人人人人人| 精品国产美女av久久久久小说| 亚洲av欧美aⅴ国产| 亚洲国产中文字幕在线视频| 久久精品亚洲熟妇少妇任你| 亚洲国产毛片av蜜桃av| 51午夜福利影视在线观看| 久久久久久亚洲精品国产蜜桃av| 免费一级毛片在线播放高清视频 | 亚洲一码二码三码区别大吗| 极品人妻少妇av视频| 热re99久久国产66热| 欧美亚洲日本最大视频资源| 国产精品免费一区二区三区在线 | 亚洲第一青青草原| 日韩欧美三级三区| 久久久久久久精品吃奶| 精品熟女少妇八av免费久了| 国产人伦9x9x在线观看| 又黄又爽又免费观看的视频| 免费看a级黄色片| 久久香蕉国产精品| 青草久久国产| 国产激情久久老熟女| 国产在视频线精品| 12—13女人毛片做爰片一| 欧美老熟妇乱子伦牲交| av超薄肉色丝袜交足视频| 久久久久久久久久久久大奶| 国产精品永久免费网站| 丰满饥渴人妻一区二区三| 国产精品二区激情视频| 国产极品粉嫩免费观看在线| 老司机深夜福利视频在线观看| 80岁老熟妇乱子伦牲交| 欧美日韩一级在线毛片| 在线观看舔阴道视频| 国产精品久久久av美女十八| 天天操日日干夜夜撸| 久久ye,这里只有精品| 妹子高潮喷水视频| 国产精品.久久久| 18禁裸乳无遮挡动漫免费视频| 91在线观看av| 天天躁狠狠躁夜夜躁狠狠躁| 久久中文字幕一级| 高清av免费在线| 97人妻天天添夜夜摸| 欧美老熟妇乱子伦牲交| 黄片大片在线免费观看| 国产日韩一区二区三区精品不卡| 黄色成人免费大全| 久久精品国产亚洲av香蕉五月 | 久久人人爽av亚洲精品天堂| 午夜两性在线视频| 一a级毛片在线观看| 黄频高清免费视频| 免费不卡黄色视频| 又黄又粗又硬又大视频| 在线观看一区二区三区激情| 精品免费久久久久久久清纯 | 日韩中文字幕欧美一区二区| 在线观看免费视频网站a站| 狠狠狠狠99中文字幕| 欧美中文综合在线视频| 一边摸一边做爽爽视频免费| 黄色女人牲交| 久9热在线精品视频| 欧美乱码精品一区二区三区| 在线视频色国产色| 老鸭窝网址在线观看| 国产在线精品亚洲第一网站| 亚洲精品国产区一区二| 亚洲中文av在线| 日本wwww免费看| 欧美精品啪啪一区二区三区| 精品国产美女av久久久久小说| 麻豆国产av国片精品| 美女福利国产在线| 久久国产乱子伦精品免费另类| 国产成人精品无人区| 国产精品一区二区在线不卡| 久久久精品区二区三区| 亚洲精品国产精品久久久不卡| 亚洲成a人片在线一区二区| 国产aⅴ精品一区二区三区波| 精品少妇一区二区三区视频日本电影| 国产欧美日韩一区二区三| 欧美色视频一区免费| 国产高清videossex| 亚洲自偷自拍图片 自拍| 免费少妇av软件| 啦啦啦 在线观看视频| 69精品国产乱码久久久| 好看av亚洲va欧美ⅴa在| 在线观看免费视频网站a站| 一区二区三区精品91| 男男h啪啪无遮挡| 国产精品影院久久| 亚洲av日韩在线播放| 久久人人爽av亚洲精品天堂| 91字幕亚洲| 一级片免费观看大全| 久久 成人 亚洲| 啦啦啦免费观看视频1| 日韩有码中文字幕| 超碰成人久久| 久久久久久久午夜电影 | 美女 人体艺术 gogo| 91九色精品人成在线观看| 一区福利在线观看| 久久精品亚洲av国产电影网| 国产成人精品久久二区二区免费| 久久精品国产清高在天天线| 成年女人毛片免费观看观看9 | 国产精品综合久久久久久久免费 | 欧美日韩一级在线毛片| 少妇猛男粗大的猛烈进出视频| 无遮挡黄片免费观看| 久久久久国内视频| 在线观看免费高清a一片| 亚洲国产毛片av蜜桃av| 午夜福利在线观看吧| 色综合婷婷激情| 人妻 亚洲 视频| 人人妻人人澡人人看| 又紧又爽又黄一区二区| 久久香蕉国产精品| 色尼玛亚洲综合影院| 欧美+亚洲+日韩+国产| 亚洲国产欧美一区二区综合| 黄色毛片三级朝国网站| 99re在线观看精品视频| 亚洲熟女精品中文字幕| 国产精品国产高清国产av | av福利片在线| 高清欧美精品videossex| 欧美午夜高清在线| 久9热在线精品视频| 老司机深夜福利视频在线观看| 黄色 视频免费看| 久久热在线av| 韩国精品一区二区三区| 亚洲精品中文字幕一二三四区| 国产成人欧美在线观看 | 欧美午夜高清在线| 国产欧美日韩一区二区精品| 欧美乱码精品一区二区三区| 色在线成人网| 夜夜爽天天搞| 成人影院久久| 亚洲少妇的诱惑av| 国产精品偷伦视频观看了| 国产免费男女视频| 久久中文看片网| bbb黄色大片| 欧美日韩国产mv在线观看视频| avwww免费| 亚洲色图 男人天堂 中文字幕| 亚洲色图综合在线观看| 国产精品综合久久久久久久免费 | 中国美女看黄片| 日日摸夜夜添夜夜添小说| 在线永久观看黄色视频| 国产国语露脸激情在线看| 亚洲色图综合在线观看| 天天躁夜夜躁狠狠躁躁| 在线看a的网站| 我的亚洲天堂| 人人妻人人爽人人添夜夜欢视频| 久久人妻av系列| 日韩欧美一区视频在线观看| 美女 人体艺术 gogo| 欧美不卡视频在线免费观看 | 免费观看a级毛片全部| 国产在视频线精品| 亚洲精品久久成人aⅴ小说| 中文欧美无线码| 无限看片的www在线观看| 亚洲国产毛片av蜜桃av| 亚洲国产精品一区二区三区在线| 女人被狂操c到高潮| 女同久久另类99精品国产91| 岛国毛片在线播放| 十分钟在线观看高清视频www| 侵犯人妻中文字幕一二三四区| 精品久久久久久久毛片微露脸| 久久久久久久久免费视频了| 国产在线观看jvid| 国产国语露脸激情在线看| 国产精品久久久久久精品古装| 大陆偷拍与自拍| 人妻久久中文字幕网| 女同久久另类99精品国产91| 亚洲九九香蕉| 国产在线精品亚洲第一网站| 精品一区二区三卡| 免费不卡黄色视频| 日韩免费av在线播放| 一边摸一边抽搐一进一小说 | 亚洲视频免费观看视频| 黑人猛操日本美女一级片| 少妇被粗大的猛进出69影院| www.精华液| 巨乳人妻的诱惑在线观看| 美女 人体艺术 gogo| 中文字幕制服av| 男人的好看免费观看在线视频 | 日本vs欧美在线观看视频| 精品一区二区三区视频在线观看免费 | 性少妇av在线| 超碰97精品在线观看| 国产精品av久久久久免费| 人人妻人人添人人爽欧美一区卜| 国产不卡一卡二| 久久这里只有精品19| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产亚洲av高清一级| 国产亚洲精品一区二区www | 亚洲精品国产色婷婷电影| 久久精品aⅴ一区二区三区四区| 亚洲综合色网址| 久久精品国产亚洲av香蕉五月 | 精品人妻1区二区| 亚洲熟女精品中文字幕| 亚洲中文字幕日韩| 最近最新免费中文字幕在线| 一级黄色大片毛片| 国产黄色免费在线视频| 国产亚洲一区二区精品| 国产成人精品无人区| 国产精品国产高清国产av | 亚洲精品av麻豆狂野| 美女高潮喷水抽搐中文字幕| 欧美大码av| 黄片小视频在线播放| 国产aⅴ精品一区二区三区波| 亚洲精品久久成人aⅴ小说| 国产单亲对白刺激| 国产深夜福利视频在线观看| 久久精品成人免费网站| netflix在线观看网站| 一二三四社区在线视频社区8| 最新美女视频免费是黄的| 国产精品久久久人人做人人爽| 精品欧美一区二区三区在线| 亚洲伊人色综图| 国产熟女午夜一区二区三区| 丰满饥渴人妻一区二区三| 久9热在线精品视频| 一进一出抽搐gif免费好疼 | 18禁裸乳无遮挡免费网站照片 | 大码成人一级视频| 91字幕亚洲| 如日韩欧美国产精品一区二区三区| 亚洲欧美日韩另类电影网站| 大香蕉久久成人网| 777久久人妻少妇嫩草av网站| 久久久久久久精品吃奶| 岛国在线观看网站| 一级片免费观看大全| 一边摸一边做爽爽视频免费| 18在线观看网站| 亚洲成人免费电影在线观看| 成人手机av| 悠悠久久av| 后天国语完整版免费观看| 欧美日韩黄片免| 久久精品亚洲av国产电影网| 国产视频一区二区在线看| 69av精品久久久久久| 免费在线观看视频国产中文字幕亚洲| 亚洲精品美女久久av网站| 国产精品一区二区在线不卡| 国产高清激情床上av| 亚洲avbb在线观看| 欧美在线黄色| 亚洲第一欧美日韩一区二区三区| av在线播放免费不卡| 老司机福利观看| 亚洲第一av免费看| 欧美黄色淫秽网站| 国产亚洲精品第一综合不卡| 极品人妻少妇av视频| 天天躁夜夜躁狠狠躁躁| 亚洲av美国av| 淫妇啪啪啪对白视频| 99国产精品免费福利视频| 久久人人爽av亚洲精品天堂| 人人妻人人爽人人添夜夜欢视频| 国产男女内射视频| 亚洲片人在线观看| 午夜久久久在线观看| 午夜福利欧美成人| 一级片'在线观看视频| 天天影视国产精品| 婷婷丁香在线五月| 午夜福利乱码中文字幕| 国产高清videossex| 欧美黄色片欧美黄色片| 看免费av毛片| 国产一区二区三区在线臀色熟女 | 黄色毛片三级朝国网站| 色94色欧美一区二区|