• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three-dimensional structures of virulence proteins of Legionellaestablish targets for new antibacterials

    2012-10-26 05:47:26GuidoHansenRolfHilgenfeld
    微生物與感染 2012年1期

    Guido Hansen,Rolf Hilgenfeld,3,4

    1.Institute of Biochemistry,Center for Structural and Cell Biology in Medicine,University of Lübeck,Lübeck 23538,Germany;2.German Centre for Infection Research (DZIF),University of Lübeck,Lübeck 23538,Germany;3.Shanghai Institute of Materia Medica,Chinese Academy of Sciences,Shanghai 201203,China;4.Laboratory for Structural Biology of Infection and Inflammation,c/o DESY,Hamburg 22603,Germany

    1 Introduction

    In 1977, Legionella pneumophila (L.pneumophila)was identified as the causative agent of an atypical and severe form of pneumonia designated Legionnaires’disease[1]. The bacteria have since been recognized as an increasingly important pathogen in health-care-,community-,and domestically-acquired pneumonia.Legionellaspp.are Gram-negativeγ-proteobacteria that parasitize protozoan host cells such as Acanthamoeba,Hartmannella,and Tetrahymena in their natural fresh-water habitat.In addition,many Legionella species are able to efficiently multiply in artificial warm-water systems such as spapools, airconditioners,indoor fountains,and cooling towers.As many of these devices produce aerosols that are potentially inhaled,Legionella can enter human hosts and cause infections after uptake into alveolar macrophages[2].However,only pathogenic Legionella strains are able to avoid phagosomelysosome fusion and replicate inside human host cells.The interaction of virulent Legionella with phagocytic host cells involves several steps:(1)adhesion to the host-cell surface;(2)uptake;(3)escape from the innate immune response;(4)establishment of a replicative vacuole;and(5)intracellular multiplication and egress from the host cells[3].However,the underlying virulence mechanisms are complex and far from being fully understood.

    X-ray crystallography has proved a valuable tool to reveal the molecular basis of virulence in a number of important pathogens. To date,structures of 46 Legionella proteins are available in the Protein Data Bank,yet,only 10of those represent confirmed virulence factors. Thus,structural information of Legionella proteins important for pathogenicity is still scarce,despite considerable progress during the last decade.Here,we review two structures of Legionella virulence proteins,F(xiàn)eoB and DegQ,determined very recently.In addition,we discuss the best characterized virulence protein of Legionella,the macrophage infectivity potentiator(Mip)protein,which was the first Legionella protein with known three-dimensional structure.In contrast to Mip,a confirmed drug target,the structures of FeoB and DegQ present new potential targets with unique possibilities for the development of effective antibacterials.

    2 Mip,F(xiàn)eoB and DegQ

    2.1 Mip

    Mip is a virulence protein that has been found in several intracellular pathogens such as L.pneumophila,Chlamydia spp.,Neisseria gonorrhoeae,Trypanosoma cruzi,and Burkholderia pseudomallei[4-8].Its key feature is an intrinsic peptidyl-prolyl cis/trans isomerase (PPIase;EC 5.2.1.8)activity which is conferred by a FK506-binding protein(FKBP)domain.This activity is efficiently inhibited by the immunosuppressive drugs FK506 (tacrolimus) and rapamycin(sirolimus)[9].The C-terminal FKBP domain of Mip from L.pneumophila (LpMip)shares~35%amino acid sequence identity with human FKBP12and is required for virulence[10,11].L.pneumophila mutants lacking Mip cannot efficiently infect human macrophages[4]or mononuclear phagocytes[12],and show suboptimal growth in the fresh-water host organisms Hartmannella and Terahymena[13].In a guinea pig model system for Legionnaires’disease,it has been shown that Mip contributes to successful dissemination of L.pneumophila throughout the lung,most likely by interacting with collagen IV[11].Involvement in host-cell infection has also been reported for Mip proteins from other pathogens[6,7,14].

    LpMip was the first Mip protein to be structurally characterized.At a resolution of 2.4?,the X-ray crystal structure revealed that LpMip forms a non-globular V-shaped homodimer which is stabilized exclusively by contacts between the N-terminal domains of two LpMip molecules[15](Fig.1A).Dimer formation depends on the interaction of helicesα1andα2of one LpMip molecule with the equivalent helices of the other,together forming a shared antiparallel four-h(huán)elix bundle.Most of the interactions between the helices are of hydrophobic nature and include a feature that we called a“methionine zipper”.A linker helix of 65 ?length connects the N-terminal domain with the C-terminal FKBP domain.PPIase activity and dimerization of LpMip is essential for efficient multiplication in Acanthamoeba and for full virulence in the guinea pig model system[16].Very similar results have been reported for the Mip homologue FKBP22 from Shewanella sp.[17]. In both systems,engineered monomeric protein variants were used to show that binding affinity and PPIase activity on protein substrates is strongly dependent on dimerization[16,17].However,the molecular basis for these findings is not fully understood.The close proximity of two ligand-binding sites located in the FKBP domains might offer an advantage in the competition with host FKPBs for substrates.It is also possible that dimeric V-shaped FKPB proteins like LpMip might‘embrace’substrate proteins with their long linker helices to bring the catalytic FKBP domains into position.Interestingly,the Mip homologue in Trypanosoma cruzi (Tc Mip)does not seem to depend on dimerization.Trypanosoma cruzi causes Chagas’disease(American trypanosomiasis),which,according to the World Health Organization(WHO),afflicts 10million people in Central and South America.The crystal structure of TcMip revealed a common FKBP core shared with LpMip[18].However,significant structural variations are present in regions N-and C-terminal of this core region.Most importantly,Tc Mip lacks the two helicesα1andα2necessary for the formation of the four-h(huán)elix bundle that is responsible for the formation of the LpMip dimer[15,18].As a result,Tc Mip is monomeric.Unlike Legionella,Trypanosomasecrete Mip into the medium prior to uptake into host cells,in order to increase infectivity[7]. Thus, the observed structural differences between LpMip and Tc Mip might reflect distinct functions during the life cycle of both pathogens.However,in both species,the precise molecular mechanism of action responsible for the Mip-dependent increase of virulence remains elusive and has to be addressed in future experiments.

    X-ray and nuclear magnetic resonance (NMR)structures of FK506and rapamycin in complex with the FKBP domain of LpMip allowed the identification and detailed characterization of the ligand-binding site[15,19].Both ligands bind to a hydrophobic pocket between the centralβ-sheet and helixα4of the FKBP domain.This pocket accommodates the pipecoline ring of rapamycin(Fig.1B)and FK506[15,19].Other groups of the ligands involved in interactions with the protein are the ester linkage,the dicarbonyl group,and the pyranosyl ring(Fig.1B).As most residues of the ligand-binding site are well conserved in Mip proteins from different species,it can be assumed that,in general,agiven drug molecule exhibits a single,well-defined binding mode shared by most if not by all Mip proteins.It is therefore likely that new antibacterials targeting Mip will be useful for the therapy of a diverse set of bacterial infections,making the development of such drug molecules even more rewarding.As FK506and rapamycin have immunosuppressive properties,these drugs themselves may not be suitable for treating bacterial infections.However,structural information derived from the available ligand complexes is vital for the rational design of inhibitory molecules that lack unfavorable effects on the immune system.On the basis of structural and biochemical data,a first step towards the development of selective low-molecular-weight Mip inhibitors has recently been reported[20].In this approach,a series of compounds sharing a common pipercoline moiety as an anchoring group were evaluated with respect to their ability to inhibit the PPIase activity of LpMip.As these compounds lack the macrocyclic portion of rapamycin,it is unlikely that they will exhibit immunosuppressive effects.A promising candidate for further lead development was identified[20]and awaits further characterization in cell-based and guinea pig model systems.

    Fig.1 Structures of Mip fromLegionella pneumophila

    2.2 Ferrous iron transporter(FeoB)

    Availability of sufficient amounts of iron is critical for optimal growth of many bacterial species.In fact,depletion of free iron is an elegant way of eukaryotic cells to prevent the replication of invading pathogens.To counteract this strategy,many pathogenic bacteria have evolved systems to efficiently scavenge ferric(Fe3+)as well as ferrous (Fe2+)iron.In Legionella,the secreted low-molecular-weight siderophore,legiobactin,chelates Fe3+,following re-uptake of the complexed metal by a specific active transport mechanism[21]. Ferrous iron(Fe2+)is critical for L.pneumophila growth under low-oxygen conditions in host cells and in the mammalian lung[22]. The transmembrane protein FeoB is responsible for Fe2+uptake and has been shown to contribute to virulence in a number of pathogenic bacteria[22,23].It consists of an intracellular N-terminal region of~270amino acid residues (NFeoB) and a C-terminal membrane-embedded domain of ~500residues(CFeoB).Biochemical studies suggested that NFeoB harbors a GTP-binding/GTPase domain(G domain)and an additional domain which functions as guanine nucleotide dissociation inhibitor(GDI)[24].

    Recently,we have determined the structure of NFeoB from L.pneumophila (NFeoBLp)to a resolution of 2.5 ?[25].NFeoB is a monomeric GTPase with characteristic G domain fold and an additional intramolecular GDI domain(Fig.2A).Interestingly and unusually for GTPases,the G5 motif,which is typically involved in the recognition of the guanine base in the nucleotide-binding site,adopts a closed conformation even in ligand-free state.Furthermore,the structure suggests how conformational changes upon nucleotide binding might affect the associated GDI and transmembrane regions to facilitate the regulated uptake of Fe2+.

    Before 2009,no structural information on NFeoB from any species was available.However,the simultaneous release of structures of NFeoB from Escherichia coli (E.coli)(PDB codes:3I8S,3I8X,and 3I92)by our group and of the FeoB G domain from Methanococcus jannaschii(PDB codes:2WJG,2WJH,2WJI,and 2WJJ)by K?ster,et al.[26]was closely followed by a remarkable avalanche of structures in the field.In fact,14new coordinate sets comprising NFeoB from five additional bacterial species(Thermotoga maritima[27];L.pneumophila[25];Streptococcus thermophila[28]; Pyrococcus furiosus[29]; and Klebsiella pneumoniae[29];E.coli[30])have been published subsequently (Tab.1). Moreover,in many cases NFeoB proteins have been crystallized in ligand-free as well as in nucleotide-bound forms,facilitating the detailed analysis of the effect of GTP binding and hydrolysis.Therefore,today,NFeoB can be regarded as a structurally very well characterized system.

    The overall fold of NFeoB is identical in all species(root mean square deviation typically<1?).However,as the structures show important differences in functionally relevant elements and in their oligomerization mode,conflicting mechanistic models for NFeoB have been proposed.In the following,the most striking deviations are presented and briefly discussed:(1) Regions typically involved in nucleotide recognition in eukaryotic G proteins lack defined conformational changes in different ligation states of most NFeoBs.For instance,the switch I element,which is responsible for the interaction with theγ-phosphate of GTP and a bound Mg2+ion in prototypical GTPases,is either flexible or adopts a conformation usually found in the GDP-bound or ligand-free state.This interesting feature offers an explanation for the relatively weak nucleotide-binding affinity of NFeoB when compared to eukaryotic GTPases.Although there is some evidence that switch I might contain a Fe2+or potassium-binding site[28,29],its function is unclear.Surprisingly,in NFeoB from Streptococcus thermophilain complex with mant-GMPPNP,the typical conformation with switch I contacting the nucleotide was observed(Fig.2B).Therefore,it cannot be fully excluded that switch I in NFeoB functions as nucleotide sensor and that the unusual conformation of switch I in the GTP-bound state found in most NFeoB structures represents an artifact caused by crystal contacts or the absence of an essential co-factor (such as potassium or

    Fe2+)during crystallization.(2)The molecular assembly found in crystals of ligand-free and nucleotide-bound forms of NFeoB from E.coli gave rise to a compelling mechanistic model.According to this model,three NFeoB molecules oligomerize to allow Fe2+ions to access a central channel of about 20?length,that facilitates regulated iron uptake.In ligand-free and GDP-bound forms of NFeoB,this channel is blocked,while a narrow opening was observed in the mant-GTP-bound structure.A similar arrangement of molecules has also been found in crystals of ligand-free and GTP-analog-bound NFeoB of Klebsiella pneumoniae[29],supporting this socalled trimer-Fe2+-gating model. However, the remaining 14NFeoB structures including NFeoBLpdo not display such trimeric assemblies,but form monomers or different dimeric species.The strong conservation of structure within the FeoB family suggests that iron uptake follows a common mechanism and hence for the trimer-Fe2+-gating model to be correct,and the trimer should be the dominating oligomeric species in most if not all crystal forms of NFeoB.This is obviously not the case.Notably,even for NFeoB proteins that form trimers in the crystal lattice,such trimers have never been confirmed to exist in solution.These results therefore raise questions about the validity of trimer-Fe2+-gating in general or its applicability to all NFeoB proteins.

    Tab.1 Structural data on FeoB proteins

    Fig.2 Structures of NFeoB

    2.3 Protein quality control protein(DegQ)

    Besides overcoming the shortage of iron and other essential nutrients,intracellular Legionella have to evade defense mechanisms of the host cells aiming to actively destroy invading pathogens.In hostile environments as encountered in phagosomes of professional macrophages,Legionella needs to prevent the excessive accumulation of misfolded proteins in the periplasm.In many prokaryotes,members of the HtrA family of proteins deal with this problem,promoting correct folding or efficient removal of misfolded or damaged periplasmatic proteins[31].Accordingly, HtrA proteins have been identified as virulence proteins affecting intracellular survival of many pathogenic bacteria[32].DegQ is an HtrA-family member with dual functions,combining chaperone and protease activities to facilitate refolding or degradation of misfolded proteins,respectively.DegQ is related to DegP,which represents a second HtrA protein with partially overlapping functions[33]. Both proteins share a common domain organization with an N-terminal trypsin-like protease domain preceding two PDZ domains(PDZ1and PDZ2).Whereas in E.coli DegP and DegQ are present,many prokaryotes including Legionella spp.lack a DegP homologue,stressing the importance of DegQ for protein homeostasis in the periplasm.

    Very recently,we reported the X-ray crystal structure of DegQ from Legionella fallonii (DegQLf)at a resolution of 2.15?[34].Interestingly,DegQLfforms large oligomers consisting of 12protein molecules in solution as well as in the crystal lattice (Fig.3A).The DegQLf12-mer displays tetrahedral symmetry and is composed of 4tightly interlocked homotrimers as basic building blocks.Whereas these homotrimers are stabilized by interactions between three protease domains,and formation of the 12-mer depends on contacts between PDZ domains of neighboring 3-mers.The overall organization of the particle resembles a hollow sphere with a protein shell enclosing a large internal cavity of~70?diameter.All 12 protease active sites line the inner wall of the particle and are therefore not directly accessible from the outside.However,six lateral pores(~14?x~28?)located in the protein shell connect the internal cavity with bulk solvent.To probe the functional properties of the DegQ 12-mer,we designed truncated protein variants that lack the C-terminal PDZ2domain (DegQLfΔPDZ2)or both PDZ domains (DegQLfΔPDZ1&2).As expected from the crystal structure,both variants were unable to form 12-mers and were proteolytically inactive.However,chaperone activity was not affected.Thus,in DegQLf,the PDZ domains are necessary for 12-mer formation which in turn is essential for protease but not for chaperone activity.Results from another DegQLfvariant lacking specific residues of PDZ2stabilizing the 12-mer confirmed these findings[34].

    The structure of DegQLfshows that many aspects of architecture are shared between HtrA family members but also reveals that regulation of protease activity is fundamentally different in DegQ and DegP.In the well-characterized DegP system,6-mers[35](Fig.3B)represent important protease-resting states, preventing deleterious proteolytic activity.The presence of unfolded proteins triggers the disassembly of 6-mers into two 3-mers and subsequent reassembly into active 12-mers or 24-mers[36-38](Fig.3C),dependent on the size and the concentration of the substrates.These larger oligomeric forms are responsible for the degradation of defective proteins under stress conditions[36,38].Although,as in DegP,12-mers are the protease-active form of DegQLf,we could not find any experimental evidence for DegQLf6-mers to exist.Instead,in the absence of unfolded proteins,DegQLf12-mers,3-mers and a smaller fraction of monomers were observed[34].The protease active sites in DegQLf3-mers are accessible,thus potentially harmful proteolytic activity needs be controlled in a different manner as in DegP 6-mers.To understand why 3-meric forms of DegQLfare inactive,we determined the structure of DegQLfΔPDZ2. This structure revealed an intrinsic flexibility of the remaining PDZ1domain,allowing a rotation of approximately 180°with respect to the protease domain.This rotation places the protease active site and a regulatory substrate-binding site located in the PDZ1domain on opposite faces of the 3-mer,effectively shutting down proteolytic activity.DegQLfshares a second regulatory mechanism with other HrtA family members.The protease active site in substrate-free HtrA proteins predominantly adopts a distinct OFF conformation,with the substrate binding cleft blocked by loop L1.A productive ON conformation can be assumed only after binding of an unfolded substrate to the regulatory site of a neighboring PDZ1domain.As a result,an intrinsic activation cascade is triggered along loops L3,LD,and L1/L2,which are located in between PDZ1and protease active site.Very similar molecular-switch mechanisms have been found in DegS[39],DegP[40],and Deg1of Arabidopsis thaliana[41].

    Fig.3 Structures of oligomeric forms of HtrA proteins as surface representations

    Shortly after the publication of our work on DegQLf[34], the biochemical and structural characterization of DegQ from E.coli(DegQEc)has been reported by another group[42].DegQ proteins from Legionellafalloniiand E.coli share an amino acid sequence identity of 41%.Like DegQLf,the E.coli homologue is able to form protease-active higher-order oligomers which are regulated by the conserved molecular switch described above.However,other structural and functional aspects are not shared.In stark contrast to the corresponding variant of DegQLf,DegQEcΔPDZ2is still able to form proteolytically active 12-mers.Moreover,6-meric and 24-meric forms,which were absent in all our DegQLppreparations[34],have been observed forThus,in many ways DegQEcresembles DegPEc,the second chaperone-protease of the E.coli periplasm.Because expression of the degQEcgene is not inducible by high temperatures[33],it has been proposed that DegQEchas house-keeping functions,counteracting pH-mediated accumulation of unfolded proteins[42].In the presence of an excess of unfolded periplasmatic proteins,DegPEcis upregulated to provide the required additional refolding/degradation capacity.Like Legionella fallonii,many prokaryotes lack a DegP homologue,with DegQ being the only periplasmatic chaperoneprotease responsible for protein homeostasis in these species.It is therefore not surprising that DegQLfand DegQEcdiffer in important aspects of oligomerization and function.Future research will reveal if unique features of DegQLfare prototypical for solitary prokaryotic HtrA chaperone-proteases.

    3 Conclusion and future perspectives

    About 35years have passed since L.pneumophila was identified as a new human pathogen.However,medical and public interest have increased over the years,and according to the European Work Group for Legionella Infections(EWGLI),more than 32000cases of Legionnaires’disease resulting in 2600deaths have been reported in Europe in the 11years between 1995and 2005.Still,it is very likely that the number of cases of Legionnaires’disease is vastly underreported.In 2009,a study to rigorously analyze the incidence of severe pneumonia caused by Legionellassp.was conducted[43].Using diagnosis tools specifically aimed to identify Legionellaspecies,15000-30000cases of Legionnaires’disease per year were estimated for Germany alone[43].Therefore,the associated health-care problem seems to be much more severe than anticipated.

    If correctly diagnosed,most cases of Legionnaires’disease can be treated successfully with fluoroquinolones and macrolides,such as levofloxacin[44]and azithromycin[45]. So far,there are no reports that Legionella spp.develop resistance to antibiotic therapy in clinical settings.However,resistance to many clinically relevant drugs including macrolides,quinolones,and rifampicin can be induced in laboratory experiments[46-49].To counteract emerging resistance,it is therefore vital to develop new drugs,ideally directed against new target proteins of Legionella.In this respect,LpMip represents an excellent example for structure-guided drug design.The reported Mip structures reveal a detailed picture of the active site that could be targeted by future drugs.Furthermore,complexes with FK506and rapamycin[15,19]allowed the identification and chemical exploration of a first lead structure[20].Similar approaches,especially when combined with structure determination of complexes between Mip and inhibitory molecules,hold great promise for the successful development of Mip inhibitors acting as efficient antibiotics.Furthermore,the availability of additional structural data on Mip proteins from different species,in particular inhibitor complexes,is highly desirable to facilitate an in-depth understanding of this protein family.

    Over the last years,structural information on new virulence proteins of Legionella spp.has slowly been accumulating.Among others,the recently determined structures of DegQ and NFeoB offer unique starting points for the development of innovative antibacterials.Analogous to Mip,in these systems the catalytically active sites represent potential binding sites for inhibitory molecules.However,as both proteins depend on large-and small-scale conformational changes,these could also be targeted.New substances could,for example,interfere with the assembly of active DegQ particles or block the signal transduction from the nucleotide-binding site to the transmembrane region of FeoB.We hope that public availability of structural information on new virulence proteins of Legionella will support efforts to shed light on basal mechanisms of pathogenicity and act as a primer for the development of new antibiotics.

    Acknowledgements

    We thank R.Wrase for help with the preparation of figures for this manuscript.

    [1]McDade JE,Shepard CC,F(xiàn)raser DW,Tsai TR,Redus MA,Dowdle WR.Legionnaires’disease:isolation of a bacterium and demonstration of its role in other respiratory disease[J].N Engl J Med,1977,297(22):1197-1203.

    [2]Fields BS, Benson RF, Besser RE. Legionella and Legionnaires’disease:25years of investigation[J].Clin Microbiol Rev,2002,15(3):506-526.

    [3]WHO.Legionella and the Prevention of Legionellosis[M].Geneva:World Health Organization Press,2007.

    [4]Cianciotto NP,Eisenstein BI, Mody CH,Toews GB,Engleberg NC.A Legionella pneumophila gene encoding a species-specific surface protein potentiates initiation of intracellular infection [J].Infect Immun,1989,57(4):1255-1262.

    [5]Leuzzi R,Serino L,Scarselli M,Savino S,F(xiàn)ontana MR,Monaci E,Taddei A,F(xiàn)ischer G,Rappuoli R,Pizza M.Ng-MIP,a surface-exposed lipoprotein of Neisseria gonorrhoeae,has a peptidyl-prolyl cis/trans isomerase (PPIase)activity and is involved in persistence in macrophages [J].Mol Microbiol,2005,58(3):669-681.

    [6]Lundemose AG, Kay JE, Pearce JH. Chlamydia trachomatis Mip-like protein has peptidyl-prolyl cis/trans isomerase activity that is inhibited by FK506and rapamycin and is implicated in initiation of chlamydial infection [J].Mol Microbiol,1993,7(5):777-783.

    [7]Moro A,Ruiz-Cabello F,F(xiàn)ernández-Cano A,Stock RP,González A.Secretion by Trypanosoma cruzi of a peptidylprolyl cis-trans isomerase involved in cell infection [J].EMBO J,1995,14(11):2483-2490.

    [8]Norville IH,O’Shea K,Sarkar-Tyson M,Zheng S,Titball RW,Varani G,Harmer NJ.The structure of a Burkholderia pseudomallei immunophilin-inhibitor complex reveals new approaches to antimicrobial development[J].Biochem J,2011,437(3):413-422.

    [9]Fischer G,Bang H,Ludwig B,Mann K,Hacker J.Mip protein of Legionella pneumophila exhibits peptidyl-prolylcis/trans isomerase(PPlase)activity [J].Mol Microbiol,1992,6(10):1375-1383.

    [10]Helbig JH,K?nig B,Knospe H,Bubert B,Yu C,Lück CP,Riboldi-Tunnicliffe A,Hilgenfeld R,Jacobs E,Hacker J,F(xiàn)ischer G.The PPIase active site of Legionella pneumophila Mip protein is involved in the infection of eukaryotic host cells [J].Biol Chem,2003,384(1):125-137.

    [11]Wagner C,Khan AS,Kamphausen T,Schmausser B,Unal C,Lorenz U,F(xiàn)ischer G,Hacker J,Steinert M.Collagen binding protein Mip enables Legionella pneumophila to transmigrate through a barrier of NCI-H292lung epithelial cells and extracellular matrix[J].Cell Microbiol,2007,9(2):450-462.

    [12]Wintermeyer E,Ludwig B,Steinert M,Schmidt B,F(xiàn)ischer G,Hacker J.Influence of site specifically altered Mip proteins on intracellular survival of Legionella pneumophila in eukaryotic cells[J].Infect Immun,1995,63(12):4576-4583.

    [13]Cianciotto NP,F(xiàn)ields BS.Legionella pneumophila mip gene potentiates intracellular infection of protozoa and human macrophages[J].Proc Natl Acad Sci USA,1992,89(11):5188-5191.

    [14]Horne SM,Kottom TJ,Nolan LK,Young KD.Decreased intracellular survival of an fkpA mutant of Salmonella typhimurium Copenhagen[J].Infect Immun,1997,65(2):806-810.

    [15]Riboldi-Tunnicliffe A,K?nig B,Jessen S, Weiss MS,Rahfeld J,Hacker J,F(xiàn)ischer G,Hilgenfeld R.Crystal structure of Mip,aprolylisomerase from Legionella pneumophila[J].Nat Struct Biol,2001,8(9):779-783.

    [16]K?hler R,F(xiàn)angh?nel J,K?nig B,Lüneberg E,F(xiàn)rosch M,Rahfeld JU,Hilgenfeld R,F(xiàn)ischer G,Hacker J,Steinert M.Biochemical and functional analyses of the Mip protein:influence of the N-terminal half and of peptidylprolyl isomerase activity on the virulence of Legionella pneumophila[J].Infect Immun,2003,71(8):4389-4397.

    [17]Budiman C,Bando K,Angkawidjaja C,Koga Y,Takano K,Kanaya S.Engineering of monomeric FK506-binding protein 22with peptidyl prolyl cis-trans isomerase.Importance of a V-shaped dimeric structure for binding to protein substrate[J].FEBS J,2009,276(15):4091-4101.

    [18]Pereira PJ,Vega MC,González-Rey E,F(xiàn)ernández-Carazo R,Macedo-Ribeiro S,Gomis-Rüth FX,González A,Coll M.Trypanosoma cruzi macrophage infectivity potentiator has a rotamase core and a highly exposed alpha-h(huán)elix[J].EMBO Rep,2002,3(1):88-94.

    [19]Ceymann A,Horstmann M,Ehses P,Schweimer K,Paschke AK,Steinert M,F(xiàn)aber C.Solution structure of the Legionella pneumophila Mip-rapamycin complex[J].BMC Struct Biol,2008,8:17.

    [20]Juli C,Sippel M,J?ger J,Thiele A,Weiwad M,Schweimer K,R?sch P,Steinert M,Sotriffer CA,Holzgrabe U.Pipecolic acid derivatives as small-molecule inhibitors of the Legionella MIP protein[J].J Med Chem,2011,54(1):277-283.

    [21]Liles MR,Scheel TA,Cianciotto NP.Discovery of a nonclassical siderophore,legiobactin,produced by strains of Legionella pneumophila.J Bacteriol,2000,182 (3):749-757.

    [22]Cianciotto NP.Iron acquisition by Legionella pneumophila[J].Biometals,2007,20(3-4):323-331.

    [23]Kammler M,Sch?n C,Hantke K.Characterization of the ferrous iron uptake system of Escherichia coli [J].J Bacteriol,1993,175(19):6212-6219.

    [24]Eng ET, Jalilian AR, Spasov KA, Unger VM.Characterization of a novel prokaryotic GDP dissociation inhibitor domain from the G protein coupled membrane protein FeoB[J].J Mol Biol,2008,375(4):1086-1097.

    [25]Petermann N,Hansen G,Schmidt CL,Hilgenfeld R.Structure of the GTPase and GDI domains of FeoB,the ferrous iron transporter of Legionella pneumophila [J].FEBS Lett,2010,584(4):733-738.

    [26]K?ster S,Wehner M,Herrmann C,Kühlbrandt W,Yildiz O.Structure and function of the FeoB G-domain from Methanococcus jannaschii.J Mol Biol,2009,392(2):405-419.

    [27]Hattori M,Jin Y,Nishimasu H,Tanaka Y,Mochizuki M,Uchiumi T,Ishitani R,Ito K,Nureki O.Structural basis of novel interactions between the small-GTPase and GDI-like domains in prokaryotic FeoB iron transporter [J].Structure,2009,17(10):1345-1355.

    [28]Ash MR,Guilfoyle A,Clarke RJ,Guss JM,Maher MJ,Jormakka M.Potassium-activated GTPase reaction in the G protein-coupled ferrous iron transporter B [J].J Biol Chem,2010,285(19):14594-14602.

    [29]Hung KW,Chang YW,Eng ET,Chen JH,Chen YC,Sun YJ,Hsiao CD,Dong G,Spasov KA,Unger VM,Huang TH.Structural fold,conservation and Fe(II)binding of the intracellular domain of prokaryote FeoB[J].J Struct Biol,2010,170(3):501-512.

    [30]Guilfoyle A,Maher MJ,Rapp M,Clarke R,Harrop S,Jormakka M.Structural basis of GDP release and gating in G protein coupled Fe2+transport[J].EMBO J,2009,28(17):2677-2685.

    [31]Clausen T,Southan C,Ehrmann M.The HtrA family of proteases:implications for protein composition and cell fate[J].Mol Cell,2002,10(3):443-455.

    [32]Ingmer H,Brondsted L.Proteases in bacterial pathogenesis[J].Res Microbiol,2009,160(9):704-710.

    [33]Waller PR,Sauer RT.Characterization of degQ and degS,Escherichia coli genes encoding homologs of the DegP protease[J].J Bacteriol,1996,178(4):1146-1153.

    [34]Wrase R,Scott H, Hilgenfeld R, Hansen G. The Legionella HtrA homologue DegQ is a selfcompartmentizing protease that forms large 12-meric assemblies[J].Proc Natl Acad Sci USA,2011,108(26):10490-10495.

    [35]Krojer T,Garrido-Franco M,Huber R,Ehrmann M,Clausen T.Crystal structure of DegP(HtrA)reveals a new protease-chaperone machine [J]. Nature,2002,416(6879):455-459.

    [36]Krojer T,Sawa J,Sch?fer E,Saibil HR,Ehrmann M,Clausen T.Structural basis for the regulated protease and chaperone function of DegP[J].Nature,2008,453(7197):885-890.

    [37]Jiang J,Zhang X,Chen Y,Wu Y,Zhou ZH,Chang Z,Sui SF. Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins[J].Proc Natl Acad Sci USA,2008,105(33):11939-11944.

    [38]Kim S,Grant RA,Sauer RT.Covalent linkage of distinct substrate degrons controls assembly and disassembly of DegP proteolytic cages[J].Cell,2011,145(1):67-78.

    [39]Sohn J,Grant RA,Sauer RT.OMP peptides activate the DegS stress-sensor protease by a relief of inhibition mechanism [J].Structure,2009,17(10):1411-1421.

    [40]Krojer T,Sawa J,Huber R,Clausen T.HtrA proteases have a conserved activation mechanism that can be triggered by distinct molecular cues[J].Nat Struct Mol Biol,2010,17(7):844-852.

    [41]Kley J,Schmidt B,Boyanov B,Stolt-Bergner PC,Kirk R,Ehrmann M,Knopf RR,Naveh L,Adam Z,Clausen T.Structural adaptation of the plant protease Deg1to repair photosystem II during light exposure [J].Nat Struct Mol Biol,2011,18(6):728-731.

    [42]Sawa J,Malet H,Krojer T,Canellas F,Ehrmann M,Clausen T.Molecular adaptation of the DegQ protease to exert protein quality control in the bacterial cell envelope[J].J Biol Chem,2011,286(35):30680-30690.

    [43]von Baum H,Ewig S,Marre R,Suttorp N,Gonschior S,Welte T,Lück C,Competence Network for Community Acquired Pneumonia Study Group. Community-acquired Legionella pneumonia:new insights from the German competence network for community acquired pneumonia[J].Clin Infect Dis,2008,46(9):1356-1364.

    [44]Yu VL,Plouffe JF,Pastoris MC,Stout JE,Schousboe M,Widmer A,Summersgill J,F(xiàn)ile T,Heath CM,Paterson DL,Chereshsky A.Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey [J].J Infect Dis,2002,186(1):127-128.

    [45]Plouffe JF,Breiman RF,F(xiàn)ields BS,Herbert M,Inverso J,Knirsch C,Kolokathis A,Marrie TJ,Nicolle L,Schwartz DB.Azithromycin in the treatment of Legionella pneumonia requiring hospitalization [J].Clin Infect Dis,2003,37(11):1475-1480.

    [46]Dowling JN,McDevitt DA,Pasculle AW.Isolation and preliminary characterization of erythromycin-resistant variants of Legionella micdadei and Legionella pneumophila[J].Antimicrob Agents Chemother,1985,27(2):272-274.

    [47]Jonas D,Engels I,Hartung D,Beyersmann J,F(xiàn)rank U,Daschner FD.Development and mechanism of fluoroquinolone resistance in Legionella pneumophila [J].J Antimicrob Chemother,2003,51(2):275-280.

    [48]Moffie BG, Mouton RP.Sensitivity and resistance of Legionella pneumophila to some antibiotics and combinations of antibiotics[J].J Antimicrob Chemother,1988,22(4):457-462.

    [49]Nielsen K, Hindersson P, Hoiby N,Bangsborg JM.Sequencing of the rpoB gene in Legionella pneumophila and characterization of mutations associated with rifampin resistance in the Legionellaceae [J].Antimicrob Agents Chemother,2000,44(10):2679-2683.

    变态另类成人亚洲欧美熟女| 99久久精品国产亚洲精品| 超碰av人人做人人爽久久 | 久久久久久大精品| 一进一出好大好爽视频| 日韩欧美国产一区二区入口| 亚洲av五月六月丁香网| 国产精品电影一区二区三区| 亚洲在线观看片| 亚洲av电影不卡..在线观看| 久久久色成人| 极品教师在线免费播放| 啦啦啦免费观看视频1| 国产黄片美女视频| 成人精品一区二区免费| 精品久久久久久成人av| 亚洲成av人片免费观看| 亚洲av熟女| 最新中文字幕久久久久| 老熟妇仑乱视频hdxx| 在线天堂最新版资源| 亚洲人成网站在线播放欧美日韩| 9191精品国产免费久久| 成人鲁丝片一二三区免费| tocl精华| 亚洲五月天丁香| 天美传媒精品一区二区| 18禁在线播放成人免费| 日韩成人在线观看一区二区三区| 久久久久国产精品人妻aⅴ院| 久久久国产成人精品二区| 两人在一起打扑克的视频| 狠狠狠狠99中文字幕| 亚洲成人久久性| 黑人欧美特级aaaaaa片| 两人在一起打扑克的视频| 欧美黄色淫秽网站| 97超级碰碰碰精品色视频在线观看| 一级黄片播放器| 在线观看免费午夜福利视频| 在线看三级毛片| 操出白浆在线播放| 午夜激情欧美在线| tocl精华| 亚洲欧美精品综合久久99| 久久久久久久亚洲中文字幕 | 精品久久久久久久人妻蜜臀av| 最好的美女福利视频网| 色av中文字幕| 最新美女视频免费是黄的| 午夜激情福利司机影院| 久久久久九九精品影院| 欧美一区二区国产精品久久精品| 久久这里只有精品中国| 日韩免费av在线播放| 两个人的视频大全免费| 一区二区三区高清视频在线| 91久久精品电影网| 国产视频一区二区在线看| 色av中文字幕| 女警被强在线播放| 最近在线观看免费完整版| 亚洲成人久久爱视频| 国产黄色小视频在线观看| 免费av毛片视频| 午夜影院日韩av| 国内少妇人妻偷人精品xxx网站| 亚洲精品一卡2卡三卡4卡5卡| 欧美区成人在线视频| 午夜日韩欧美国产| 99久久成人亚洲精品观看| 亚洲久久久久久中文字幕| 一级作爱视频免费观看| 免费大片18禁| 亚洲内射少妇av| 国产精品av视频在线免费观看| 亚洲精品在线观看二区| 日韩中文字幕欧美一区二区| 搞女人的毛片| 国产成人av激情在线播放| 久久精品国产99精品国产亚洲性色| 美女cb高潮喷水在线观看| 亚洲七黄色美女视频| 丰满乱子伦码专区| 国内揄拍国产精品人妻在线| 日韩欧美国产一区二区入口| 国产视频一区二区在线看| 欧美+日韩+精品| 中文在线观看免费www的网站| 久久久久性生活片| 99精品久久久久人妻精品| 91在线精品国自产拍蜜月 | 男人的好看免费观看在线视频| 嫁个100分男人电影在线观看| 男女午夜视频在线观看| 国语自产精品视频在线第100页| 欧美不卡视频在线免费观看| 国产精品98久久久久久宅男小说| 中文字幕av成人在线电影| 免费在线观看影片大全网站| www日本在线高清视频| 国产免费男女视频| 老熟妇乱子伦视频在线观看| 亚洲国产高清在线一区二区三| 黄色成人免费大全| 天堂av国产一区二区熟女人妻| 少妇的丰满在线观看| 成人18禁在线播放| 欧美极品一区二区三区四区| 日本在线视频免费播放| 99热这里只有是精品50| 啦啦啦韩国在线观看视频| 高清在线国产一区| 91麻豆av在线| 性欧美人与动物交配| 中文字幕人妻熟人妻熟丝袜美 | 999久久久精品免费观看国产| 伊人久久大香线蕉亚洲五| 亚洲欧美日韩无卡精品| av国产免费在线观看| 国产主播在线观看一区二区| 亚洲18禁久久av| 亚洲熟妇中文字幕五十中出| 十八禁网站免费在线| 亚洲精品国产精品久久久不卡| 性色av乱码一区二区三区2| 国产精品久久视频播放| 亚洲七黄色美女视频| 亚洲熟妇熟女久久| 久久久久久大精品| 国产精品 国内视频| 美女cb高潮喷水在线观看| 99久久无色码亚洲精品果冻| 岛国在线免费视频观看| 亚洲av第一区精品v没综合| 亚洲欧美一区二区三区黑人| 少妇裸体淫交视频免费看高清| 在线观看美女被高潮喷水网站 | 久久欧美精品欧美久久欧美| 男人舔奶头视频| av国产免费在线观看| 久久中文看片网| 亚洲国产欧美人成| 日本精品一区二区三区蜜桃| 久久精品国产清高在天天线| 久久婷婷人人爽人人干人人爱| 国产一区二区在线观看日韩 | 九色成人免费人妻av| 天堂√8在线中文| 色综合站精品国产| 国产精品三级大全| 久久精品影院6| 亚洲精品美女久久久久99蜜臀| 亚洲18禁久久av| 国产欧美日韩精品亚洲av| 国产欧美日韩精品亚洲av| 十八禁网站免费在线| АⅤ资源中文在线天堂| 99在线人妻在线中文字幕| 极品教师在线免费播放| 最近最新中文字幕大全免费视频| 一个人免费在线观看电影| 搡老岳熟女国产| 18禁国产床啪视频网站| 国产91精品成人一区二区三区| 日韩欧美三级三区| 久久久久久国产a免费观看| 母亲3免费完整高清在线观看| 精品熟女少妇八av免费久了| 99热这里只有精品一区| 免费观看精品视频网站| 伊人久久精品亚洲午夜| 中文亚洲av片在线观看爽| 亚洲精品一区av在线观看| 91麻豆精品激情在线观看国产| АⅤ资源中文在线天堂| 有码 亚洲区| 欧美性猛交黑人性爽| 国产一区二区三区在线臀色熟女| 99久久无色码亚洲精品果冻| 午夜激情欧美在线| 级片在线观看| 日日夜夜操网爽| 国产高清三级在线| 国产aⅴ精品一区二区三区波| 国产成人a区在线观看| 中文资源天堂在线| 三级男女做爰猛烈吃奶摸视频| 女人高潮潮喷娇喘18禁视频| 88av欧美| 女人十人毛片免费观看3o分钟| 成年人黄色毛片网站| 国产精品久久久久久久久免 | 舔av片在线| 在线观看午夜福利视频| av片东京热男人的天堂| 国产久久久一区二区三区| 亚洲欧美日韩高清在线视频| 91九色精品人成在线观看| 亚洲欧美日韩东京热| 欧美区成人在线视频| 亚洲自拍偷在线| 国产精品,欧美在线| 高清日韩中文字幕在线| 黄色女人牲交| 少妇的逼好多水| 少妇裸体淫交视频免费看高清| 嫩草影院入口| 国产精品美女特级片免费视频播放器| 色综合欧美亚洲国产小说| 成人欧美大片| 欧美日韩精品网址| 国产极品精品免费视频能看的| 大型黄色视频在线免费观看| 国产午夜精品久久久久久一区二区三区 | 露出奶头的视频| 欧美成人a在线观看| 午夜精品久久久久久毛片777| 国产日本99.免费观看| 亚洲欧美精品综合久久99| 国产精品一区二区免费欧美| 欧美精品啪啪一区二区三区| 婷婷精品国产亚洲av在线| 久久精品国产清高在天天线| 精品国产三级普通话版| 一二三四社区在线视频社区8| 天天躁日日操中文字幕| 成年免费大片在线观看| 亚洲在线自拍视频| 国产成+人综合+亚洲专区| 三级男女做爰猛烈吃奶摸视频| 日本成人三级电影网站| 99久久久亚洲精品蜜臀av| 日韩欧美一区二区三区在线观看| 一个人免费在线观看电影| 在线免费观看不下载黄p国产 | 国产精品99久久99久久久不卡| 夜夜看夜夜爽夜夜摸| 在线视频色国产色| 五月玫瑰六月丁香| 久久亚洲真实| 国内久久婷婷六月综合欲色啪| 女同久久另类99精品国产91| 亚洲精品成人久久久久久| 国产精品日韩av在线免费观看| 黄片大片在线免费观看| 欧美黄色淫秽网站| 天堂网av新在线| 99视频精品全部免费 在线| 又粗又爽又猛毛片免费看| 美女黄网站色视频| 欧美zozozo另类| 欧美中文日本在线观看视频| 18+在线观看网站| 午夜福利高清视频| 高清日韩中文字幕在线| 中文字幕人妻丝袜一区二区| 国产精品日韩av在线免费观看| 岛国在线免费视频观看| 国内精品久久久久久久电影| av黄色大香蕉| 欧美乱码精品一区二区三区| 成年女人看的毛片在线观看| 亚洲欧美日韩无卡精品| 九色成人免费人妻av| 老鸭窝网址在线观看| 在线免费观看不下载黄p国产 | 最近最新中文字幕大全电影3| 欧美绝顶高潮抽搐喷水| 亚洲一区二区三区色噜噜| 国产成人系列免费观看| 精品久久久久久久毛片微露脸| 久久6这里有精品| bbb黄色大片| 午夜久久久久精精品| 成人永久免费在线观看视频| 一区二区三区激情视频| 午夜影院日韩av| 波多野结衣高清作品| 欧美激情在线99| 无人区码免费观看不卡| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 成人午夜高清在线视频| 午夜精品在线福利| www.熟女人妻精品国产| 国产精品99久久99久久久不卡| 国产高清激情床上av| 亚洲欧美日韩卡通动漫| bbb黄色大片| www.熟女人妻精品国产| 欧美日韩国产亚洲二区| 日本五十路高清| 亚洲av电影在线进入| 亚洲欧美激情综合另类| 一级毛片高清免费大全| 成年女人看的毛片在线观看| 国产精品香港三级国产av潘金莲| 丝袜美腿在线中文| 亚洲精品乱码久久久v下载方式 | 国产一区二区亚洲精品在线观看| 免费观看的影片在线观看| 美女 人体艺术 gogo| 尤物成人国产欧美一区二区三区| 一个人看视频在线观看www免费 | 99精品久久久久人妻精品| 成人一区二区视频在线观看| 久久精品人妻少妇| www.999成人在线观看| 两个人视频免费观看高清| 国内精品久久久久久久电影| 亚洲av成人精品一区久久| 人妻夜夜爽99麻豆av| 天堂动漫精品| 欧美乱妇无乱码| 国产成人a区在线观看| 一区二区三区激情视频| 久久精品国产自在天天线| 一个人免费在线观看的高清视频| 亚洲成av人片免费观看| 九色国产91popny在线| 黄色成人免费大全| 黄色女人牲交| 18禁裸乳无遮挡免费网站照片| 精品人妻一区二区三区麻豆 | 国产成人av教育| 人妻丰满熟妇av一区二区三区| www日本在线高清视频| 日本黄大片高清| 亚洲熟妇中文字幕五十中出| 俄罗斯特黄特色一大片| 国产欧美日韩一区二区精品| 亚洲人成网站高清观看| 久久香蕉精品热| av国产免费在线观看| 深爱激情五月婷婷| 国产麻豆成人av免费视频| 中文字幕久久专区| 一区二区三区激情视频| 美女黄网站色视频| 久久性视频一级片| 国产在线精品亚洲第一网站| 成人av一区二区三区在线看| 成年女人永久免费观看视频| 一本一本综合久久| 欧美大码av| 一级黄色大片毛片| 国产主播在线观看一区二区| 狠狠狠狠99中文字幕| 国产亚洲欧美98| 91在线观看av| 91字幕亚洲| 亚洲熟妇中文字幕五十中出| 国产精华一区二区三区| 国产综合懂色| 熟女电影av网| 久久中文看片网| 十八禁人妻一区二区| 制服人妻中文乱码| ponron亚洲| 亚洲狠狠婷婷综合久久图片| 美女 人体艺术 gogo| 99精品在免费线老司机午夜| 1000部很黄的大片| 99在线人妻在线中文字幕| 欧美色视频一区免费| 欧美一级a爱片免费观看看| 久久久久久九九精品二区国产| 乱人视频在线观看| 成年女人毛片免费观看观看9| 手机成人av网站| 国产精品,欧美在线| 一个人观看的视频www高清免费观看| 一级黄片播放器| 亚洲国产精品合色在线| 九九久久精品国产亚洲av麻豆| 给我免费播放毛片高清在线观看| 真人做人爱边吃奶动态| 欧美在线黄色| 99riav亚洲国产免费| 高潮久久久久久久久久久不卡| 一区二区三区高清视频在线| 我要搜黄色片| 午夜久久久久精精品| 人妻夜夜爽99麻豆av| 99国产综合亚洲精品| 亚洲第一欧美日韩一区二区三区| 婷婷亚洲欧美| 2021天堂中文幕一二区在线观| 他把我摸到了高潮在线观看| 中国美女看黄片| 国产又黄又爽又无遮挡在线| 好男人电影高清在线观看| 少妇裸体淫交视频免费看高清| 亚洲精品乱码久久久v下载方式 | 琪琪午夜伦伦电影理论片6080| 中文字幕精品亚洲无线码一区| 日韩国内少妇激情av| 男女下面进入的视频免费午夜| 中国美女看黄片| 丁香六月欧美| 少妇人妻一区二区三区视频| 亚洲精品久久国产高清桃花| 午夜视频国产福利| 国产欧美日韩一区二区三| 国产中年淑女户外野战色| 国内精品一区二区在线观看| 国产精品久久久人人做人人爽| 真人一进一出gif抽搐免费| 国产熟女xx| 国产精品久久久人人做人人爽| 国产淫片久久久久久久久 | 国产欧美日韩一区二区精品| 国产探花极品一区二区| 99精品欧美一区二区三区四区| 桃色一区二区三区在线观看| 色老头精品视频在线观看| 99久久精品热视频| 好男人在线观看高清免费视频| 欧美日本视频| 91麻豆精品激情在线观看国产| 午夜激情福利司机影院| 精品福利观看| av在线天堂中文字幕| 亚洲男人的天堂狠狠| 精品国产亚洲在线| 精品久久久久久久毛片微露脸| 成熟少妇高潮喷水视频| 亚洲 欧美 日韩 在线 免费| 露出奶头的视频| 内地一区二区视频在线| 老汉色∧v一级毛片| 国内毛片毛片毛片毛片毛片| www.熟女人妻精品国产| 国产爱豆传媒在线观看| 最近最新中文字幕大全免费视频| 高清在线国产一区| 久久精品人妻少妇| 一区二区三区免费毛片| 久久久久久久久中文| 18禁黄网站禁片免费观看直播| 免费人成视频x8x8入口观看| 久久草成人影院| 久久国产精品影院| 成人特级av手机在线观看| 欧美成人免费av一区二区三区| 欧美三级亚洲精品| 国产精品精品国产色婷婷| 九色国产91popny在线| 无遮挡黄片免费观看| 亚洲成av人片免费观看| 91九色精品人成在线观看| 精品久久久久久,| 国产精品久久视频播放| 一级毛片高清免费大全| av欧美777| 国产成人av教育| 在线天堂最新版资源| 亚洲av第一区精品v没综合| 免费人成在线观看视频色| 亚洲国产精品sss在线观看| 日韩欧美精品免费久久 | 免费在线观看日本一区| 日韩 欧美 亚洲 中文字幕| 久99久视频精品免费| 国产精品98久久久久久宅男小说| 波多野结衣高清作品| 蜜桃亚洲精品一区二区三区| h日本视频在线播放| АⅤ资源中文在线天堂| 91麻豆av在线| 精品电影一区二区在线| 99riav亚洲国产免费| 日韩国内少妇激情av| 国产成年人精品一区二区| 熟女少妇亚洲综合色aaa.| 又紧又爽又黄一区二区| 综合色av麻豆| 日韩欧美国产在线观看| 婷婷精品国产亚洲av在线| 嫁个100分男人电影在线观看| 伊人久久精品亚洲午夜| 国产高清视频在线观看网站| 性欧美人与动物交配| 老汉色∧v一级毛片| 亚洲精华国产精华精| 国产伦在线观看视频一区| 19禁男女啪啪无遮挡网站| 国产久久久一区二区三区| 日韩欧美国产一区二区入口| 一边摸一边抽搐一进一小说| 日本熟妇午夜| 九九热线精品视视频播放| 99热这里只有精品一区| 亚洲成人精品中文字幕电影| 国产中年淑女户外野战色| 精品电影一区二区在线| 男人和女人高潮做爰伦理| 激情在线观看视频在线高清| 最近视频中文字幕2019在线8| 免费观看精品视频网站| 国产精品一及| 欧美另类亚洲清纯唯美| 日本与韩国留学比较| 熟女人妻精品中文字幕| 亚洲中文字幕日韩| 欧美zozozo另类| 日韩欧美在线乱码| 婷婷六月久久综合丁香| 久久久久性生活片| 成人av一区二区三区在线看| 亚洲精品久久国产高清桃花| 久久久久国产精品人妻aⅴ院| 极品教师在线免费播放| 午夜日韩欧美国产| 国产高清视频在线观看网站| 亚洲国产中文字幕在线视频| 午夜影院日韩av| 在线观看免费午夜福利视频| 中文亚洲av片在线观看爽| 欧美激情在线99| 国产午夜精品论理片| 国产一区二区激情短视频| 天堂影院成人在线观看| 一a级毛片在线观看| 欧美3d第一页| 大型黄色视频在线免费观看| 日本一二三区视频观看| 亚洲精品一卡2卡三卡4卡5卡| 在线观看美女被高潮喷水网站 | 国产成人av激情在线播放| 亚洲精品成人久久久久久| 久久久久性生活片| 国产精品综合久久久久久久免费| 一边摸一边抽搐一进一小说| 免费看光身美女| 久久久精品欧美日韩精品| 免费人成在线观看视频色| 18禁国产床啪视频网站| 精品99又大又爽又粗少妇毛片 | 国产淫片久久久久久久久 | 国产久久久一区二区三区| 亚洲国产精品999在线| 两人在一起打扑克的视频| 国内少妇人妻偷人精品xxx网站| 欧美乱妇无乱码| 中文亚洲av片在线观看爽| 日韩欧美精品免费久久 | 欧美日韩精品网址| 亚洲av一区综合| 久久精品国产综合久久久| 国产成人福利小说| 久久久久久久亚洲中文字幕 | 亚洲美女视频黄频| 国产成人啪精品午夜网站| 一a级毛片在线观看| 校园春色视频在线观看| 日韩 欧美 亚洲 中文字幕| 成年女人毛片免费观看观看9| 男女午夜视频在线观看| 在线免费观看不下载黄p国产 | 国产中年淑女户外野战色| 波多野结衣高清无吗| 无人区码免费观看不卡| 成年女人看的毛片在线观看| 一本久久中文字幕| 国产精品亚洲一级av第二区| 亚洲av第一区精品v没综合| 好看av亚洲va欧美ⅴa在| 淫秽高清视频在线观看| 成人欧美大片| 床上黄色一级片| 成人欧美大片| 国产一区二区激情短视频| 国产色婷婷99| 国产成人福利小说| 国产伦精品一区二区三区四那| 99精品欧美一区二区三区四区| 制服人妻中文乱码| 久久中文看片网| 亚洲av成人精品一区久久| 亚洲熟妇中文字幕五十中出| 一级毛片女人18水好多| 亚洲av成人av| 亚洲中文日韩欧美视频| 亚洲狠狠婷婷综合久久图片| 在线观看舔阴道视频| 我要搜黄色片| 欧美精品啪啪一区二区三区| 久久久久久久精品吃奶| h日本视频在线播放| 18美女黄网站色大片免费观看| 变态另类成人亚洲欧美熟女| 久久天躁狠狠躁夜夜2o2o| 一级黄色大片毛片| 国模一区二区三区四区视频| 日本黄色视频三级网站网址| 精品欧美国产一区二区三| 身体一侧抽搐| 精品熟女少妇八av免费久了| 精品人妻偷拍中文字幕| 久9热在线精品视频| 亚洲专区中文字幕在线| 欧美色欧美亚洲另类二区| 亚洲国产精品sss在线观看| 欧美极品一区二区三区四区| 久久婷婷人人爽人人干人人爱| 欧美大码av| 中文字幕人妻丝袜一区二区| 国产欧美日韩精品一区二区| 琪琪午夜伦伦电影理论片6080| 看片在线看免费视频| 综合色av麻豆| 无限看片的www在线观看| 亚洲av熟女| 九九在线视频观看精品|