• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    FLIGHT CONFLICT FORECASTING BASED ON CHAOTIC TIME SERIES

    2012-10-08 12:10:22LiShanmeiXuXiaohaoMengLinghang

    Li Shanmei,Xu Xiaohao,Meng Linghang

    (1.School of Computer Scienceand Technology,Tianjin University,Tianjin,300072,P.R.China;2.College of Air Traffic Management,Civil Aviation University of China,Tianjin,300300,P.R.China)

    INTRODUCTION

    There are complex nonlinear relationships causing traffic chaos in air traffic system.At present the domestic and foreign experts and scholars have made some results on traffic chaos[1-3].These studies are focused on ground transportation,and researches on air traffic chaos have not been seen. However, to realize the automation of air traffic management(ATM),the most important is to resolve the complex and chaos questions between certainty and randomness of ATM[4].Air traffic control(ATC)is a major component of ATM,the purpose of which is to prevent collisions between aircrafts and obstacles,and to make an orderly and efficient operation of air traffic[5]. Thus, the most important task of ATCis to prevent flight conflict.The definition of flight conflict is that the flight convergence in temporal-spatial aspects,and the flight separation violates the minimum separation standard.

    Currently,researches on conflict detection are mainly focused on the micro level,that is to determine whether aconflict will occur in the near future among two or more aircrafts from engineering point of view[6-8],while researches on conflict forecasting from a macro level have not been seen.The frequency and difficulty of taking operations to avoid conflicts by controllers increase because of uncertainty in air traffic and weather changing, increasing conflicts and airspace restrictions. To forecast potential conflicts can alleviate the controllers′workload and increase the safety.Flight conflicts have two basic conditional characteristics of chaos system:Sensitivity to initial conditions and long-term unpredictability. Therefore it is necessary to study chaos characteristics on flight conflict.

    Chaos theory is firstly used to study the physical characteristics of air traffic in this paper.In order to forecast flight conflict amount,chaotic identification of flight conflict time series must be done at first.Flight conflict time series can be defined as the data sequence of flight conflict amount obtained from equal time intervals according to time sequence.The flight conflict here is potential fligh t conflict.

    In this paper,the fault tree analysis is firstly used to analyze chaotic characteristics of flight conflict based on the man-machine-environment system engineering theory.Then,the improved chaotic algorithm based on the small-data method and the wavelet de-noising theory is established,which is used to identify and forecast chaotic time series.Lastly,the chaotic forecast algorithm is used to forecast the simulated data and forecasting results are evaluated.

    1 CHAOTIC ANALYSIS OF FLIGHT CONFLICT

    In 1981,Mr. Qian Xuesen,the famous scientist,proposed a system theory called manmachine-environment system engineering(MMESE)[9]. According to the theory, air traffic system is composed of four factors that construct a closed-loop system with specific features.These factors are man(pilots and controllers),aircraft,environment, and management. They are interdependent,mutual interacted and undivided.Therefore,the air traffic system is a complex dynamic system involving the behavior of man(pilots and controllers)and the air traffic environment.

    In this paper,the man-machine-environment system approach is used to analyze flight conflict[10].A fault tree is established,shown in Fig.1.The flight conflict has nonlinear dynamic characteristic due to the highly nonlinear characteristic of human actions, weather conditions and other factors. They have uncertainty,universality,conductivity,invisible and unexpected features. The uncertainty of flight conflict reflects the randomness of chaotic phenomenon.The conductivity and suddenness of flight conflict shows that the results sensitively rely on initial conditions. Therefore, flight conflicts have obvious chaotic features,and their evolution cannot be described by determined mathematical equations.However,it is a good choice to study from data of observablevariables.

    2 RECONSTRUCTION OF PHASE SPACE

    Based on the reconstructed phase space theory of Packard and Takens theorem, the information used to determine system state is included in the time series evolution of any variables.The state trajectory obtained through embedding single variable time series into a new coordinate system maintains the most important characteristics of the original state trajectory[11].Therefore the main characteristics of flight conflict can be obtained by the single variableflight conflict time series.

    Based on this idea,the flight conflict can be forecasted from the space angel. The basic method of reconstructing phase space is to reconstruct time delay coordinate[12-13].That is to construct m-dimensional statevector though delay variable.Make{xi,i=1,2,…,n}be thegiven time series.The m-dimensional phase is reconstructed by delay time f.The phase points of the phase space can be expressed as follows where M is the number of phase points in themdimensional phase space,M=n-(m-1)f,f the time delay,and n the number of samples in the original time series.

    3 IMPROVED CHAOTIC ALGORITHM

    In order to forecast flight conflict,the chaos identification is must be done at first.Thus in this section,the chaos identification algorithm and the chaos forecasting algorithm are introduced.

    3.1 Chaos identif ication algorithm

    Lyapunov exponent is an important quantitative indicator to measure the system dynamic characteristic, which represents the average exponential rate of convergence or divergence between adjacent tracks in phase space.The existence of chaos in the system can be determined by whether the maximum Lyapunov exponent is bigger than zero[14].

    In this paper,an improved algorithm for the largest Lyapunov exponent based on the smalldata method and the wavelet de-noising theory is established.The specific steps are described as follows:

    (1)The time series aregiven in Eq.(3).The sampling interval isΔt.

    where n is the number of samples,x(ti)the value of time series.

    (2)Remove noises of the original time series by the wavelet threshold de-noising method[15].The new series can be described as follows

    (3)Transform the time series by fast Fourier transformation(FFT).The average period is T.

    (4)Calculate the optimal delay time and the best embedding dimension of the reconstructed phase space by the autocorrelation method and the Cao algorithm[10].

    (5)Reconstruct the phase space according to time delay and embedding dimension of phase space,which can be seen in Step(1).

    (6) Find the nearest neighbors of each neighbor in the phase space and limit short-term separation.Y j′is obtained by the minimum distance between the reference points and other points.The minimum distance is described as follows

    where‖ Y j-Y j′‖ is the Euclidean norm,and an additional condition is required,i.e.|j-j′|> T.

    (7)Calculate the distance of Y j′and Y j after the i th discrete time step.

    (8)Calculate the average value of ln d j(i),that is

    where q is the number of non-zero dj(i),y(i)the average value of accumulation sum of the distance d j(i).

    (9)Make the least squares regression line of y(i)curve,the slope of the line is the largest Lyapunov exponentλmax.

    (10) Ifλmax> 0, there are chaotic characteristics in flight conflict time series.

    The improved algorithm increases the signal to noise ratio(SNR)and the reliabilities of data signals through the process of wavelet denoising.The algorithm is reliable for the small size data and thecomputation is not large through small-data method. Therefore the improved algorithm improves the accuracy and the reliability of the largest Lyapunov exponent calculation.The computation is reduced and the efficiency is improved.

    3.2 Chaos forecasting algorithm

    Lyapunov exponent describes the geometric properties of phase space.It is a good parameter of chaos forecast. Wolf, et al proposed a forecasting method for chaotic time series by the largest Lyapunov exponent[16].The basic idea is to search the similarities from the historical time series.Based on the evolution of the similarities and the physical meaning of the largest Lyapunov exponent,some certain mathematical models are used to forecast time series.

    Specific forecasting steps are described as follows:

    (1)Based on the algorithm for chaotic identification,let Y N be thecenter,Y nb the nearest point of Y N,d the Euclidean distance of Y N and Y nb,then we have

    (2)Y N+1and Y nb+1are theevolutions of Y N and Y nb.Based on the physical meaning of the largest Lyapunov and the similarities in the conflict system,we have

    where Y N+1(m)is unknown and the rest numbers are given. Therefore the forecasting value of flight conflict can be described as follows

    where″±″is chosen by the angles of space vectors.

    4 CHAOS IDENTIFICATION OF FLIGHT CONFLICT TIME SERIES

    4.1 Flight conflict time series

    Because theactual data of flight conflict time series is very difficult to obtain. An airport approach control is simulated through air traffic control simulator in this paper.Theflight conflict amount is obtained by simulation exercises.

    Fig.2 Time series of flight conflict

    The sampling interval is taken to be 30 min.A time series of 256 simulated data about conflict amount is obtained,as shown in Fig.2.One action of avoiding conflict is calculated as one conflict.If the conflict is between two aircrafts,the conflict amount is 1.If the conflict is among n aircrafts,the conflict amount is n-1.

    4.2 Chaos identification

    In order to identify the chaotic characteristic of flight conflict,we must calculate the delay time and the embedding dimension at first.

    The delay time is calculated by the autocorrelation method,as shown in Fig.3.The abscissa is delay time f,the vertical axis is the corresponding value of the autocorrelation function.It can be seen that the corresponding function value is minimal when f=7.That is,the correlation between the embedding coordinates is the smallest.Therefore,the delay time is taken to be 7 in this paper.

    Fig.3 Delay time of time series

    The embedding dimension is calculated by the Cao algorithm.The result is shown in Fig.4.E1(m)tends to be stable with the increase of m.It is used to determine the smallest embedding dimension.E2(m)is used to determine the chaotic feature of time series if its value tends to be 1 with the increase of m.Therefore,in this paper,the embedding dimension of the time series is 7.

    The improved algorithm of the largest Lyapunov exponent proposed in this paper is programmed by Matlab. The value of the exponent is the slope of the straight line.The values of the largest Lyapunov exponent under different embedding dimension values are shown in Table 1.Obviously the values are all bigger than zero,which indicates that the flight conflict time series has chaotic characteristic.Therefore the chaos forecasting method can be used to forecast flight conflict.The result of m=7 is shown in Fig.5,where the slope of regression line is 0.002 6.

    Fig.4 Embedding dimension

    Table 1 Lyapunov exponent of diff erent embedding dimensions

    Fig.5 The largest Lyapunov exponent of time series

    4.3 Chaos forecasting

    The last 50 data of the series are forecasted by the chaotic method and compared with the original data.The result is show n in Fig.6.It can be seen that the trends of original values and forecasted values areidentical.

    The forecasting accuracy of the results is tested in order to verify the validity of this forecasting.The idea of performance test in grey system theory is used to determine the evaluation indexes.

    Fig.6 Forecasting results of flight conflict

    Let x(t)and x″(t)be actual and forecasted values,and e(t)=x″(t)-x(t)is absolute error,then we have

    Correlative value of posterior error is

    Micro-error probability is

    A good forecasting model requires the value of C the smaller the better,the value of P the bigger the better.Generally,the value of C is smaller than 0.35,and its maximum cannot exceed 0.65.Thevalueof P is bigger than 0.95,and its minimum cannot be less than 0.7.

    The results of performance test are shown in Table 2.It can be seen that every index meet the requirements of test accuracy. Therefore the forecasted results can reflect the trend of flight conflict amount.The chaos forecasting method has agood effect,which can be used to forecast the flight conflict amount.

    Table 2 Results of performance test

    5 CONCLUSIONS

    (1)Based on the nonlinear characteristic of flight conflict, MMESE theory is used to establish a fault tree which is used to analyze the chaotic characteristics of flight conflict. The criterion of Lyapunov exponent is given in this paper.An improved chaotic algorithm of the largest Lyapunov exponents is proposed based on the small-data method and the wavelet de-noising theory.Finally,the existence of chaos in flight conflict is determined through simulation data.Objectively identifying the chaotic characteristics of flight conflict and analyzing the variation of conflict in hyperspace can help us understand the complex changes in flight conflict.

    (2)Based on the chaos analysis and phase space reconstruction,the forecasting method for the largest Lyapunov exponent is used to forecast the flight conflict amount.The evaluation of the forecasting results shows that the method has a better effect.

    (3)This paper only studies thereconstructed phase space from a single variable time series,and not very accurately describes the trajectory of state variables.Multivariate time series contains more rich information to construct multi-variable state space model,which is more accurate to grasp thevariation of the system.Thus,the next step of this research is to forecast the future running situation of air traffic through multivariate time series, and discuss the combination of the chaotic method and other forecasting methods.

    [1] Dendrinos D S.Traffic-flow dynamics:A search for chaos[J].Chaos Solitons& Fractals,1994,4(4):605-617.

    [2] Nagatani T.Chaotic jam and phase transition in traffic flow with passing[J].Physical Review E:Statistical Physics,Plasmas,Fluids,and Related Interdisciplinary Topics,1999,60(2):1535-1541.

    [3] Wang J,Shi Q X,Lu H P.The study of short-term traffic flow forecasting based on theory of chaos[C]//IEEE Intelligent Vehicles Symposium Proceedings.Las Vegas,USA:IEEE,2005:869-874.

    [4] Shi Heping.New theory of air traffic management[M].Xiamen:Xiamen University Press,2001.(in Chinese)

    [5] General Administration of Civil Aviation of China.Air traffic management rules of China′s civil aviation[S].CCAR-93TM-R3,2000.(in Chinese)

    [6] Krozel J,Peters M,Hunter G.Conflict detection and resolution for future air transportation management[R].NASA CR-97-205944,1997.

    [7] Kuchar JK,Lee C Y.A review of conflict detection and resolution modeling methods[J]. IEEE Transactions on Intelligent Transportation Systems,2000,1(4):179-189.

    [8] Prandini M,Hu J,Lygeros J,et al.A probabilistic approach to aircraft conflict detection[J].IEEE Transactions on Intelligent Transportation Systems,2000,1(4):199-220.

    [9] Long Shengzhao,Huang Ruisheng.Man-machineenvironment system engineering theory and basic application[M].Beijing: Science Press,2004.(in Chinese)

    [10]Zhou Jinyong,Gao Lan,Hua Qing.Prediction of vessel traffic accident based on chaotic theory[C]//The 9th International Conference for Young Computer Scientists.Zhangjiajie,China: ICYCS,2008:2727-2731.

    [11]Huang Wenbiao,Shi Shiliang. Identification and empirical study of chaotic characteristics industrial accident time series[J].Journal of Xi′an University of Science and Technology,2010,30(1):24-38.(in Chinese)

    [12]Packard N H,Crutchfield J P,Farmer J D,et al.Geometry from a time series[J].Physical Review Letters,1980,45(9):712-716.

    [13]Takens F.Detecting strange attractors in turbulence[M].Berlin: Lecture Notes in Mathematics,1981:366-381.

    [14]Lu Jinhu,Lu Junan,Chen Shihua.Chaotic time series analysis and its application[M].Wuhan:Wuhan University Press,2002.(in Chinese)

    [15]Peng Yuhua. Wavelet transform and application[M].Beijing:Science Press,1999.(in Chinese)

    [16]Wolf A.Determing Lyapunov exponents from a time series[J].Physica D,1985,16(3):285-317.

    国产精品99久久99久久久不卡| 夜夜夜夜夜久久久久| 国产一区二区在线av高清观看| 国产免费av片在线观看野外av| 身体一侧抽搐| 不卡av一区二区三区| 亚洲欧美日韩高清在线视频| 亚洲精品国产一区二区精华液| 两性夫妻黄色片| 久久久国产精品麻豆| 国产精品免费一区二区三区在线| 亚洲成人免费av在线播放| 麻豆久久精品国产亚洲av | 亚洲国产精品合色在线| 在线观看舔阴道视频| 美女福利国产在线| 我的亚洲天堂| 国产日韩一区二区三区精品不卡| e午夜精品久久久久久久| 在线观看免费日韩欧美大片| 18禁美女被吸乳视频| 国产午夜精品久久久久久| 国产免费av片在线观看野外av| 悠悠久久av| 一区二区三区精品91| 午夜免费观看网址| 水蜜桃什么品种好| 亚洲欧美日韩无卡精品| 国产伦一二天堂av在线观看| 久久国产亚洲av麻豆专区| 国产高清videossex| 成人三级做爰电影| bbb黄色大片| 99精品久久久久人妻精品| 国产熟女午夜一区二区三区| a在线观看视频网站| 亚洲人成电影观看| 成人手机av| 99久久国产精品久久久| 很黄的视频免费| 黄片大片在线免费观看| 久久精品91无色码中文字幕| 大型av网站在线播放| 久久人妻熟女aⅴ| 国产成人精品在线电影| 一个人免费在线观看的高清视频| 亚洲,欧美精品.| 欧美黑人精品巨大| 91成人精品电影| 男女午夜视频在线观看| 波多野结衣高清无吗| 国产男靠女视频免费网站| www.自偷自拍.com| 18禁观看日本| 欧美日韩亚洲高清精品| 99久久久亚洲精品蜜臀av| 色哟哟哟哟哟哟| 日本黄色视频三级网站网址| 日韩中文字幕欧美一区二区| 精品福利观看| 老司机在亚洲福利影院| a级毛片黄视频| 老司机在亚洲福利影院| 激情在线观看视频在线高清| 免费在线观看视频国产中文字幕亚洲| 亚洲国产精品合色在线| 色婷婷久久久亚洲欧美| 757午夜福利合集在线观看| 激情在线观看视频在线高清| 妹子高潮喷水视频| 18禁观看日本| 亚洲全国av大片| 老汉色∧v一级毛片| 在线观看www视频免费| 麻豆成人av在线观看| 国产精品二区激情视频| 欧美成人午夜精品| 一边摸一边抽搐一进一出视频| 欧美 亚洲 国产 日韩一| 亚洲专区字幕在线| 免费日韩欧美在线观看| 欧美日韩精品网址| 一级a爱视频在线免费观看| 中文字幕人妻丝袜制服| 在线免费观看的www视频| 欧美黄色片欧美黄色片| 99国产精品免费福利视频| 国产三级黄色录像| 亚洲中文av在线| 啦啦啦 在线观看视频| 亚洲激情在线av| 精品人妻在线不人妻| 精品一品国产午夜福利视频| 日韩精品免费视频一区二区三区| 亚洲片人在线观看| 午夜a级毛片| 18禁国产床啪视频网站| 中文字幕人妻丝袜一区二区| 亚洲久久久国产精品| 亚洲激情在线av| 99热只有精品国产| 老汉色av国产亚洲站长工具| 亚洲久久久国产精品| 女生性感内裤真人,穿戴方法视频| 国产精品爽爽va在线观看网站 | 久久中文字幕一级| 久久久久久久午夜电影 | √禁漫天堂资源中文www| 极品人妻少妇av视频| 视频区图区小说| x7x7x7水蜜桃| 少妇的丰满在线观看| 欧美另类亚洲清纯唯美| 国产片内射在线| 亚洲精品av麻豆狂野| 欧美乱码精品一区二区三区| 免费日韩欧美在线观看| 岛国在线观看网站| 水蜜桃什么品种好| 亚洲一区二区三区色噜噜 | 国产一卡二卡三卡精品| 天堂动漫精品| 久久香蕉国产精品| 精品国产乱码久久久久久男人| 满18在线观看网站| 国产伦人伦偷精品视频| 一夜夜www| 久久99一区二区三区| 桃红色精品国产亚洲av| av福利片在线| 婷婷丁香在线五月| 国产aⅴ精品一区二区三区波| 精品久久久久久久久久免费视频 | 99久久久亚洲精品蜜臀av| 神马国产精品三级电影在线观看 | 国产精品亚洲一级av第二区| 国产精品免费视频内射| 国产亚洲av高清不卡| 精品国产超薄肉色丝袜足j| 欧美+亚洲+日韩+国产| 久久国产精品男人的天堂亚洲| 久久精品国产亚洲av香蕉五月| 在线免费观看的www视频| 日韩三级视频一区二区三区| 国产av精品麻豆| 日日干狠狠操夜夜爽| 亚洲五月天丁香| 国产精品国产高清国产av| 大香蕉久久成人网| 男人的好看免费观看在线视频 | 18禁裸乳无遮挡免费网站照片 | 亚洲情色 制服丝袜| 亚洲精品国产色婷婷电影| 制服人妻中文乱码| 精品卡一卡二卡四卡免费| 老司机深夜福利视频在线观看| 一本大道久久a久久精品| 国产精品亚洲一级av第二区| 悠悠久久av| 亚洲自拍偷在线| 一区福利在线观看| 美女高潮喷水抽搐中文字幕| videosex国产| 亚洲七黄色美女视频| 亚洲欧美激情在线| 少妇 在线观看| 妹子高潮喷水视频| www.自偷自拍.com| 亚洲国产精品sss在线观看 | 美女高潮到喷水免费观看| 中文字幕另类日韩欧美亚洲嫩草| 久久亚洲真实| 黄片大片在线免费观看| 很黄的视频免费| 欧美日韩亚洲国产一区二区在线观看| 国产成人av激情在线播放| 成人精品一区二区免费| 激情视频va一区二区三区| 91成人精品电影| 在线免费观看的www视频| 亚洲人成77777在线视频| 久久人妻熟女aⅴ| 高清毛片免费观看视频网站 | 一级毛片高清免费大全| 超碰成人久久| 色哟哟哟哟哟哟| 搡老岳熟女国产| 日韩欧美三级三区| 亚洲人成77777在线视频| 人成视频在线观看免费观看| 国产精品成人在线| 狂野欧美激情性xxxx| 精品一区二区三区av网在线观看| 美国免费a级毛片| 一二三四在线观看免费中文在| 999久久久精品免费观看国产| 新久久久久国产一级毛片| 亚洲成人国产一区在线观看| 国产精品自产拍在线观看55亚洲| 久久久久久久久久久久大奶| 国产精品偷伦视频观看了| 欧美黄色淫秽网站| 久久热在线av| 日韩免费高清中文字幕av| 精品国产超薄肉色丝袜足j| 亚洲国产精品999在线| 88av欧美| 黄频高清免费视频| 18美女黄网站色大片免费观看| 免费在线观看亚洲国产| 欧洲精品卡2卡3卡4卡5卡区| av国产精品久久久久影院| 欧美性长视频在线观看| 成人特级黄色片久久久久久久| 大型黄色视频在线免费观看| 国产亚洲精品第一综合不卡| 亚洲第一青青草原| 国产一区二区激情短视频| av网站免费在线观看视频| 久久这里只有精品19| 久久人人爽av亚洲精品天堂| 一边摸一边抽搐一进一出视频| 国产深夜福利视频在线观看| 国产一卡二卡三卡精品| 久久人妻熟女aⅴ| 日本一区二区免费在线视频| 国内久久婷婷六月综合欲色啪| 看黄色毛片网站| 精品国产超薄肉色丝袜足j| 欧美午夜高清在线| 亚洲七黄色美女视频| 欧美日韩福利视频一区二区| www.精华液| 日韩精品中文字幕看吧| 亚洲专区中文字幕在线| 免费在线观看完整版高清| 人成视频在线观看免费观看| 精品久久久久久电影网| 免费观看精品视频网站| 国产亚洲精品久久久久久毛片| 国产成人系列免费观看| 久久久国产精品麻豆| 一级作爱视频免费观看| 国产高清videossex| 香蕉久久夜色| 日韩免费av在线播放| 日本 av在线| 久久人妻福利社区极品人妻图片| 午夜精品久久久久久毛片777| 多毛熟女@视频| 欧美性长视频在线观看| 午夜精品国产一区二区电影| 日韩欧美一区二区三区在线观看| 嫩草影院精品99| 国产欧美日韩一区二区精品| 男女高潮啪啪啪动态图| 看黄色毛片网站| 18禁观看日本| 在线免费观看的www视频| 久久精品国产亚洲av高清一级| 中文字幕人妻熟女乱码| 中文字幕最新亚洲高清| 老熟妇乱子伦视频在线观看| 国产成人系列免费观看| 性色av乱码一区二区三区2| 老司机午夜十八禁免费视频| 免费一级毛片在线播放高清视频 | 久久精品亚洲熟妇少妇任你| 热re99久久精品国产66热6| 久久草成人影院| 操出白浆在线播放| 成人影院久久| 亚洲精品一卡2卡三卡4卡5卡| 国产xxxxx性猛交| 俄罗斯特黄特色一大片| 精品国产一区二区久久| 嫁个100分男人电影在线观看| 最新在线观看一区二区三区| 窝窝影院91人妻| 999久久久精品免费观看国产| av视频免费观看在线观看| 亚洲aⅴ乱码一区二区在线播放 | 日韩av在线大香蕉| 老司机午夜十八禁免费视频| 中文字幕最新亚洲高清| 欧美精品亚洲一区二区| 亚洲国产精品sss在线观看 | 久久精品亚洲av国产电影网| 欧洲精品卡2卡3卡4卡5卡区| 欧美人与性动交α欧美软件| 亚洲伊人色综图| 国产亚洲欧美在线一区二区| 91国产中文字幕| 国产高清videossex| 一级a爱视频在线免费观看| 久久精品国产亚洲av香蕉五月| 亚洲欧美一区二区三区黑人| 日本vs欧美在线观看视频| 色婷婷av一区二区三区视频| 欧美另类亚洲清纯唯美| 日韩国内少妇激情av| 亚洲全国av大片| 亚洲av成人av| 国产av又大| 国产aⅴ精品一区二区三区波| 国产亚洲av高清不卡| 欧美黑人精品巨大| 久久亚洲真实| 无人区码免费观看不卡| 久久热在线av| 精品国产亚洲在线| 亚洲av美国av| av福利片在线| 精品国产乱子伦一区二区三区| 精品国产超薄肉色丝袜足j| 精品乱码久久久久久99久播| 18美女黄网站色大片免费观看| aaaaa片日本免费| 亚洲中文日韩欧美视频| 午夜视频精品福利| av有码第一页| 99热国产这里只有精品6| 怎么达到女性高潮| 97碰自拍视频| 亚洲九九香蕉| 精品一区二区三区四区五区乱码| xxxhd国产人妻xxx| 国产一区二区三区视频了| 天堂√8在线中文| 久99久视频精品免费| 免费在线观看日本一区| 久久精品91蜜桃| 黄色视频不卡| 18禁黄网站禁片午夜丰满| 黄色a级毛片大全视频| 成人国产一区最新在线观看| 老汉色av国产亚洲站长工具| 精品熟女少妇八av免费久了| 日日爽夜夜爽网站| 不卡一级毛片| 国产一区二区三区综合在线观看| 国产欧美日韩一区二区精品| 一级毛片女人18水好多| 999精品在线视频| 免费高清在线观看日韩| 欧美日韩一级在线毛片| 国产99久久九九免费精品| 男人舔女人的私密视频| 亚洲性夜色夜夜综合| 日韩一卡2卡3卡4卡2021年| 一本综合久久免费| 久久精品aⅴ一区二区三区四区| a级毛片在线看网站| 久久人妻av系列| 亚洲精品在线美女| 久久精品aⅴ一区二区三区四区| 嫁个100分男人电影在线观看| 午夜免费鲁丝| 好男人电影高清在线观看| 国产免费现黄频在线看| 高清毛片免费观看视频网站 | 黄色视频不卡| 91字幕亚洲| 欧美亚洲日本最大视频资源| 一级毛片女人18水好多| 久久久久国产一级毛片高清牌| 精品国内亚洲2022精品成人| 女同久久另类99精品国产91| 午夜福利,免费看| 又大又爽又粗| 真人做人爱边吃奶动态| 天天躁狠狠躁夜夜躁狠狠躁| 日韩av在线大香蕉| 丰满迷人的少妇在线观看| 欧美日韩黄片免| 99国产综合亚洲精品| 国产激情久久老熟女| 亚洲精品中文字幕在线视频| 亚洲av美国av| 在线观看免费午夜福利视频| 精品高清国产在线一区| 国产野战对白在线观看| 日韩欧美免费精品| 亚洲国产中文字幕在线视频| 激情视频va一区二区三区| videosex国产| 可以免费在线观看a视频的电影网站| 国产精品亚洲一级av第二区| 91麻豆精品激情在线观看国产 | 国产免费男女视频| 久久国产精品男人的天堂亚洲| 一级,二级,三级黄色视频| 国产激情欧美一区二区| 韩国精品一区二区三区| а√天堂www在线а√下载| 9色porny在线观看| 亚洲少妇的诱惑av| 99国产精品一区二区蜜桃av| 人人澡人人妻人| 久久影院123| 高清欧美精品videossex| 巨乳人妻的诱惑在线观看| 亚洲五月婷婷丁香| 日韩大尺度精品在线看网址 | 天天躁夜夜躁狠狠躁躁| av有码第一页| 精品日产1卡2卡| 亚洲精品一卡2卡三卡4卡5卡| 欧美激情极品国产一区二区三区| 97超级碰碰碰精品色视频在线观看| 欧美激情久久久久久爽电影 | 丰满的人妻完整版| 亚洲人成电影免费在线| 丝袜美足系列| 巨乳人妻的诱惑在线观看| 一区二区三区精品91| 美女福利国产在线| 午夜免费成人在线视频| 日韩高清综合在线| 亚洲欧美一区二区三区久久| 两个人免费观看高清视频| 国产熟女午夜一区二区三区| a级毛片黄视频| 亚洲第一青青草原| 性欧美人与动物交配| 亚洲专区国产一区二区| 成人免费观看视频高清| 女人精品久久久久毛片| 后天国语完整版免费观看| 精品一区二区三区av网在线观看| 精品久久久久久,| 制服诱惑二区| 热99国产精品久久久久久7| 日韩欧美三级三区| 人人妻人人澡人人看| 无限看片的www在线观看| 久久精品国产清高在天天线| 国产精品美女特级片免费视频播放器 | 欧美日韩亚洲国产一区二区在线观看| 高清欧美精品videossex| 久久亚洲精品不卡| 中亚洲国语对白在线视频| 亚洲av成人一区二区三| 欧美黑人精品巨大| 亚洲人成电影观看| 男男h啪啪无遮挡| 久久国产精品男人的天堂亚洲| 一个人观看的视频www高清免费观看 | 国产单亲对白刺激| 757午夜福利合集在线观看| 国产精品香港三级国产av潘金莲| 美女高潮到喷水免费观看| 免费观看人在逋| 午夜免费鲁丝| 在线视频色国产色| 欧美日韩一级在线毛片| 欧美日韩精品网址| 视频区欧美日本亚洲| 成人影院久久| 神马国产精品三级电影在线观看 | 日韩有码中文字幕| 欧美精品亚洲一区二区| 亚洲av日韩精品久久久久久密| www.熟女人妻精品国产| 亚洲精品在线观看二区| 国产精华一区二区三区| 成人永久免费在线观看视频| 国产一区二区三区综合在线观看| 久久久国产成人精品二区 | 十八禁人妻一区二区| 久久精品亚洲精品国产色婷小说| 国产91精品成人一区二区三区| 十分钟在线观看高清视频www| 精品国产亚洲在线| 精品免费久久久久久久清纯| 黄色毛片三级朝国网站| 亚洲精品一二三| 99久久综合精品五月天人人| 欧美一区二区精品小视频在线| 免费搜索国产男女视频| 9191精品国产免费久久| 亚洲av美国av| 免费av中文字幕在线| 女人高潮潮喷娇喘18禁视频| 男人操女人黄网站| 老司机在亚洲福利影院| 91成年电影在线观看| 91老司机精品| 午夜a级毛片| 性少妇av在线| 午夜视频精品福利| 国产精品 国内视频| 免费在线观看视频国产中文字幕亚洲| 成年人免费黄色播放视频| 国产av一区在线观看免费| 国产不卡一卡二| 国产亚洲欧美98| 999久久久国产精品视频| 久久性视频一级片| a级毛片黄视频| 亚洲av电影在线进入| 午夜免费鲁丝| 久久亚洲精品不卡| 亚洲一区高清亚洲精品| 亚洲 国产 在线| 成年人黄色毛片网站| 精品福利观看| 久久99一区二区三区| netflix在线观看网站| 国产黄a三级三级三级人| 精品一区二区三区av网在线观看| 精品一品国产午夜福利视频| 亚洲成国产人片在线观看| 国产深夜福利视频在线观看| 久久香蕉激情| 一区二区三区激情视频| 精品福利永久在线观看| 亚洲午夜理论影院| 亚洲中文av在线| 免费在线观看日本一区| 免费在线观看完整版高清| 成人亚洲精品av一区二区 | 别揉我奶头~嗯~啊~动态视频| 黄色丝袜av网址大全| 国产深夜福利视频在线观看| 午夜精品久久久久久毛片777| 久久香蕉精品热| 中文字幕另类日韩欧美亚洲嫩草| 一区二区三区国产精品乱码| 99精品欧美一区二区三区四区| 欧美另类亚洲清纯唯美| 免费看a级黄色片| 精品国产一区二区久久| 999久久久精品免费观看国产| 午夜福利在线观看吧| 热99国产精品久久久久久7| 叶爱在线成人免费视频播放| 国产成人免费无遮挡视频| 长腿黑丝高跟| 丰满迷人的少妇在线观看| 亚洲第一青青草原| 亚洲精品国产色婷婷电影| 两个人免费观看高清视频| 国产成人啪精品午夜网站| 精品一区二区三卡| 精品久久蜜臀av无| 亚洲国产毛片av蜜桃av| 亚洲欧美精品综合久久99| 亚洲国产毛片av蜜桃av| 亚洲成国产人片在线观看| 午夜免费成人在线视频| 午夜老司机福利片| 波多野结衣高清无吗| 很黄的视频免费| 嫩草影视91久久| 热99re8久久精品国产| 天天躁夜夜躁狠狠躁躁| 99精品久久久久人妻精品| 每晚都被弄得嗷嗷叫到高潮| 欧美精品一区二区免费开放| 国产亚洲av高清不卡| 最近最新免费中文字幕在线| 午夜激情av网站| 国产精品久久视频播放| 少妇 在线观看| 超色免费av| 夜夜看夜夜爽夜夜摸 | 精品午夜福利视频在线观看一区| 日韩成人在线观看一区二区三区| 亚洲免费av在线视频| 久久国产乱子伦精品免费另类| 在线av久久热| 亚洲国产精品sss在线观看 | 91九色精品人成在线观看| 日韩视频一区二区在线观看| 色综合婷婷激情| 亚洲人成77777在线视频| av电影中文网址| 性色av乱码一区二区三区2| 国产伦一二天堂av在线观看| 狠狠狠狠99中文字幕| 亚洲av五月六月丁香网| 久久亚洲真实| 国产亚洲精品久久久久久毛片| 久久精品亚洲av国产电影网| 国产成人欧美| 日本一区二区免费在线视频| av天堂在线播放| 亚洲成国产人片在线观看| 搡老岳熟女国产| 国产激情久久老熟女| 国产蜜桃级精品一区二区三区| 黄色丝袜av网址大全| 国产免费av片在线观看野外av| 成人影院久久| 99国产精品免费福利视频| 日日夜夜操网爽| 90打野战视频偷拍视频| 亚洲国产欧美网| 免费女性裸体啪啪无遮挡网站| 亚洲一区中文字幕在线| 久久久久国内视频| 身体一侧抽搐| 黄色片一级片一级黄色片| 国产深夜福利视频在线观看| e午夜精品久久久久久久| 国产一区在线观看成人免费| 多毛熟女@视频| 人人妻人人爽人人添夜夜欢视频| 一级毛片精品| 极品教师在线免费播放| 久久精品亚洲精品国产色婷小说| 69av精品久久久久久| 在线观看免费视频日本深夜| 久9热在线精品视频|