• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Application of Homogeneous Matrix Method of Multi-body System to the Dynamic Response of Floating Bridge

    2012-09-26 12:28:24JIANGZhaobingCHENXujunCHENWeiqiSHAOLuzhong
    船舶力學(xué) 2012年12期

    JIANG Zhao-bing,CHEN Xu-jun,CHEN Wei-qi,SHAO Lu-zhong

    (1 School of Naval Architecture,Ocean&Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;2 Engineering Institute of Engineering Corps,PLA University of Science&Technology,Nanjing 210007,China;3 China Ship Scientific Research Center,Wuxi 214082,China)

    1 Introduction

    Temoshinko[1]studied the resonance of the first vibration shape of a simply-supportedbeam bridge caused by a fast velocity moving load.He found that the bridge is resonated when the whole time for a moving load to pass the bridge is equivalent to half of the period of the first vibration shape.The maximum dynamic displacement of the bridge is 50%larger than the static one when the bridge is resonant.And when the load just passes the bridge,maximum displacement of the bridge occurs.Sato and Okamoto et al[2]studied the accumulation of ground surface wave under high-velocity train.By experiment,they found that the accumulation of the ground surface wave would take place when the train velocity approaches the wave propagation velocity in the ground.Then they analyzed the accumulation displacement by means of a certain theory.Bian[3]developed a hybrid method of 2.5 dimensional finite element and layer element to study dynamic ground response due to moving loads.The time histories of ground responses and wave motion are presented,and it is found that significant wave propagations are generated when Mach number of moving load approaches or exceeds 1.0.High-level vibrations identified to be similar to supersonic booms in fluid dynamics have been observed when train run with speed close to or exceeding the surface wave velocities in the surrounding ground.In 2001,Torbj?rn,Martin et al[4]studied the dynamic responses of the Winkler-beam under moving loads with different velocities.And then they developed effective numerical procedures of adaptive finite element method for solving problems associated with wave propagation in the track-ground system.Result indicates that the response for train velocities below the critical wave velocity for the structure is more or less quasistatic.However,as the speed increases and exceeds the critical wave velocity,the response of the railroad structure and the ground material changes dramatically.Waves are created from the origin of the load and propagate in the ground material[5].In 2006,Torbj?rn and H?kan et al[6]dealt with quality controlled FE-procedures for wave propagation including error estimation and mesh refinement/coarsening.The numerical result shows that when a high-speed train approaches an area with decreasing thickness of underlying soft soil on a stiff rock it is expected that the reflection of the wave will increase the total amplitude of the wave.And when the slope of the ground was introduced,wave magnitudes were clearly greater behind the train.Yang,Hung et al[7]studied the transmissibility of soils for vibrations induced by trains moving at different speeds employing the 2.5D finite/infinite element approach.And two train speeds are considered,i.e.70 m/s and 100 m/s,to stand for the sub-critical and super-critical ranges.With different factors including the shear speed,damping ratio,stratum depth,etc,the results all show when the train speed is larger than the Rayleigh wave speed of the layered soils the wave phenomena are more evident and the amplitudes of the ground wave are larger than those with speed lower than the Rayleigh wave speed.

    Chen and Ju et al[8]have pointed out that conducting an analysis of wave propagation in soil/rock is fundamental in predicting the possible vibration level.Kouroussis and Verlinden et al[9]have investigated the generation and propagation of ground vibrations induced by railway traffic,more specifically in the case of urban vehicles.Chen and Lin et al[10]have examined two simple analysis models for wave propagation in order to evaluate their reliability in measuring ground vibrations induced by high-speed trains.Yang and Hung et al[11]have introduced a new method to the out-of-plane wave transmission.And this 2.5D approach can capture the three-dimensional wave propagation effect using a two-dimensional finite/infinite element mesh.Hughes and Reali et al[12]have studied the discretezation behavior of classical finite element and NURBS approximations on problems of structural vibrations and wave propagation.Erkan and Seyhan et al[13]have investigated the wave propagating characteristics and frequency-dependent screening effects of the wave barriers according to various isolation material stiffness.

    Floating bridge is a typical multi-rigid-body system.There are many methods to study this kind of system which is composed of several rigid bodies,such as vector mechanics method represented by the classical Newton-Euler equations,the analytical mechanics method repre-sented by the Lagrange equation and the Kane method,etc.Legnani[14-15]introduced a homogeneous matrix approach in detail.This method uses several 4×4 matrixes to describe the kinematic characteristics of the multi-rigid-body system,which can handle the values of both translation and rotation at the same matrix.The researchers only need the knowledge of classical mechanics and homogeneous transformation to utilize this method.This method is based on the principle of Newton method and uses homogeneous transformation of 4×4 matrix to analyze the kinematics and dynamics of the multi-rigid-body system.This method is explicit in physical meanings,easy to understand,highly optimized for general use,which makes it especially suitable for programming calculations.Whereas few domestic literatures involve the introduction of homogeneous matrix approach,this paper will give a brief description of the theory.Then the solution of dynamic response of the floating bridge multi-body system will be acquired based on the theory and the results of displacement wave accumulation effect acquired by using this method will be discussed.

    2 The homogeneous matrix method of the multi-body system

    Homogeneous matrix method of multi-rigid-body system[14]can be considered as a powerful extension of the classical homogeneous transformation method proposed by Danavit and Hartenberg.In addition to the original position matrix,other five matrices including velocity matrix,acceleration matrix,momentum matrix,inertia matrix and force matrix with homogeneous form are added.Each matrix mentioned above includes the value of angular displacement and linear displacement,which means the relationship between kinematics and dynamics of conventional equation is redefined.As a result,the number of equations is reduced to half of the previous one.The symbols and expressions become more concise which makes it suitable for theoretical deduction and computational programming.

    Homogeneous matrix method describes the kinematics characteristics of multi-rigid-body system using three 4×4 matrices which are position matrix M,velocity matrix W and acceleration matrix H.The expressions are shown as follows respectively.The position matrix can be written as

    Or abbreviated as

    where ti,j,the 3×1 vector,is the location of the origin of coordinate system(j)in the absolute coordinate system(i),the 3×3 sub-matrix Ri,jis an orthogonal rotation matrix that de-scribes the orientation/status of the coordinate system(j)relative to absolute coordinate(i).Velocity matrix is shown in Eq.(3),

    where v=(vx,vy,vz)is the translational velocity of rigid body,ω=(ωx,ωy,ωz)is the angular velocity of rigid body.

    Acceleration matrix is shown in Eq.(4),

    where the 3×3 sub-matrix is G=˙+ω2.

    As to the three given coordinate systems(i),(j)and(k),they satisfy the relation Mi,k=Mi,jMj,k.As to three given rigid bodies,velocity matrix satisfies the relation Mi,k=Mi,j+Mj,kand acceleration matrix meets the relation Hi,k=Hi,j+Hj,k+2Wi,jWj,k,of which(r)and(s)are the coordinate systems projected by the components of matrices.

    In order to carry out dynamic analysis of multi-body system,three more 4×4 matrices of order are introduced to homogeneous matrix method.They are respectively force matrix Φk,momentum matrix Γkand pseudo inertia matrix Jkof which the subscript k is the number of rigid body.Pseudo inertia matrix Jkdescribes the mass distribution regularity of rigid body.The three matrix expressions are shown as follows respectively.The force matrix can be written as

    where f= [fxfyfz]Tis the total force acting upon the rigid body k,c=[cxcycz]Tis the torque acting on the rigid body k.The momentum matrix can be written as

    or abbreviated as

    where γ is the angular momentum of rigid body k which is relative to the origin of the refer-ence coordinate system,ρ=m[vxgvygvzg]Tis the translational momentum of the rigid body k,in which]Tis the velocity component of the centroid of rigid body k.

    The pseudo-inertia matrix is shown in Eq.(8).

    where m is the mass of the rigid body k and q=m[xxgxygxzg]Tis the product of the mass of rigid body and the barycentric coordinates.The elements of the sub-matrix J are defined as follows:

    To simplify the writing of relations it is usual to introduce the skew operator to facilitate the derivation.For any square matrix X,skew[X]=X-XT.On this basis,the kinetic equation of k rigid body can be succinctly expressed as follows:

    where Φk(0)is the projection of the external force matrix of k rigid body in the absolute coordinate system,of which the subscript 0 is the number of absolute coordinate system.If the above equations are expanded,it is nothing but another expression of Newton’s laws with the theorem of homogeneous matrix.

    If the dynamic equation is set up for the whole rigid-body system or several rigid bodies,it can be succinctly expressed as follows:

    3 Dynamic response of floating bridge multi-body system subjected to high-speed and heavy load

    Floating bridge can be regarded as N-rigid body system connected one by one with limited angle hinges.When the system is two-dimensional,the system has only n independent variables when the relative angle qiis regarded as the generalized coordinates in it.There are gaps between ribbon pontoons which comprise the floating bridge and the magnitude gap can be considered as relative angular displacement α.When the relative angular displacement α is smaller than the maximum relative angular displacement α0during the dynamic process,there can be relative movement between two adjacent ribbon pontoons.However,when the relative angular displacement α is equal to or greater than the maximum angular relative displacement α0,the adjacent ribbon pontoons will lose the gaps and move together with the relative angular speed of 0.As shown in Fig.1,the position,velocity and acceleration of object can be expressed with relative angle matrix q,relative angular velocity matrix q˙and relative angular acceleration matrix q¨.

    Fig.1 The model of the floating bridge

    Derived from the homogeneous matrix approach introduced above,the motion control equation of the floating bridge can be written as follow[15]:

    where M is the mass matrix,C is the vector including gravity,centrifugal force and Coriolis effect,F(t)is the force and moment acting on the rigid bodies.

    Besides the hydrostatic restoring forces acting on the floating bridge,the effects of the added mass,added moment of inertia and damping force caused by fluid-solid coupling interaction should also be considered.According to the ship maneuverability theory[16],it is usual to take a value of 1.6~2.0 for the added mass coefficient of amphibious vehicles,here the median value of 1.8 for Δm/m is taken.As to the rectangular ribbon pontoon,the rolling added moment of inertia is generally 28%of the moment of inertia of it.In conventional practice the general value selection range of rolling damping coefficient μθis 0.28~0.44,and the value of heave damping coefficient μyis 0.24~0.29.According to the practical situation of the floating bridge,μθand μytake the value of 0.4 and 0.28 respectively.

    Since rolling and heaving belong to longitudinal motion and horizontal motion respectively,the coupling effect between them can be ignored.The hydrodynamic coefficients should be taken into account in the respective kinematic equations.That is,when the rolling and heaving terms of the acceleration matrix are multiplied by added mass and added moment of inertia,the multiplied matrix is the added inertia matrix of the floating bridge.When the corresponding terms of the velocity homogenous matrix are multiplied by damping coefficient,the product is a damping force matrix of the floating bridge.

    According to the calculation parameters in Zhao’s paper[17],the weight of moving load was 135000 kg,the length of a ribbon pontoon was 6.7 m.The bridge consisted of 15 sections with a total length of 100.5 m.The velocity of moving load was 1.87 m/s and the maximum relative angular displacement α0between the adjacent pontoon bridge was 0.01π,that is 1.8°.Employing the coupling of Lagrange multi-body dynamics method and N-S equations,Zhao obtained the time history of the previous 12 nodes of floating bridge.The relation between the displacement of 3rd node and time obtained by multi-body dynamic homogeneous matrix method and the result obtained by Zhao are compared in Fig.2.The horizontal axis represents the moving time of the load and the longitudinal axis represents the displacement variation of the node,similarly hereinafter.

    The solid line in Fig.2 is the simulation result obtained by Zhao and the square dot line shows the result of this paper.It can be seen from the figure that there is not much difference between the maximum displacements of 3rd node obtained from both methods,but the displacement of 3rd node represented by solid line shows a larger vibration while the square dot line is smoother.All the other experiment results discussed below indicate that when the load velocity is 1.87 m/s,which is very slow,the vibration of any node on the floating bridge should not be very large.That means the calculation result of this paper is closer to those of all the other similar experiments and reality.

    Fig.2 The displacement time history of 3rd node of the floating bridge subjected to load

    Fu[18]carried out numerical simulation of dynamic response of floating bridge by employing finite element method,and also its corresponding model experiments.Fig.3 shows the displacement time history of the 6th node of the floating bridge subjected to 50 t load with velocity of 3.0m/s.The dot line in Fig.3 is the model test data which is transformed to a real bridge value in accordance with the experimental comparability principle.The solid line in Fig.3 is the calculation result of real bridge obtained by homogeneous matrix method.

    As can be seen in Fig.3,when the load passes the floating bridge at speed of 3.0 m/s,the displacement wave has already spread to the location of the 6th node before the load,which makes its displacement time history present a slight fluctuation before the load arrives at the 6th node.A small amount of accumulation of displacement wave appears in front of the load when it moves on the floating bridge at a relatively low speed.The accumulation of the displacement wave is about 0.05 m when the velocity of load is 3.0 m/s.

    Fig.4 The displacement time history of the 6th node of the floating bridge subjected to 50 t load with the speed of 6.0 m/s

    Fig.4 shows the displacement time history of the 6th node of the floating bridge subjected to the load with the speed of 6.0 m/s.The dot line shows the data gained from model tests,and the solid line presents the calculation result obtained by the homogeneous matrix method according to the engineering size of the floating bridge.The displacement wave accumulation reaches 0.1 m in Fig.4,which is twice as much as that subjected to moving load with the speed of 3 m/s.

    The dynamic response of the floating bridge under a moving load with a higher speed was also carried out.Fig.5 shows the displacement time history of the 6th node of the floating bridge subjected to a load with the speed of 9.0 m/s.The dot line represents the data gained from model test and the solid line indicates the calculation result obtained by the homogeneous matrix method according to the engineering size of the floating bridge.As is shown in the experimental data in Fig.7,when the load velocity reaches 9.0 m/s,the amount of the displacement wave accumulation is close to 0.15 m,which is smaller than that obtained by the homogeneous matrix method but bigger than that under load with the velocity of 3.0 m/s or 6.0 m/s.

    Fig.5 The displacement time history of the 6th node of the floating bridge subjected to 50 t load with the speed of 9.0 m/s

    Owing to the limitation of controlled motor speed in the experiment,it is infeasible to carry out the test under the load with a faster speed.But in the calculation process the load speed can be further increased on the basis of the previous calculations which are verified by the experimental data.Fig.6 shows the displacement variation of the 6th node of the floating bridge subjected to load with the velocity of 10.0 m/s and 15.0 m/s.The horizontal axis is the dimensionless length and the longitudinal axis is the displacement of the node.The result shows that the amount of the displacement wave accumulation of the floating bridge has reached 0.12 m when the load passes with the speed of 10.0 m/s,and the amount of the displacement wave accumulation reaches as much as 0.24 m when the load passes with the speed of 15.0 m/s,which has seriously hindered the load from passing the bridge.This means that the effect of the displacement wave on moving load must be taken into account in practical engineering when loads pass the floating bridge with high speed.

    In the continuous floating bridge model test,the experimental model is showed in Fig.7,the phenomenon of displacement wave accumulation is also found[19].The displacement wave will accumulate in front of moving load at the floating bridge when the speed of the load is high,and the amount is so large that it stacks like a “hill”in front of the moving load,as shown in the circle in Fig.8.It can be seen from the test site that the part of the floating bridge where the displacement wave accumulates has left the water surface.The reason why the floating bridge uplifts and leaves the water surface is that the floating bridge subjected to highspeed and heavy load stimulates the displacement wave to propagate forward.And the speed of load and the propagation speed of displacement wave are almost the same,which causes the accumulation of the displacement wave.

    Fig.6 The displacement time history of the 6th node of the floating bridge subjected to 50 t load with high speed

    Fig.7 The experimental model of floating bridge subjected to high-speed and heavy load

    Fig.8 Snapshot of the distortion of the floating bridge subjected to high speed load

    4 Conclusions

    It is found by numerical simulation and corresponding model test that the displacement wave accumulation will arise when the floating bridge multi-body system is subjected to high speed and heavy load.The higher the speed is,the greater the displacement wave accumulation is.

    The effect of the displacement wave accumulation is due to the small bending rigidity of floating bridge and the high speed of moving load.When the speed of the moving load catches up with that of the displacement wave propagating on the floating bridge,the displacement wave accumulation will occur.This kind of displacement wave accumulation may also occur in super-long flexible suspension bridge or cable-stayed bridge.Therefore,solving this new fluctuation problem has important academic significance and wide application prospects for engineering.

    Acknowledgements

    The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China(Grant No.51009147).

    [1]Timoshenko S.Vibration problem in engineering[M].3rd Edition.D.van Nostrand Company Inc.,1955.

    [2]Sato Y,Okamoto S,Tamura C,et al.Analyses on accumulation of propagating ground surface wave under running train.Wave propagation,moving load and vibration reduction[C].Proceedings of the International Workshop Wave,2002:39-46.

    [3]Bian Xuecheng.Ground vibration due to moving load at critical velocity[J].Journal of Zhejiang University(Engineering Science),2006,40(4):673-675.(in Chinese)

    [4]Torbjorn Ekevid,Martin,Li X D,Nils-Erik Wiberg.Adaptive FEA of wave propagation induced by high-speed trains[J].Computers and Structure,2001,79:2693-2704.

    [5]Torbjorn Ekevid,Nils-Erik Wiberg.Wave propagation related to high-speed train:A scaled boundary FE-approach for unbounded domains[J].Comput.Methods Appl.Mech.Engrg.,2002,191:3947-3964.

    [6]Torbjorn Ekevid,Ha kan Lane,Nils-Erik Wiberg.Adaptive solid wave propagation--influences of boundary conditions in high-speed train applications[J].Comput.Methods Appl.Mech.Engrg.,2006,195:236-250.

    [7]Yang Y B,Hung H H,Chang D W.Train-induced wave propagation in layered soils using finite/infinite element simulation[J].Soil Dynamics and Earthquake Engineering,2003,23:263-278.

    [8]Chen Y J,Ju S H,Ni S H,Shen Y J.Prediction methodology for ground vibration induced by passing trains on bridge structures[J].J Sound Vib.,2007,302(4-5):806-820.

    [9]Kouroussis G,Verlinden O,Conti C.Ground propagation of vibrations from railway vehicles using a finite/infinite-element model of the soil[J].Journal of Rail and Rapid Transit,2009,223(4):405-413.

    [10]Chen Yit-Jin,Lin Shiu-Shin,Shen Yi-Jiun.Analysis model of ground vibration propagation for high-speed trains[J].Geo-Frontiers,2011,ASCE:3748-3755.

    [11]Yang Y B,Hung H H,Kao J C.2.5D Finite/Infinite element approach for simulating train-induced ground vibrations[C].AIP Conf.Proc.,2009,1233:5-14.

    [12]Hughes T J R,Reali A,Sangalli G.Duality and unified analysis of discrete approximations in structural dynamics and wave propagation:Comparison of p-method finite elements with k-method NURBS[J].Comput.Methods Appl.Mech.Engrg.,2008,197:4104-4124.

    [13]Erkan ?elebi,Seyhan Firat,Günay Beyhan,et al.Field experiments on wave propagation and vibration isolation by using wave barriers[J].Soil Dynamics and Earthquake Engineering,2009,29(5):824-833.

    [14]Legnani G,Casolo F,Righettini P,Zappa B.A homogeneous matrix approach to 3D kinematics and dynamics.Part 1:theory[J].Mechanisms and Machine Theory,1996,31(5):573-587.

    [15]Legnani G,Casolo F,Zappa B,Righettini P.A homogeneous matrix approach to 3D kinematics and dynamics.Part 2:applications[J].Mechanisms and Machine Theory,1996,31(5):589-605.

    [16]Wu Xiuheng,Zhang Lewen,Wang Renkang.Ship maneuverability and seakeeping[M].Beijing:China Communications Press,1988.

    [17]Zhao Yubo.Numerical simulations of constrained multi-body systems[M].Hong Kong:The Chinese University of Hong Kong,2005.

    [18]Fu Shixiao.Nonlinear hydroelastic analyses of flexible moored structures and floating bridge[M].Shanghai:Shanghai Jiao Tong University,2005.(in Chinese)

    [19]Jiang Zhaobing.The displacement wave accumulation effect of the long floating bridge multibody system subjected to fast and heavy loads[M].Nanjing:the PLA University of Science and Technology,2008.(in Chinese)

    亚洲成人av在线免费| 成人av在线播放网站| 亚洲精品乱码久久久v下载方式| 秋霞伦理黄片| 国产一级毛片七仙女欲春2| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久久久av| 精品欧美国产一区二区三| 亚洲av电影不卡..在线观看| 国产精品乱码一区二三区的特点| 91av网一区二区| 成人漫画全彩无遮挡| 最近2019中文字幕mv第一页| 99久久精品一区二区三区| 成年女人看的毛片在线观看| 免费不卡的大黄色大毛片视频在线观看 | av在线播放精品| 免费黄色在线免费观看| 国产精品电影一区二区三区| 欧美一区二区精品小视频在线| 国产一区亚洲一区在线观看| 亚洲最大成人手机在线| 国产 一区 欧美 日韩| 夫妻性生交免费视频一级片| 26uuu在线亚洲综合色| 一个人免费在线观看电影| 秋霞在线观看毛片| 尾随美女入室| 亚洲欧美精品专区久久| 日本免费a在线| 三级国产精品片| 一区二区三区四区激情视频| 免费黄色在线免费观看| 国产精品不卡视频一区二区| av在线观看视频网站免费| 久久精品综合一区二区三区| 狂野欧美白嫩少妇大欣赏| 天天躁夜夜躁狠狠久久av| 免费不卡的大黄色大毛片视频在线观看 | 毛片女人毛片| 99久久成人亚洲精品观看| 三级经典国产精品| 久久久久久伊人网av| 免费搜索国产男女视频| 尤物成人国产欧美一区二区三区| 亚洲中文字幕日韩| 国产高清视频在线观看网站| 精品一区二区三区视频在线| 国产淫语在线视频| 亚洲激情五月婷婷啪啪| 有码 亚洲区| av女优亚洲男人天堂| 亚洲天堂国产精品一区在线| 少妇高潮的动态图| 色综合亚洲欧美另类图片| av又黄又爽大尺度在线免费看 | 尤物成人国产欧美一区二区三区| 欧美高清成人免费视频www| 日韩精品青青久久久久久| 欧美精品国产亚洲| 热99re8久久精品国产| 一级毛片aaaaaa免费看小| 亚洲精品aⅴ在线观看| 亚洲av福利一区| 男人和女人高潮做爰伦理| 老女人水多毛片| 在线天堂最新版资源| 日韩大片免费观看网站 | 久久久久久久久久成人| 哪个播放器可以免费观看大片| av在线天堂中文字幕| 免费在线观看成人毛片| 亚洲精华国产精华液的使用体验| 亚洲成人精品中文字幕电影| 国产免费视频播放在线视频 | 黄色日韩在线| 日韩三级伦理在线观看| 国产黄色视频一区二区在线观看 | 狠狠狠狠99中文字幕| 亚洲av不卡在线观看| 白带黄色成豆腐渣| 国产一区亚洲一区在线观看| 少妇人妻精品综合一区二区| 国产免费男女视频| 日韩精品有码人妻一区| 国产在视频线精品| 日韩一区二区视频免费看| 男女啪啪激烈高潮av片| 国产亚洲午夜精品一区二区久久 | 美女xxoo啪啪120秒动态图| 建设人人有责人人尽责人人享有的 | 亚洲乱码一区二区免费版| 日韩成人av中文字幕在线观看| 免费看日本二区| 黄色一级大片看看| 久久久久久久久久黄片| 午夜激情福利司机影院| 国产伦在线观看视频一区| 久久国产乱子免费精品| 嫩草影院入口| 青春草视频在线免费观看| 久久久亚洲精品成人影院| 我要看日韩黄色一级片| 国产91av在线免费观看| 免费观看在线日韩| 舔av片在线| 国产单亲对白刺激| 精品不卡国产一区二区三区| 日本猛色少妇xxxxx猛交久久| 少妇人妻精品综合一区二区| 精品酒店卫生间| 精品久久久久久电影网 | 日本五十路高清| 最近中文字幕高清免费大全6| 亚洲图色成人| 国产高潮美女av| 噜噜噜噜噜久久久久久91| 国产精品一二三区在线看| 日韩国内少妇激情av| 婷婷六月久久综合丁香| 亚洲四区av| 麻豆一二三区av精品| 国产三级在线视频| 一边摸一边抽搐一进一小说| 国产激情偷乱视频一区二区| 国产精品无大码| 久久韩国三级中文字幕| 免费观看精品视频网站| 日韩欧美精品v在线| av卡一久久| 男女那种视频在线观看| 日本五十路高清| 日日摸夜夜添夜夜爱| 级片在线观看| 日韩av不卡免费在线播放| 我要搜黄色片| 亚洲图色成人| 亚洲精品亚洲一区二区| 卡戴珊不雅视频在线播放| 在线播放国产精品三级| 中文天堂在线官网| 久久6这里有精品| 级片在线观看| 免费看a级黄色片| 日日干狠狠操夜夜爽| 国产在视频线在精品| 午夜福利高清视频| 欧美zozozo另类| 丝袜喷水一区| 亚洲成人精品中文字幕电影| 春色校园在线视频观看| 欧美高清成人免费视频www| 日韩中字成人| 午夜爱爱视频在线播放| 欧美人与善性xxx| 久久久久久伊人网av| 午夜爱爱视频在线播放| 国内精品一区二区在线观看| 天堂√8在线中文| 99热这里只有是精品在线观看| 欧美不卡视频在线免费观看| 国产国拍精品亚洲av在线观看| 三级国产精品片| 亚洲av二区三区四区| 国产亚洲91精品色在线| 女的被弄到高潮叫床怎么办| 三级国产精品欧美在线观看| 午夜亚洲福利在线播放| 亚洲伊人久久精品综合 | 99久久九九国产精品国产免费| 国产精品,欧美在线| 男人和女人高潮做爰伦理| 日日摸夜夜添夜夜添av毛片| av免费在线看不卡| 久久99热6这里只有精品| 国产精品一区二区三区四区免费观看| 亚洲国产欧美在线一区| 国产v大片淫在线免费观看| 精品国产露脸久久av麻豆 | 色播亚洲综合网| 日韩视频在线欧美| 成人国产麻豆网| 久久久色成人| 岛国毛片在线播放| 国产一区亚洲一区在线观看| 欧美丝袜亚洲另类| 午夜福利在线观看免费完整高清在| 国产高清国产精品国产三级 | 国产高清不卡午夜福利| 成人国产麻豆网| 日韩亚洲欧美综合| 中文资源天堂在线| 99热网站在线观看| 女人被狂操c到高潮| 亚洲中文字幕日韩| 深爱激情五月婷婷| 99热这里只有是精品50| 日韩中字成人| 精品无人区乱码1区二区| 夫妻性生交免费视频一级片| 超碰av人人做人人爽久久| 直男gayav资源| 国产三级中文精品| 一个人观看的视频www高清免费观看| 久久精品熟女亚洲av麻豆精品 | 黑人高潮一二区| 欧美丝袜亚洲另类| 日韩欧美 国产精品| 亚洲av熟女| 日韩视频在线欧美| 色噜噜av男人的天堂激情| 在线免费十八禁| 亚洲欧美日韩东京热| av又黄又爽大尺度在线免费看 | 久久欧美精品欧美久久欧美| 午夜福利视频1000在线观看| 久久久久国产网址| 亚洲最大成人av| 99久久人妻综合| 夜夜看夜夜爽夜夜摸| 少妇的逼好多水| av在线播放精品| 人妻少妇偷人精品九色| 国产精品永久免费网站| 黄色一级大片看看| 亚洲欧美日韩无卡精品| 国产精品精品国产色婷婷| 干丝袜人妻中文字幕| 日日摸夜夜添夜夜添av毛片| 日韩欧美精品v在线| 国产黄片视频在线免费观看| 国产精品久久久久久久久免| 亚洲最大成人中文| 少妇丰满av| 性插视频无遮挡在线免费观看| 亚洲久久久久久中文字幕| 亚洲色图av天堂| 日韩精品有码人妻一区| 一区二区三区免费毛片| 亚洲天堂国产精品一区在线| 亚洲中文字幕一区二区三区有码在线看| 久久久久久久久久黄片| 国产淫片久久久久久久久| 波多野结衣巨乳人妻| 国产午夜精品久久久久久一区二区三区| 岛国在线免费视频观看| 亚洲欧美成人精品一区二区| 长腿黑丝高跟| 国产 一区 欧美 日韩| av免费观看日本| 日韩 亚洲 欧美在线| 女人久久www免费人成看片 | 精品国产露脸久久av麻豆 | 禁无遮挡网站| h日本视频在线播放| 亚洲av福利一区| 高清毛片免费看| 日本与韩国留学比较| 国产在视频线精品| av天堂中文字幕网| 免费观看性生交大片5| 免费观看精品视频网站| 99久久精品热视频| 精品99又大又爽又粗少妇毛片| 日日啪夜夜撸| 国产成人aa在线观看| 在线天堂最新版资源| 欧美激情在线99| 亚洲人成网站在线观看播放| 麻豆国产97在线/欧美| 高清在线视频一区二区三区 | 精品无人区乱码1区二区| 欧美三级亚洲精品| 性色avwww在线观看| 国产成人freesex在线| 久久久久久久午夜电影| 国产淫语在线视频| 又粗又硬又长又爽又黄的视频| 直男gayav资源| 日本色播在线视频| 色视频www国产| 永久免费av网站大全| 日韩高清综合在线| 亚洲经典国产精华液单| 99国产精品一区二区蜜桃av| 久久久久国产网址| 青春草亚洲视频在线观看| 大又大粗又爽又黄少妇毛片口| 精品久久久久久电影网 | 亚洲18禁久久av| 免费黄网站久久成人精品| 亚洲自拍偷在线| 免费黄色在线免费观看| 男女啪啪激烈高潮av片| 最近2019中文字幕mv第一页| 精品人妻偷拍中文字幕| 在线免费十八禁| av.在线天堂| 国产精品久久久久久av不卡| 国产白丝娇喘喷水9色精品| 一级毛片久久久久久久久女| 欧美+日韩+精品| 丰满乱子伦码专区| 国产伦精品一区二区三区四那| 国产成人免费观看mmmm| 精品久久久久久久久久久久久| 少妇被粗大猛烈的视频| 午夜精品国产一区二区电影 | 免费看光身美女| 激情 狠狠 欧美| 夜夜爽夜夜爽视频| 精品午夜福利在线看| 国产精品永久免费网站| www.色视频.com| 女的被弄到高潮叫床怎么办| eeuss影院久久| 啦啦啦啦在线视频资源| 久久久午夜欧美精品| 久99久视频精品免费| 国产午夜福利久久久久久| 大香蕉97超碰在线| 精品不卡国产一区二区三区| 一级毛片我不卡| 成年版毛片免费区| 亚洲高清免费不卡视频| 老司机影院毛片| 天天躁日日操中文字幕| 亚洲经典国产精华液单| 欧美xxxx黑人xx丫x性爽| 久久鲁丝午夜福利片| av在线天堂中文字幕| 国产精品人妻久久久久久| 搡女人真爽免费视频火全软件| 国产亚洲精品久久久com| 99久久人妻综合| 边亲边吃奶的免费视频| 青春草亚洲视频在线观看| 亚洲国产成人一精品久久久| 欧美日韩一区二区视频在线观看视频在线 | 欧美成人一区二区免费高清观看| 联通29元200g的流量卡| 久久国产乱子免费精品| 大香蕉97超碰在线| 高清视频免费观看一区二区 | 精品久久久久久久久av| 国产v大片淫在线免费观看| 国产免费福利视频在线观看| 国产高清有码在线观看视频| 国产日韩欧美在线精品| 亚洲精品日韩av片在线观看| 日韩高清综合在线| 尾随美女入室| 国产高清视频在线观看网站| 亚洲欧美精品综合久久99| 成人毛片60女人毛片免费| av在线天堂中文字幕| 免费看av在线观看网站| a级毛片免费高清观看在线播放| 直男gayav资源| 2021天堂中文幕一二区在线观| 2021少妇久久久久久久久久久| 女人久久www免费人成看片 | 中文字幕亚洲精品专区| 成人毛片60女人毛片免费| 97热精品久久久久久| 亚洲在久久综合| or卡值多少钱| 成人综合一区亚洲| 久久99热这里只有精品18| 免费看av在线观看网站| 你懂的网址亚洲精品在线观看 | 伦精品一区二区三区| 亚洲综合色惰| 国产美女午夜福利| 人人妻人人澡人人爽人人夜夜 | 亚洲国产精品专区欧美| 亚洲欧美一区二区三区国产| 欧美区成人在线视频| 国产一区二区在线av高清观看| 91精品国产九色| 日本黄大片高清| 免费观看性生交大片5| 国产午夜精品一二区理论片| 久久久久久久久大av| 国产v大片淫在线免费观看| 国内少妇人妻偷人精品xxx网站| 亚洲av免费高清在线观看| 久久鲁丝午夜福利片| 欧美性猛交╳xxx乱大交人| 欧美一级a爱片免费观看看| 免费av毛片视频| 久久草成人影院| 亚洲精品乱码久久久久久按摩| 好男人在线观看高清免费视频| 中文亚洲av片在线观看爽| av在线播放精品| 中国美白少妇内射xxxbb| 精品久久国产蜜桃| 亚洲图色成人| 91av网一区二区| 久久精品国产亚洲网站| 最近中文字幕2019免费版| 国产精品人妻久久久影院| 婷婷色av中文字幕| 日本-黄色视频高清免费观看| 嫩草影院新地址| 免费一级毛片在线播放高清视频| 草草在线视频免费看| 国产69精品久久久久777片| 午夜福利在线观看免费完整高清在| 久久6这里有精品| 国产精品不卡视频一区二区| 欧美精品国产亚洲| 99久久人妻综合| 国产 一区精品| 亚洲人与动物交配视频| 国产老妇女一区| av在线播放精品| 国产精品不卡视频一区二区| 长腿黑丝高跟| 尤物成人国产欧美一区二区三区| 免费观看a级毛片全部| 免费黄色在线免费观看| 1000部很黄的大片| 天天躁日日操中文字幕| 不卡视频在线观看欧美| or卡值多少钱| 国产精品野战在线观看| 日韩欧美三级三区| 久久精品国产亚洲av天美| 免费看a级黄色片| 免费黄色在线免费观看| 日本黄大片高清| 亚洲国产最新在线播放| 国产免费男女视频| 日韩强制内射视频| 麻豆成人av视频| 国产高清有码在线观看视频| 成人亚洲欧美一区二区av| 99久国产av精品国产电影| 久久久亚洲精品成人影院| 国产69精品久久久久777片| 色噜噜av男人的天堂激情| 午夜久久久久精精品| 高清av免费在线| 亚洲国产日韩欧美精品在线观看| 亚洲aⅴ乱码一区二区在线播放| 欧美区成人在线视频| 中文乱码字字幕精品一区二区三区 | 亚洲精品乱码久久久久久按摩| 久久久国产成人精品二区| 国产伦精品一区二区三区视频9| 亚洲在线自拍视频| 日韩强制内射视频| 看十八女毛片水多多多| 中文乱码字字幕精品一区二区三区 | 国产不卡一卡二| 老师上课跳d突然被开到最大视频| 国产高清视频在线观看网站| 欧美日本视频| 91精品伊人久久大香线蕉| 一边摸一边抽搐一进一小说| 国产免费一级a男人的天堂| 国产精品国产三级国产专区5o | 啦啦啦观看免费观看视频高清| 欧美性猛交黑人性爽| 久久鲁丝午夜福利片| 插阴视频在线观看视频| 又粗又爽又猛毛片免费看| 干丝袜人妻中文字幕| 亚洲国产精品专区欧美| 麻豆一二三区av精品| 久久精品久久精品一区二区三区| 免费观看在线日韩| 青春草国产在线视频| 亚洲av成人精品一二三区| 啦啦啦观看免费观看视频高清| 深爱激情五月婷婷| 插逼视频在线观看| 少妇人妻精品综合一区二区| 久久亚洲精品不卡| 国产精品野战在线观看| 69av精品久久久久久| 欧美人与善性xxx| 少妇猛男粗大的猛烈进出视频 | 国产伦在线观看视频一区| 好男人视频免费观看在线| 中文天堂在线官网| 中文字幕亚洲精品专区| 亚洲av成人av| 国产探花极品一区二区| 大香蕉97超碰在线| 国产午夜精品久久久久久一区二区三区| 国产精品永久免费网站| a级毛片免费高清观看在线播放| 岛国毛片在线播放| 99在线视频只有这里精品首页| 日韩欧美精品v在线| 国产亚洲av片在线观看秒播厂 | 美女内射精品一级片tv| 日韩一本色道免费dvd| 成人亚洲精品av一区二区| 中文精品一卡2卡3卡4更新| 国产午夜精品论理片| av国产久精品久网站免费入址| 精品人妻偷拍中文字幕| 九九爱精品视频在线观看| 精品久久久久久久久av| 色综合色国产| 久99久视频精品免费| av播播在线观看一区| 级片在线观看| av在线天堂中文字幕| 精品国产一区二区三区久久久樱花 | 国产午夜精品一二区理论片| 性插视频无遮挡在线免费观看| 久久久久久九九精品二区国产| 中文字幕亚洲精品专区| 国产黄a三级三级三级人| 国内精品一区二区在线观看| 亚洲国产精品成人久久小说| 看非洲黑人一级黄片| 99热精品在线国产| 日韩av在线大香蕉| 中文字幕av成人在线电影| 蜜桃久久精品国产亚洲av| 日本猛色少妇xxxxx猛交久久| 欧美激情久久久久久爽电影| 午夜爱爱视频在线播放| 热99在线观看视频| 国产激情偷乱视频一区二区| 性插视频无遮挡在线免费观看| 91午夜精品亚洲一区二区三区| 久久精品国产亚洲av天美| 亚洲精品国产成人久久av| av天堂中文字幕网| 青春草国产在线视频| 国产精品,欧美在线| av在线亚洲专区| 春色校园在线视频观看| 精品人妻视频免费看| 午夜精品一区二区三区免费看| 69人妻影院| 永久免费av网站大全| 久久久久久久国产电影| 日本猛色少妇xxxxx猛交久久| 女人久久www免费人成看片 | 婷婷六月久久综合丁香| 97超碰精品成人国产| 一级毛片我不卡| 亚洲自拍偷在线| 欧美一级a爱片免费观看看| 国产高清有码在线观看视频| 男的添女的下面高潮视频| 内地一区二区视频在线| 九九热线精品视视频播放| 老司机影院毛片| 桃色一区二区三区在线观看| 日韩三级伦理在线观看| 久久久久国产网址| 狂野欧美白嫩少妇大欣赏| 99热网站在线观看| 特级一级黄色大片| 在线免费十八禁| 久久这里只有精品中国| 中文资源天堂在线| 性色avwww在线观看| 精品人妻偷拍中文字幕| 精品人妻一区二区三区麻豆| 听说在线观看完整版免费高清| 国产午夜福利久久久久久| 亚洲av不卡在线观看| 男女边吃奶边做爰视频| 波野结衣二区三区在线| 国产亚洲一区二区精品| 长腿黑丝高跟| 免费av不卡在线播放| 久久精品久久久久久久性| 国产成年人精品一区二区| 岛国毛片在线播放| 一级黄片播放器| 亚洲精品乱久久久久久| 国产毛片a区久久久久| 久久精品夜色国产| 免费不卡的大黄色大毛片视频在线观看 | 精品国产一区二区三区久久久樱花 | 免费看光身美女| 日韩 亚洲 欧美在线| 我的女老师完整版在线观看| 日韩,欧美,国产一区二区三区 | 久久精品国产自在天天线| 看黄色毛片网站| 亚洲四区av| 亚洲美女视频黄频| 国产伦一二天堂av在线观看| 成人性生交大片免费视频hd| 精品一区二区免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 熟女人妻精品中文字幕| 国产精品,欧美在线| 岛国毛片在线播放| 人妻系列 视频| 国产成人精品婷婷| av福利片在线观看| 啦啦啦啦在线视频资源| 精品久久国产蜜桃| 国产精品久久久久久久电影| 中文字幕亚洲精品专区| 我要看日韩黄色一级片| 永久免费av网站大全| 中文字幕人妻熟人妻熟丝袜美| 日本av手机在线免费观看| 亚洲激情五月婷婷啪啪| 天堂网av新在线| av国产久精品久网站免费入址|