• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural Dynamic Response Study of Large LNG Carriers under Sloshing Impacts in Tanks

    2012-09-26 12:28:20LUYeTENGBeiQIEnrongCHENXiaoping
    船舶力學(xué) 2012年12期

    LU Ye,TENG Bei,QI En-rong,CHEN Xiao-ping

    (1 China Ship Scientific Research Center,Wuxi 214082,China;2 Wuxi Institute of Communications Technology,Wuxi 214151,China)

    1 Introduction

    It is important that natural gas becomes primary energy with intensifying environmental awareness and the continuous decrease of oil.Liquefied natural gas(LNG)market has entered a rapid growth by development of the floating production storage and offloading,and LNG transport.Membrane LNG carriers become large-scale due to its excellent shipping economy.In addition,large LNG carriers need partial filling operation due to the new trade and offshore loading and offloading.To develop large-scale membrane LNG carrier,containment systems structures need enough fatigue and ultimate strength under quasi-static and sloshing impact loads in tank,and sloshing research is particularly important when the traditional condition including ship scales and operational status has been greatly changed.

    Sloshing is the motion that liquid movement has free surface in the tank with partial loading under the external excitation.When the external excitation frequency is close to the natural frequency of the liquid(in particular the natural frequency of the lowest order),the liquid has quite impact on liquid bulkhead,and also leads to serious failure and damage to structures[1-2].Tank sloshing research methods can be summarized as the following three categories[3-6]:(1)Theoretical analysis,(2)Model test,and(3)Numerical simulation.

    Det Norske Veritas(DNV)is the first classification society that published liquefied carriers guideline,which can carry out model test on LNG carriers under sloshing with advanced test equipment,according to the scale of 1/20 and the tank capacity up to 250 km3[7].DNV JIP program has started study on the membrane type LNG tank sloshing with real scale measurement in 2007.American Bureau of Shipping(ABS)published Strength Assessment of Membrane-type LNG Containment Systems under Sloshing Loads in 2006,which specified the sloshing model test procedures and assessment methods of sloshing loads[8].Paik[9]studied the ultimate limit state design and dynamic response of construction under sloshing loads.Currently,the tank sloshing studies in the following areas have made some progress[10-11]:(1)Sloshing test device,(2)Characteristics of the impact of sloshing,(3)Model test results analysis,(4)Computational fluid dynamics(CFD)applications,and(5)Sloshing assessment.

    Researches on the tank sloshing problem mainly focus on the theoretical analysis and numerical simulation in China.The containment system structures of large LNG carriers were studied on elasticity effects on the impact of sloshing load by Qi,et al,who considered them as simply supported copper panel in a plexiglass model,measured their dynamic strain under the sloshing impact[12-14].

    In this paper,ultimate capacity of the No.96 type containment systems of large LNG carriers is studied using nonlinear finite element method and failure modes with different border conditions are analyzed in details.Then,dynamic responses of containment systems under sloshing impact loads with different pressure peak and duration times are studied using explicit method and dynamic failure characteristics at different situation are studied.Finally,critical pressure load formulae are derived based on the proportional limit and the abruptly increasing permanent deflection,suggestions for design criteria and safety assessment are also given.

    2 Ultimate capacity of tank containment systems

    No.96 type LNG carriers tank containment systems consist of box structures.A total of 150000 m3LNG ships needs 51444 box structures,which are composed of two layers.The size of the box is 1140 mm long,999 mm wide,and 530 mm height,shown in Fig.1.The primary box has seven longitudinal girders with the height of 230mm;the second box has six transverse floors with the height of 300mm.The boxes are filled with silicon-treated perlite.

    A series of tensile coupon tests was carried out with different thicknesses of plywood,which is isotropic brittle material.Taking into account the wood composed the plywood is elastic-plastic material,this paper will simplify the plywood as the isotropic elastic-plastic material.The elastic modulus obtained by the mean modulus of elasticity in tensile coupon tests,is E=7937 MPa,the yield strength of plywood takes the mean of 0.75,with σs=25.5 MPa.

    The ultimate strength of the box structures under static pressure loads was calculated by nonlinear finite element method,with the boundary conditions of the top plate dealt with free,simply supported and rigid.Neither perlite nor Invar is included in the modeling.A total of 21008 plate-shell elements were employed for modeling the entire structure.For the box structure is supported by the inner hull of the ship,where the boundary condition is dealt with as a rigid floor.Figs.2-4 show the von Mises stress distribution,displacement distribution and the pressure versus lateral deflection under the boundary conditions of the top plate being with free.It seems that the lateral girders of the second layer were buckling,most of which have reached the yield strength of material,maximum displacement of 9.097 mm.Figs.5-7 show the von Mises stress distribution,displacement distribution and the pressure versus lateral deflection under the boundary conditions of the top plate being with simply supported.It seems that the lateral girders of the second layer were buckling,most of which have reached the yield strength of material,and the middle girders have been buckling,maximum displacement of 9.166 mm.Figs.8-10 show the von Mises stress distribution,displacement distribution and the pressure versus lateral deflection under the boundary conditions of the top plate being with rigid.It seems that the middle girders of the second layer were buckling,most of which have reached the yield strength of material,maximum displacement of 2.529 mm.Tab.1 shows that the ultimate strength of box structure under different boundary conditions,with the boundary conditions of the top plate from free to rigid,which the failure mode of box structure changed from the lateral girders buckling to the middle girders buckling,with a slight increase in ultimate strength.

    Fig.1 Dimensions of the No.96 insulation box structure[9]

    Fig.2 Von Mises stress distribution of the entire box structure under the boundary condition dealt with free

    Fig.3 Deformed shape of the entire structure at the ultimate limit state under the boundary condition dealt with free

    Fig.4 Pressure versus deflection of the entire box structure under the boundary condition dealt with free

    Fig.5 Von Mises stress distribution of the entire box structure under the boundary condition dealt with simply supported

    Fig.6 Deformed shape of the entire structure at the ultimate limit state under the boundary condition dealt with simply supported

    Fig.7 Pressure versus deflection of the entire box structure under the boundary condition dealt with simply supported

    Fig.8 Von Mises stress distribution of the entire box structure under the boundary condition dealt with rigid

    Fig.9 Deformed shape of the entire structure at the ultimate limit state under the boundary condition dealt with rigid

    Fig.10 The pressure versus deflection of the entire box structure under the boundary condition dealt with rigid

    Tab.1 Ultimate strength of tank containment systems under different boundary conditions

    The failure modes of the ultimate strength analysis were similar with the top plate dealt with rigid in Fig.11,but Fig.12 from the ABS test shows that the boundary condition of the top plate should be dealt with simply support.In addition,the ultimate strength calculation of this paper is greater than the Ref.[9],due to different material properties,whereas it was not explicitly given that the elastic modulus or yield strength in calculation in Ref.[9].

    Fig.11 Linear buckling modal of box structure

    Fig.12 Buckling modal test of box structure[8]

    3 Dynamic response of the copper panel under sloshing load in model experiments of sloshing in a tank of a large LNG carrier

    This paper analyzed the results on the measure of dynamic strain of panel after the model experiments of sloshing in a tank of a large LNG carrier,used test data of sloshing loadtime curve by ANSYS software to simulate the dynamic response of panel under sloshing,and compared the calculation results with test data.

    The model as shown in Fig.13 is given that the copper panel has 20 mm×20 mm in size,0.3 mm in thickness,8900 kg/m3in density,117 GPa in elastic module,0.32 in Poisson’s ratio,and 400 MPa in yield strength.A bidirectional strain gauge was disposed in the center of each copper panel to measure dynamic stresses refer to Fig.14.Fig.15 is sketch map of test model and measuring points.Fig.16 show that sloshing load-time curve in period of 5 s under±5°pitching at 10%L filling level from test data.While the frequency is 0.625 Hz on the condition of±5°pitching at 10%L filling level,the peak of load and strain has 1.6 s apart in test data.Fig.17 shows that wave time history of front bulkhead and back bulkhead under±5°pitching at 10%L filling level.Due to the water in tank from front bulkhead on pressure sensors to back bulkhead on strain gauges on the copper panel,the peak of wave height has a few seconds apart as the same as the peak space of load and strain data.It is shown that the copper panel has been applied a sloshing load taking from test data to ANSYS software,a period of section,under the boundary condition dealt with simply supported.Fig.18 compared the results on calculation with test data at the same period of time which were quite consistent,although the peak values of strain in calculation and test are slightly different due to water sloshing indefinitely from one side to another side.It has been concluded that a valid approach to the calculation of simulating the dynamic response of tank structures of large LNG carrier under sloshing loads as the same as panel,which has been properly proved by test data.

    Fig.13 Test model after arrangement of measuring points

    Fig.14 Strain gauge arrangement on the copper panel

    Fig.15 Sketch map of test model and measuring points

    Fig.16 Sloshing load-time curve under±5°pitching at 10%L filling level in test data

    Fig.17 Wave time history of front bulkhead and back bulkhead under±5°pitching at 10%L filling level

    Fig.18 Strain-time curve comparison on calculation with test data under ±5°pitching at 10%L filling level

    It is evident that when the duration time is shorter than the natural period of structure,the duration time is the main factor to the impact load,and when the duration time is longer than the natural period of structure,the peak pressure is the main factor to the impact load.For the sloshing loads,the duration time is shorter than the natural period of structure but not a little,therefore both peak pressure and duration time should be considered.

    4 Dynamic response of the tank structures under sloshing load

    The dynamic simulation of the tank containment systems under sloshing is calculated by explicit integral.Sloshing impacts are applied as triangle loading type,which is characterized by two parameters,namely,peak pressure Pmaxand duration time Tduration.As the quasi-static pressure loading case,neither perlite nor Invar is included in the modeling.A total of 21008 plate-shell elements were employed for modeling the entire structure.For the boundary conditions,the bottom of which is dealt with rigid floor and the top of which is dealt with simply support.

    Figs.19-22 show the distribution of stress,deformation and time history,when peak pressure is 3 MPa and duration time is 2 ms.Fig.19 presents the von Mises distribution with peak pressure 3 MPa,while the lateral girders of secondary box structure were firstly buckling.Figs.20-21 show the von Mises stress distribution and the deformed shape of the structure after dynamic pressure loading is end,where the middle girders of the secondary box structure have little stress,and maximum deformation occurs in the lateral girders of the secondary box and the deformation of the top plywood was small.Fig.22 is a time history of deformation,with a large deformation.

    Fig.19 Von Mises stress distribution when the sloshing load with peak pressure of 3 MPa and duration time of 2 ms

    Fig.20 Von Mises stress distribution after the sloshing load with peak pressure of 3 MPa and duration time of 2 ms

    Fig.21 Deformation after the sloshing load with peak pressure of 3 MPa and duration time of 2 ms

    Fig.22 Permanent deflection versus time history for peak pressure of 3 MPa and duration time of 2 ms

    Fig.23 Permanent deflection versus time history with varying the peak pressure for duration time of 1 ms

    Fig.24 Permanent deflection versus time history with varying the peak pressure for duration time of 2 ms

    Fig.25 Permanent deflection versus time history with varying the peak pressure for duration time of 3 ms

    Fig.26 Permanent deflection versus time history with varying the peak pressure for duration time of 5 ms

    Fig.23 shows a summary of the permanent deflection versus time history with peak pressure at 2 MPa,3 MPa,4 MPa,5 MPa,6 MPa,7 MPa,and 8 MPa when the duration time is fixed at 1 ms.Figs.24-26 show a summary of the permanent deflection versus time history with peak pressure at from 2 MPa to 6 MPa when the duration time is fixed at 2 ms,3 ms and 5 ms.The results show that the value of permanent deflection increased with the peak pressure when the duration time is still,a clear vibration occurs in the equilibrium position of structure when the peak pressure is small,and the structures have the plastic deformation and also permanent deflection when the peak pressure is big.The structures of the deformation increase as significantly as the duration at a fixed load.Moreover,damage of the top plywood structures is the greatest with shorter duration time,and the lateral girders of secondary box structure have the largest deformation when duration time continues longer.

    5 Tank containment systems design and safety assessment guidelines

    For the dynamic response analysis of tank containment systems under the sloshing loads,the permanent deflection versus peak pressure with different duration time is obtained in Figs.27-30.

    Fig.27 Peak pressure versus permanent deflection relationship of the structure for duration time of 1 ms

    Fig.28 Peak pressure versus permanent deflection relationship of the structure for duration time of 2 ms

    Based on the proportional limit,critical pressure is denoted by Pl,which is the same as permanent deflection denoted by Pu.Fig.31 shows the relationship of critical pressure and duration time.Formulae may be derived by regression analysis of the No.96 tank containment systems,as follows:where Peis the ultimate capacity of the tank containment systems,τ is the pressure pulse duration time.Although the ultimate strength of tank containment in this paper is larger than the results in Ref.[9],the critical pressure formula is similar.With the duration time increases,the critical pressure of the tank containment systems is also reduced.

    Fig.29 Peak pressure versus permanent deflection relationship of the structure for duration time of 3 ms

    Fig.30 Peak pressure versus permanent deflection relationship of the structure for duration time of 5 ms

    Fig.31 Relationship of critical pressure versus duration time

    Fig.32 Relationship of permanent deflection versus critical pressure

    Two types of structural safety measure basis are usually considered for design and strength assessment of structures,namely,allowable stress method and limit state methods.For the former basis,the design is carried out so that the applying stress should not be larger than the allowable stress.While the applying stress can be calculated by the methods of structural mechanics,the allowable stress may be defined with some fractions of material yield stress based on past experience,although it is not always straightforward to define the relevant allowable stress value.For the latter basis,the measure of structural safety is evaluated as a ratio of the ultimate capacity to the applied load.As the duration time of sloshing impact known,the ultimate capacity can be defined as a critical load,where Pland Puare considered shown in Fig.32.To be safe,the following criteria should be satisfied:

    where σais the allowable stress of tank containment systems structures under sloshing,σwis the applying stress of tank containment systems structures under sloshing,Plis the ultimate capacity of structures under sloshing based on proportional limit,Puis the ultimate limit capacity of structures under sloshing,Peis the peak pressure,ηais safety factors corresponding to the allowable stress method,ηlis safety factors corresponding to the proportion of limit state method,ηuis safety factors corresponding to ultimate limit state method.

    6 Conclusions

    In this paper,ultimate capacity and dynamic responses of the No.96 type tank containment systems structures of large LNG carriers are studied using nonlinear finite element method,and design criteria and safety assessment of tank containment systems structures are analyzed.The conclusions can be drawn as follows:

    (1)The failure mode of tank containment systems structures under quasi-static pressure loads is that the lateral girders of the secondary box structure have been buckling firstly,which leads to the damage of the whole structures.The boundary condition of the top plywood of the box structure is dealt with simply supported.

    (2)When the duration time is fixed,the plastic deformation of tank containment systems structures is increased as peak pressure.While tank containment systems structures have been elastic deformation due to less peak pressure,they have been plastic deformation or permanent deflection as larger peak pressure.When the load is fixed,the permanent deflection of tank containment systems structures is increased as duration time of sloshing with different failure mode.It is seriously damaged that the top plywood of the box structure due to shorter duration time,as the lateral girders of the secondary box structure have the biggest deformation in longer duration time.

    (3)Sloshing impact characters should be considered in design and safety assessment of tank containment systems structures.

    [1]Bass R L,Bowles E B,Cox P A.Liquid dynamic loads in LNG cargo tanks[J].Trans SNAME,1980,88:103-126.

    [2]BV.Sloshing damages known dada-partial fillings analysis[S].BV Technical Note,1999.

    [3]Wang Deyu,Jin Xianding,Li Longyuan.On model experiment of sloshing in tanks[J].Journal of Shanghai Jiao Tong University,1998,32(11):114-117.

    [4]Zhu Renqing.Time domain simulation of liquid sloshing and its interaction with flexible structure[D].Ph.D.Thesis.Wuxi:China Ship Scientific Research Center,2001,B2001-02-04.

    [5]Qi Jiangtao,Gu Min,Wu Chengsheng.Numerical simulation of sloshing in liquid tank[J].Journal of Ship Mechanics,2008,12(4):574-581.

    [6]Zhao Wenhua,Hu Zhiqiang,Yang Jianmin,et al.Investigation on sloshing effects of tank liquid on the FLNG vessel responses in frequency domain[J].Journal of Ship Mechanics,2011,15(3):227-237.

    [7]Valsgard S,Tveitnes T.LNG technological developments and innovations-Challenges with sloshing model testing[R].Det Norske Veritas AS Paper Series,No.2003-P005.

    [8]ABS.Strength assessment of membrane-type LNG containment systems under sloshing loads[S].ABS Guidance Notes,2006.

    [9]Paik J K.Limit state design technology for a membrane type liquid natural gas cargo containment system under sloshing impacts[J].Marine Technology,2006,43(3):126-134.

    [10]ISSC.Report of Committee I.2:Loads[C]//Proc of 16th International Ship and Offshore Structures Congress.St John’s,2006,1:87-179.

    [11]ISSC.Report of Committee II.2:Dynamic response[C]//Proc of 16th International Ship and Offshore Structures Congress.St John’s,2006,1:267-367.

    [12]Qi Enrong,Xu Chun,Wang Xueliang,et al.Report of model experiments of sloshing in a tank of a large LNG carrier[R].Wuxi:China Ship Scientific Research Center Report,2010.

    [13]Qi Enrong,Pang Jianhua,Xu Chun,et al.Experimental study of sloshing pressure and structural response in membrane LNG tanks[J].Ship Science Technology,2011,33(4):17-24.

    [14]Qi Enrong,Zhang Xiaojie,Teng Bei,et al.Study of ultimate hull girder strength of large liquefied natural gas carriers[J].Journal of Ship Mechanics,2010,14(1-2):66-73.

    国产麻豆成人av免费视频| 一级av片app| 精品人妻熟女av久视频| 成年女人毛片免费观看观看9| 亚洲国产精品久久男人天堂| 亚洲成a人片在线一区二区| 老司机午夜福利在线观看视频| 国产aⅴ精品一区二区三区波| 免费在线观看日本一区| 丰满人妻熟妇乱又伦精品不卡| 久久中文看片网| 日韩精品青青久久久久久| 国产精品一区二区三区四区久久| h日本视频在线播放| 99久久九九国产精品国产免费| 亚洲av五月六月丁香网| 欧美激情久久久久久爽电影| 九九在线视频观看精品| 97超视频在线观看视频| 97热精品久久久久久| 国产精品久久电影中文字幕| 熟妇人妻久久中文字幕3abv| 成人特级黄色片久久久久久久| 亚洲成人免费电影在线观看| 国产高清视频在线观看网站| 高清毛片免费观看视频网站| 日韩大尺度精品在线看网址| 日韩免费av在线播放| 国产欧美日韩精品亚洲av| 久久久久国内视频| 淫妇啪啪啪对白视频| 精品不卡国产一区二区三区| 欧美黑人欧美精品刺激| 一进一出抽搐动态| 国产午夜精品论理片| 国产精品久久久久久亚洲av鲁大| 国产精品爽爽va在线观看网站| 无人区码免费观看不卡| 日日摸夜夜添夜夜添小说| av在线蜜桃| 日本精品一区二区三区蜜桃| 国产成人aa在线观看| 欧美最黄视频在线播放免费| 日韩精品青青久久久久久| 欧美一区二区国产精品久久精品| 18禁黄网站禁片午夜丰满| 日日夜夜操网爽| 1000部很黄的大片| or卡值多少钱| 色av中文字幕| 国产亚洲精品久久久久久毛片| 国产精品久久久久久精品电影| 国产精品久久视频播放| 久久久精品大字幕| 97碰自拍视频| 成人午夜高清在线视频| 级片在线观看| 91久久精品电影网| 一个人免费在线观看电影| 麻豆av噜噜一区二区三区| 成人永久免费在线观看视频| 97人妻精品一区二区三区麻豆| 免费观看人在逋| 亚洲第一欧美日韩一区二区三区| 婷婷精品国产亚洲av| 婷婷六月久久综合丁香| 国产成人影院久久av| 精品久久久久久久久久久久久| 又紧又爽又黄一区二区| 在线免费观看的www视频| 国产亚洲精品久久久com| 成人美女网站在线观看视频| 欧美一区二区精品小视频在线| 床上黄色一级片| 简卡轻食公司| 好看av亚洲va欧美ⅴa在| 自拍偷自拍亚洲精品老妇| 少妇裸体淫交视频免费看高清| 国产精品亚洲av一区麻豆| 欧美+日韩+精品| 亚洲国产精品999在线| 嫩草影院新地址| 国产精品伦人一区二区| 亚洲精品一卡2卡三卡4卡5卡| www.色视频.com| a在线观看视频网站| 国产色爽女视频免费观看| 不卡一级毛片| 久久久精品欧美日韩精品| 首页视频小说图片口味搜索| 亚洲经典国产精华液单 | 国产人妻一区二区三区在| 国产av麻豆久久久久久久| 大型黄色视频在线免费观看| 一个人免费在线观看电影| 色av中文字幕| 亚洲经典国产精华液单 | 小蜜桃在线观看免费完整版高清| 波多野结衣高清无吗| 嫩草影院精品99| 久久久国产成人精品二区| 亚洲va日本ⅴa欧美va伊人久久| 少妇被粗大猛烈的视频| 免费搜索国产男女视频| 精品人妻一区二区三区麻豆 | 午夜精品一区二区三区免费看| 91久久精品电影网| 中文字幕熟女人妻在线| 能在线免费观看的黄片| 久久久久性生活片| 麻豆国产97在线/欧美| 69人妻影院| 亚洲五月天丁香| 国产视频内射| 久久精品国产亚洲av天美| 成人欧美大片| 伦理电影大哥的女人| 亚洲精品一区av在线观看| 亚洲综合色惰| 久久久久久久久久黄片| 丁香六月欧美| 天堂av国产一区二区熟女人妻| 欧美一区二区亚洲| 91久久精品国产一区二区成人| 精品人妻视频免费看| 村上凉子中文字幕在线| 亚洲欧美日韩无卡精品| 久久99热这里只有精品18| 国产一区二区在线av高清观看| 哪里可以看免费的av片| 国产黄片美女视频| 变态另类成人亚洲欧美熟女| 日韩 亚洲 欧美在线| 99热这里只有精品一区| 赤兔流量卡办理| 国产精品一区二区三区四区免费观看 | 国产乱人视频| 他把我摸到了高潮在线观看| a级毛片a级免费在线| 高清毛片免费观看视频网站| 啦啦啦观看免费观看视频高清| 人人妻,人人澡人人爽秒播| 国产伦人伦偷精品视频| 日韩欧美在线二视频| 午夜福利在线观看免费完整高清在 | 美女cb高潮喷水在线观看| 中文字幕精品亚洲无线码一区| 欧美性猛交╳xxx乱大交人| 欧美zozozo另类| 亚洲欧美日韩高清专用| 亚洲精品乱码久久久v下载方式| 欧美一级a爱片免费观看看| 欧美+日韩+精品| 国产精品久久久久久久电影| 3wmmmm亚洲av在线观看| 亚洲熟妇中文字幕五十中出| 在线天堂最新版资源| 久久这里只有精品中国| 色哟哟·www| 嫩草影院入口| 久久草成人影院| 黄色配什么色好看| 一级a爱片免费观看的视频| 国产精品av视频在线免费观看| 亚洲18禁久久av| a在线观看视频网站| 99久久成人亚洲精品观看| 国产白丝娇喘喷水9色精品| 一级a爱片免费观看的视频| 午夜亚洲福利在线播放| 国产精品亚洲av一区麻豆| 色5月婷婷丁香| 神马国产精品三级电影在线观看| 亚洲无线在线观看| 免费高清视频大片| 男女床上黄色一级片免费看| 九九久久精品国产亚洲av麻豆| 日韩精品青青久久久久久| 亚洲精品在线美女| 亚洲精品日韩av片在线观看| 欧美精品国产亚洲| 午夜福利在线观看吧| bbb黄色大片| 中文字幕人妻熟人妻熟丝袜美| 亚洲色图av天堂| 成年版毛片免费区| 国产精品av视频在线免费观看| 精华霜和精华液先用哪个| 色综合站精品国产| 精品人妻熟女av久视频| 国产亚洲精品综合一区在线观看| 少妇丰满av| 麻豆成人午夜福利视频| 免费看光身美女| 十八禁网站免费在线| 国产精品伦人一区二区| 日韩中文字幕欧美一区二区| 淫秽高清视频在线观看| 久久精品国产亚洲av天美| 国产乱人视频| 嫩草影院入口| 精品久久久久久久人妻蜜臀av| 欧美在线黄色| 色综合亚洲欧美另类图片| 人人妻,人人澡人人爽秒播| 亚洲av日韩精品久久久久久密| 麻豆av噜噜一区二区三区| 伊人久久精品亚洲午夜| 亚洲片人在线观看| 夜夜爽天天搞| 亚洲男人的天堂狠狠| 亚洲专区国产一区二区| 丰满的人妻完整版| 18禁裸乳无遮挡免费网站照片| 国产v大片淫在线免费观看| 色5月婷婷丁香| 久久精品久久久久久噜噜老黄 | 国语自产精品视频在线第100页| 3wmmmm亚洲av在线观看| 啪啪无遮挡十八禁网站| 国产久久久一区二区三区| 日韩国内少妇激情av| 日韩成人在线观看一区二区三区| 亚洲国产欧美人成| 桃红色精品国产亚洲av| 成熟少妇高潮喷水视频| 久久久久国产精品人妻aⅴ院| 日韩成人在线观看一区二区三区| 99久久无色码亚洲精品果冻| 亚洲不卡免费看| 小说图片视频综合网站| 成人美女网站在线观看视频| 国产熟女xx| 国产精品久久久久久亚洲av鲁大| 身体一侧抽搐| 在线a可以看的网站| 老熟妇仑乱视频hdxx| 91麻豆精品激情在线观看国产| 一区二区三区免费毛片| 丰满人妻熟妇乱又伦精品不卡| 久久精品人妻少妇| 97热精品久久久久久| 91狼人影院| 亚洲18禁久久av| 欧美日韩亚洲国产一区二区在线观看| 久久久久久九九精品二区国产| 亚洲av熟女| 中文字幕高清在线视频| 91麻豆精品激情在线观看国产| 欧美中文日本在线观看视频| 亚洲一区二区三区色噜噜| 狠狠狠狠99中文字幕| 真人做人爱边吃奶动态| 亚洲激情在线av| 女人被狂操c到高潮| 国产一区二区三区视频了| 99国产精品一区二区蜜桃av| 天堂av国产一区二区熟女人妻| 一进一出好大好爽视频| 国产成人欧美在线观看| 在线观看av片永久免费下载| 日韩高清综合在线| 757午夜福利合集在线观看| 亚洲精品色激情综合| 最近在线观看免费完整版| 丰满人妻熟妇乱又伦精品不卡| 嫁个100分男人电影在线观看| 国产v大片淫在线免费观看| 日日摸夜夜添夜夜添av毛片 | 在线观看66精品国产| 在线免费观看的www视频| 给我免费播放毛片高清在线观看| 亚洲av成人精品一区久久| 国产亚洲精品久久久久久毛片| 国产91精品成人一区二区三区| 久久久久九九精品影院| 国产高清三级在线| 一区二区三区高清视频在线| 亚洲狠狠婷婷综合久久图片| 精品日产1卡2卡| 亚洲人成网站在线播放欧美日韩| 制服丝袜大香蕉在线| 精品国内亚洲2022精品成人| 热99在线观看视频| 国产69精品久久久久777片| av在线蜜桃| 在线观看午夜福利视频| 久久精品国产亚洲av涩爱 | 人妻制服诱惑在线中文字幕| 综合色av麻豆| 中文字幕久久专区| 亚洲激情在线av| 免费看日本二区| 久久国产精品影院| 12—13女人毛片做爰片一| av天堂中文字幕网| 91午夜精品亚洲一区二区三区 | 国产精品亚洲一级av第二区| 国产亚洲欧美在线一区二区| 黄色丝袜av网址大全| 久久精品人妻少妇| 嫩草影院入口| 亚洲国产日韩欧美精品在线观看| 亚洲精品一区av在线观看| 高清毛片免费观看视频网站| 国内精品久久久久精免费| 久久国产乱子伦精品免费另类| 久久亚洲真实| 一边摸一边抽搐一进一小说| 精品国内亚洲2022精品成人| 2021天堂中文幕一二区在线观| 18美女黄网站色大片免费观看| 欧美激情国产日韩精品一区| 2021天堂中文幕一二区在线观| 嫩草影院精品99| 欧美另类亚洲清纯唯美| 欧美又色又爽又黄视频| 中国美女看黄片| 99久久99久久久精品蜜桃| 久久久成人免费电影| 免费在线观看成人毛片| 99视频精品全部免费 在线| 亚洲性夜色夜夜综合| 国产又黄又爽又无遮挡在线| 国产白丝娇喘喷水9色精品| 有码 亚洲区| 成熟少妇高潮喷水视频| 一区二区三区激情视频| 99国产综合亚洲精品| 欧美另类亚洲清纯唯美| 在线a可以看的网站| 国产av不卡久久| 97超级碰碰碰精品色视频在线观看| 天天一区二区日本电影三级| 欧美黄色片欧美黄色片| 亚洲成a人片在线一区二区| 麻豆成人av在线观看| 久久久久久国产a免费观看| 中文字幕免费在线视频6| 国产高清视频在线播放一区| 狠狠狠狠99中文字幕| 国产精品电影一区二区三区| 少妇丰满av| 三级毛片av免费| ponron亚洲| 欧美色视频一区免费| 午夜两性在线视频| 国模一区二区三区四区视频| 成年版毛片免费区| 久久久久久久精品吃奶| 亚洲国产精品合色在线| 午夜亚洲福利在线播放| 熟妇人妻久久中文字幕3abv| 极品教师在线免费播放| 欧美日本视频| 舔av片在线| 人人妻人人看人人澡| 色哟哟·www| 可以在线观看毛片的网站| 99久久精品热视频| 国产精品久久视频播放| 中文字幕熟女人妻在线| 日本黄色片子视频| 女同久久另类99精品国产91| 亚洲精品粉嫩美女一区| 老司机福利观看| 国产免费一级a男人的天堂| 最近中文字幕高清免费大全6 | 一本久久中文字幕| 18+在线观看网站| 丰满的人妻完整版| 国产精品亚洲av一区麻豆| 国产在线男女| 美女被艹到高潮喷水动态| 嫩草影视91久久| 国产精品三级大全| 色哟哟·www| 97超级碰碰碰精品色视频在线观看| 国产熟女xx| 欧美性感艳星| 中出人妻视频一区二区| 91九色精品人成在线观看| 亚洲国产欧洲综合997久久,| 亚洲不卡免费看| 此物有八面人人有两片| 久久久国产成人免费| 亚洲一区二区三区色噜噜| 日韩亚洲欧美综合| 一区二区三区高清视频在线| 熟女人妻精品中文字幕| 国产精品久久久久久亚洲av鲁大| aaaaa片日本免费| 国产三级在线视频| 欧美中文日本在线观看视频| 婷婷色综合大香蕉| 成熟少妇高潮喷水视频| 国产主播在线观看一区二区| www.熟女人妻精品国产| 国产精品,欧美在线| 又黄又爽又刺激的免费视频.| 国产高清视频在线观看网站| 欧美潮喷喷水| 亚洲无线在线观看| 搡老熟女国产l中国老女人| 免费观看人在逋| 黄色配什么色好看| 色精品久久人妻99蜜桃| 国产精品久久久久久久电影| 国产精品嫩草影院av在线观看 | 亚洲经典国产精华液单 | 亚洲 国产 在线| 免费在线观看成人毛片| 精品久久久久久,| 亚洲av不卡在线观看| 男人舔女人下体高潮全视频| 亚洲精品乱码久久久v下载方式| 他把我摸到了高潮在线观看| 久久久久久久亚洲中文字幕 | 欧美日韩国产亚洲二区| 少妇裸体淫交视频免费看高清| 亚洲国产精品合色在线| 欧美激情在线99| 中文字幕av在线有码专区| 搡女人真爽免费视频火全软件 | 我要搜黄色片| 免费在线观看亚洲国产| 国产老妇女一区| 嫩草影院入口| 国产精华一区二区三区| 日韩欧美在线乱码| 精品午夜福利在线看| 成熟少妇高潮喷水视频| .国产精品久久| 天天躁日日操中文字幕| 老司机深夜福利视频在线观看| 俄罗斯特黄特色一大片| 中文字幕高清在线视频| 免费av毛片视频| 欧美极品一区二区三区四区| 亚洲欧美日韩无卡精品| 能在线免费观看的黄片| 精品一区二区三区人妻视频| 亚洲五月天丁香| 内射极品少妇av片p| 九九热线精品视视频播放| 免费人成在线观看视频色| 久久精品影院6| 99热精品在线国产| 国产一区二区激情短视频| 久久久精品大字幕| 天堂√8在线中文| 真实男女啪啪啪动态图| 99久久精品热视频| 天堂影院成人在线观看| 精品一区二区免费观看| 特大巨黑吊av在线直播| 久久人人精品亚洲av| 热99re8久久精品国产| 十八禁人妻一区二区| 免费一级毛片在线播放高清视频| 亚洲熟妇中文字幕五十中出| 淫妇啪啪啪对白视频| 国产私拍福利视频在线观看| 亚洲久久久久久中文字幕| 亚洲国产精品sss在线观看| 欧美中文日本在线观看视频| 午夜免费成人在线视频| 国产美女午夜福利| 永久网站在线| a在线观看视频网站| 在线a可以看的网站| 欧美在线一区亚洲| 欧美激情国产日韩精品一区| 99国产综合亚洲精品| 欧美高清成人免费视频www| 色哟哟·www| 国产精品电影一区二区三区| 天堂动漫精品| 久久久精品大字幕| 国产高清视频在线观看网站| 级片在线观看| 成人特级av手机在线观看| 国产熟女xx| 精品久久久久久久末码| 国内少妇人妻偷人精品xxx网站| 性欧美人与动物交配| 国产精品久久久久久精品电影| 啦啦啦韩国在线观看视频| 在线观看美女被高潮喷水网站 | 热99在线观看视频| 免费人成在线观看视频色| 亚洲av一区综合| 国产老妇女一区| 18禁黄网站禁片午夜丰满| 精品久久久久久久久亚洲 | 欧美日韩黄片免| 无人区码免费观看不卡| av欧美777| 亚洲三级黄色毛片| 我要搜黄色片| 亚洲电影在线观看av| 美女 人体艺术 gogo| 欧美在线黄色| 99热精品在线国产| 岛国在线免费视频观看| 午夜福利在线观看免费完整高清在 | 免费无遮挡裸体视频| 1024手机看黄色片| 一级a爱片免费观看的视频| 九色国产91popny在线| or卡值多少钱| 在线a可以看的网站| 狂野欧美白嫩少妇大欣赏| eeuss影院久久| 中文字幕久久专区| 两个人视频免费观看高清| 欧美日韩黄片免| 性欧美人与动物交配| 黄片小视频在线播放| 中文字幕高清在线视频| 听说在线观看完整版免费高清| 99久久99久久久精品蜜桃| 听说在线观看完整版免费高清| 亚洲欧美日韩卡通动漫| 欧美最黄视频在线播放免费| 十八禁网站免费在线| 内地一区二区视频在线| 久久这里只有精品中国| 亚洲av不卡在线观看| 国产一区二区在线观看日韩| 成熟少妇高潮喷水视频| 九九久久精品国产亚洲av麻豆| 久久久久精品国产欧美久久久| 91麻豆精品激情在线观看国产| av在线老鸭窝| 亚洲熟妇熟女久久| 看片在线看免费视频| 亚洲av电影在线进入| 国产精品亚洲美女久久久| 69人妻影院| 一个人看的www免费观看视频| 18禁裸乳无遮挡免费网站照片| 国产一级毛片七仙女欲春2| 最近在线观看免费完整版| 91午夜精品亚洲一区二区三区 | 欧美色视频一区免费| 色av中文字幕| 久久香蕉精品热| 日韩高清综合在线| 日本黄大片高清| 俄罗斯特黄特色一大片| 国产免费男女视频| 一个人观看的视频www高清免费观看| 一级黄色大片毛片| 一本久久中文字幕| 两个人的视频大全免费| 日韩 亚洲 欧美在线| 欧美日本亚洲视频在线播放| 婷婷丁香在线五月| 国产伦精品一区二区三区视频9| 国产精品一区二区免费欧美| 99在线人妻在线中文字幕| 国产激情偷乱视频一区二区| 美女xxoo啪啪120秒动态图 | 亚洲国产欧洲综合997久久,| 免费一级毛片在线播放高清视频| 国产精品精品国产色婷婷| 国产精品乱码一区二三区的特点| 亚洲aⅴ乱码一区二区在线播放| 国产综合懂色| 久久久久久九九精品二区国产| 成人性生交大片免费视频hd| 亚洲精品亚洲一区二区| 免费在线观看亚洲国产| 村上凉子中文字幕在线| 一卡2卡三卡四卡精品乱码亚洲| 欧美+日韩+精品| 亚洲精品日韩av片在线观看| 国产单亲对白刺激| 精华霜和精华液先用哪个| 精品日产1卡2卡| 搡女人真爽免费视频火全软件 | 国产亚洲精品久久久久久毛片| 久久久色成人| 国产av在哪里看| 亚洲人成网站在线播| 高清日韩中文字幕在线| 夜夜躁狠狠躁天天躁| 国产av不卡久久| 黄色一级大片看看| 熟女人妻精品中文字幕| 亚洲av.av天堂| 国产精品亚洲美女久久久| av视频在线观看入口| 亚洲人成网站在线播放欧美日韩| 天天躁日日操中文字幕| 亚洲一区高清亚洲精品| av在线蜜桃| 国产亚洲av嫩草精品影院| 国产极品精品免费视频能看的| 麻豆成人午夜福利视频| 日韩欧美国产一区二区入口| 老司机午夜福利在线观看视频| 国产蜜桃级精品一区二区三区| 高潮久久久久久久久久久不卡| 欧美性猛交黑人性爽| 亚洲国产精品合色在线| 美女cb高潮喷水在线观看| 波多野结衣高清无吗| 中出人妻视频一区二区| 亚洲av成人av| 国语自产精品视频在线第100页| 国产亚洲欧美98| 亚洲内射少妇av| 亚洲人成网站在线播放欧美日韩|