• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quasi-static Compressive Behavior of U-type Corrugated Cores Sandwich Panels

    2012-09-26 12:28:20ZHANGYanchangZHANGShilianWANGZiliLIUKun
    船舶力學(xué) 2012年12期

    ZHANG Yan-chang,ZHANG Shi-lian,WANG Zi-li,LIU Kun

    (1 School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 20030,China;2 School of Naval Architecture&Ocean Eng.,Jiangsu University of Science and Technology,Zhenjiang 212003,China)

    1 Introduction

    Metal sandwich panels consist of two face sheets welded with a relatively low-density core structures resulting in good stiffness to weight ratio,which leads to promising design advantages,such as higher stiffness to weight,higher strength to weight ratios,higher pre-manufacturing accuracy,better mechanical properties and substantial energy absorbing capacity[1-5].Sandwich panels in general can be classified as:metallic sandwich panels and composite sandwich panels.For metallic sandwich panels,there are basically two types of panels:panels with metallic face plates and nonmetallic core bonded together such as SPS(Sandwich Panel System)panels,panels with both metallic face plates and core welded together[1].The metal core structure can also possess various topologies:a web,a honeycomb,and a corrugated cellular core.

    The impact resistance performance of ship structures subjected to impact loads was of great interests to engineering communities and government agencies.Metal sandwich panels were of potential use in ships structures especially in accidental or terrorist blasts because of substantial energy absorbing capacity.Periodic cellular metals such as corrugated core,honeycombs and lattice truss can absorb considerable energy by plastic deformation in compression.The energy absorption behavior of structures and materials has recently been presented comprehensively in two monographs by Jones and Lu[5-6].The out-of-plane compressive behaviors of honeycomb core structures were investigated by experimental research and FE analysis[11,14-15].Radford,Ferri,Lee and Zhang et al[15-17]have investigated the dynamic response of honeycomb core,folded structure core and the pyramidal truss core via experiments and finite element simulations.Compression tests and finite element analysis were conducted to better understand the behavior of corrugated sandwich cores under out-of-plane compression and assist in the selection of desirable core structures attributes for enhancing the impact resistance of ship structures.

    In the present study,the quasi-static compressive response of U-type corrugated core sandwich panel was investigated using numerical simulation and experiment.The objectives of these researches were to verify the finite element modeling of sandwich panel and observe the deformation behavior and energy absorbing capacity under out-of-plane compressive load.

    2 Specimen design and fabrication

    Uniaxial compression test was designed to measure the crushing force and progressive crushing behavior of sandwich panel under out-of-plane crushing load.The properties of core and face-sheets were mild steel Q235.U-type corrugated cores were examined in this test.Two type core shapes are shown in Fig.1.The thickness of both two face-sheets and core structures was approximately 3.5 mm.Each core structure had a height of 120 mm.Each specimen includes four core units across the width and the length of 200 mm.

    Hybrid laser arc welding(HLAW)has many advantages over current conventional welding technologies in steel fabrication.The advantages include an appreciable decrease of heat distortions,high processing speed and a constant good weld quality.HLAW is ideal for connecting the core to the face-sheets.The ship building industry has expected laser welding to provide fabricated components in ship production due to improvements and cost benefits that can be achieved compared to hot rolled stripped-T or split-I stiffeners[18-19].While the highly required assembling tolerances,high investment cost and other factors limit the applications in manufacturing sandwich specimens of this test,the conventional electric welding was utilized for connecting the core and face-sheets.Fig.1(a)shows the assembly process of sandwich panels.The V-type core structures were formed by folding the flat plate with thickness of 3.5mm.The flat plate was cut into eight parts with width of 127 mm which composes the U-type core structures.Two face-sheets were welded with core structures along the edge of core unit.The height of weld leg was not less than 3mm.Photographs of specimens manufactured are shown in Fig.1(b).

    Fig.1 Structure diagram and assembly processes of U-type core sandwich panel

    3 Quasi-static crushing test

    The crushing tests were conducted by an electro-hydraulic servo universal testing machine (YNS1000).This test was designed to measure the crushing force versus displacement and deformation modes of corrugated core structures.The scene of experiment is shown in Fig.2.The specimen was placed on the plate of testing machine coinciding with the axis of actuator.The actuator was positioned above the support block with thickness of 50 mm at the upper face plate of specimen.The pre-compression force of 10kN was loaded in order to flat the sandwich plane and confirm the uniformity of actuator loading.The displacement loading with the speed of 0.16 mm/s giving a nominal strain rate of ε˙=1.4×10-3s-1was applied on the rigid plate.The curve of crushing loads versus compressive displacement was recorded automatically by computer at the frequency of 10 Hz.The deformation figures were taken a photograph in the process of test.

    Fig.2 Photos of crushing experiment

    4 Finite element analysis

    4.1 Scheme of numerical simulation

    The crush performance of the sandwich panels was analyzed by the numerical simulation with nonlinear finite element code-Abaqus.The hammer was used to strike the sandwich panels with a low velocity to simulate the dynamic progressive buckling behavior,the weight of the hammer is 106kg,and the striking velocity is 0.5 m/s.The material of sandwich panels is the mild steel Q235,with the density ρ=7850 kg/m3,Poisson’s ratio γ=0.3,elastic modulus E=206 GPa.The finite element material model is defined as the true stress-strain relationship.

    4.2 Finite element model

    The cores,faces and welding seams are simulated as solid elements in finite element mode.There are two elements in the direction of thickness.And the size of the finite element is about 2 mm.The nodes of the lower-face are rigidly fixed,while the upper-face is fixing the moving in the horizontal plane.The adaptive self contact is defined in the cores,while adaptive master-self contact is defined between the cores and faces,where the contact friction coefficient is 0.3.The finite element model is shown as Fig.3.

    The plastic deformation is made at the middle of the core plates as initial imperfection in order to obtain the same deformation mode as experimental mode.Taking the deformation mode I for example,the influences of different initial plastic deformation on result of finite element simulation are discussed.

    Fig.3 Finite element mode of sandwich panel

    5 Results

    5.1 Crushing force

    Fig.4 Curves of crushing force versus compressive displacement

    The crushing force-compression displacement curves of the U-type core sandwich from the experiment are shown in Fig.4,according to the deformation figures(shown as Figs.8-10),the curves can be divided into three phases.The first phase is named as the first peak phase(Phase I).In process of this period,the crushing force increases quickly.When the sandwich cores are crushed,and the crushing force reaches to the first peak.Then,the plastic hinges are generated in the middle of the core structures,and then the crushing force decreases to stability.Fig.7(a)shows that if the two adjacent core structures have the same buckling deformation direction-up or down,they will form a “funnel” type deformation mode(Mode A forms four funnels,Mode B forms one,Mode C forms three).With the increasing of crushing displacement,the connection between the core and the faces forms the line areas of plastic hinges.When the line areas of plastic hinge contact with each other,the deformation becomes to Phase II.Fig.7(b)shows that if the two adjacent core structures have the opposite buckling deformation direction,with the increasing of crushing displacement,the adjacent core structures will not contact with each other,the cores are folded to contact with the faces,then deform to Phase II.In this phase,the three deformation modes caused by the different buckling directions share almost the same mechanical performances of the crushing force,deformation mode and crushing displacement.The second phase is named second peak phase(Phase II),with the increase of the crushing displacement,the adjacent core plates with the “funnel” type deformation begin to contact with each other,the crushing force increases again,and then the second peak generates.After that,the contact of the half core plates buckled and the line areas of plastic hinges take place,then the “diamond”type buckling deformation modes generate.The deformation mode,second peak crushing force and crushing forcedisplacement curve of the four specimen with the deformation mode I are similar,but the crushing force and deformation of the specimen with opposite buckling directions have a great difference.The more of the “funnel”type deformation number,the higher value of the peak crushing force.Mode I with the number of four “funnel” type deformation,the second peak crushing force of which is from 521 kN to 583 kN.Mode II with one “funnel”type deformation,the second peak crushing force of which produces one funnel shape deformation modes is 282 kN,and the value of specimen U3-2 which produces three funnel shape deformation modes is 487 kN.Phase III,the compaction phase,starts when the crushing displacement reaches to about 100 mm,and the maximum compression displacements of different deformation modes are basically the same.

    The comparison of crushing load curves between quasi-static test and FE simulations is presented in Fig.5(a),(b)and(c)respectively.Experimental results are in good agreement with finite element numerical results,such as the tendency of curves,the value of peak crushing force and compression displacement,etc.

    Fig.5 Comparison between FE and experiment

    5.2 Deformation modes

    The buckling will occur when the core plate unit is in the lateral pressure.As shown in Fig.6,each core plate has two buckling directions:up or down.According to buckling direction of two adjacent core plates,the deformation of the two adjacent core plates is called deformation mode unit.They are divided into two types.One unit de-formation mode is named as mode I,the two adjacent core plates have the same buckling direction.The two adjacent core plates of this type have two deformation combinations,shown in Fig.6(a).Another unit deformation mode is named as mode II,the two adjacent core plates have the opposite buckling directions.The two adjacent core plates of this type have four deformation combinations,shown in Fig.6(b).With the increase of the compression displacement,the progressive buckling process of the two deformations are shown in Fig.7(a)and(b)respectively.The difference between the two unit deformation modes is whether the two adjacent core plates can contact with each other or not.Before they contact with each other,their peak crushing force and crushing force-displacement curve are basically the same.In the deformation mode I,because the contact constraint is generated from the adjacent core plates,the crushing force increases again,then the second peak crushing force appears.That is the pivotal factor affecting the crushing performance of the sandwich panels.

    Fig.6 Deformation modes of two adjacent core plates

    Fig.7 Deformation pictures of modes I and II

    The deformation mode of the U-type core sandwich specimen is one combination of unit deformation modes I and II,and initial imperfections,manufacturing technologies and other factors have some effects on them.The real deformation modes obtained in the experiment are the combinations of the two deformation modes,such as specimens U1-1,U1-2,U2-1,U2-2,all of them are composed of four units of deformation mode I,which is named as deformation mode A.Specimen U3-1 is composed of one deformation mode I and three deformation mode II,which is named as deformation mode B.U3-2 is composed of three deformation mode I and one deformation mode II,which is named as deformation mode C.

    Both of the specimens U1 and U2 have been given initial plastic deformation as initial imperfection,the direction of which is the same as the deformation mode I,then the deformation mode A is obtained from the experiment,shown in Fig.8.As to the specimens of U3-1 and U3-2,which are not given any initial deformation,the deformation modes obtained from the experiment are random,their deformation modes are shown in Fig.9 and Fig.10,and the deformation modes are called Mode B and Mode C respectively.The finite element modeling techniques used in this paper can simulate the deformation mode of the progressive buckling process accurately and clearly.And the calculated results agree well with the experiment results.The results show that the deformation mode can be controlled by applying certain initial plastic deformation.

    Fig.8 Deformations of deformation mode A(d=20 mm,40 mm,60 mm)

    Fig.9 Deformations of deformation mode B(d=20 mm,40 mm,60 mm)

    Fig.10 Deformations of deformation mode C(d=20 mm,40 mm,53 mm)

    5.3 Efficiency

    Corrugated core structures are designed as energy-absorbing device and the efficiency may be specified in several ways to evaluate the dynamic performance under impact loads.The performance parameters of the specific energy Se,the mean crushing strength σm,and other performance parameters,such as first peak crushing load Fc1,compression displacement δ and relative density ρc,are important to evaluate the capability of corrugated cores as energy absorbing devices.And these crushing performance parameters of U type cores are listed in Tab.1.

    Tab.1 Crushing performance parameters of U type cores

    The relative error of the performance parameters measured from the test of the four specimens is within 6.5%.The experimental results show that the scheme of crushing experiment is reliable and accurate.Different deformations have a great impact on the crushing mechanics performance.As to the three deformation modes,the specific energy Seand the mean crushing strength of mode A are higher than those of mode B and mode C.The energy absorption of the sandwich cores in deformation mode A is much higher.The first peak crushing force of specimens U3-1 and U3-2 are roughly equal,higher than the other four specimens by 11%~37.6%.The results show that initial deformation has great effects on the peak crushing force,but has little impact on the specific energy,the mean crushing strength and other performance parameters.That can also be obtained from the finite element analysis of model I.

    6 Conclusions

    The quasi-static out-of-plane compressive behaviors of U-type corrugated core structures have been investigated by experiments and FE simulations.The critical performance parameters such as the deformation modes,curves of crushing force versus displacement are obtained and analyzed.A comprehensive analysis on crushing behavior of core structures is studied when the corrugated core structures are used as energy absorbing devices or protection structures,which include specific energy,mean crushing strength,peak crushing force,manufacturing technology,and so on.The plastic hinge of core plate induced by compression or bend under compression load is the main type of absorbing energy.

    The finite element analysis used in this paper can simulate the deformation mode of the crushing process of buckling,crushing force and compression displacement accurately and clearly,and agree well with the experiment results.The finite element analysis considering the initial imperfections can get the same deformation mode to the experiment.That indicates that the reasonable finite element analysis has the reliable accuracy.

    The deformation mode of the core plates under lateral crushing force has great effects on the crushing performance.The finite element method and experiment analysis show that the performance of the specific energy and mean crushing strength of mode I are better than those of mode II.The initial imperfection is the key factor to the deformation mode I and mode II,which has great impact on the first peak crushing force,but has little impact on the deformation and crushing force after the first peak crushing force.So the core structures can be designed and manufactured with certain initial deformation to get the deformation mode I in order to increase the mechanical properties of the sandwich core structures.

    Whether the two adjacent core plates can contact with each other(effect by the dimension parameters,such as the height of sandwich cores,the angle between the core and the faces,the distance between adjacent core plates)is the key to lead to the deformation mode I or mode II.It is necessary to research on the effects of structure parameters to the crushing performance and optimization study.

    Acknowledgements

    This work is supported by the national defense priority in advance research project.The authors are grateful to Taixing Jianeng Chemical Container Company Ltd.for manufacturing the specimen and Sheng Chaoming for experiment operation.

    [1]Wadley H N G.Multifunctional periodic cellular metals[J].Philosophical Transactions of the Royal Society A,2006,364:31-68.

    [2]Kujala P,Klanac A.Steel sandwich panels in marine applications[J].Brodogradnka,2005,56(4):305-314.

    [3]Qin Qing Hua,Wang T J.A theoretical analysis of the dynamic response of metallic sandwich beam under impulsive loading[J].European Journal of Mechanics A/Solids,2009,28(5):1014-1025.

    [4]Rubino V,Deshpande V S,Fleck N A.The dynamic response of end-clamped sandwich beams with a Y-frame or corrugated core[J].International Journal of Impact Engineering,2008,35:829-844.

    [5]Xue Zhenyu,Hutchinson J W.Crush dynamics of square honeycomb sandwich cores[J].International Journal for Numerical Methods in Engineering,2006,65:2221-2245.

    [6]Rajapakse Y D S,Hui D.Marine composites:Foreword[J].Composites:Part B,2004,35:447-450.

    [7]Dharmasena K P,Wadley H N G,Xue Zhenyu,et al.Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading[J].International Journal of Impact Engineering,2008,35:1063-1074.

    [8]Jones,Norman.Structural impact[M].UK:Cambridge University Press,1989.

    [9]Lu G,Yu T X.Energy absorption of structures and materials[M].Cambridge:Wood Head Publishing Limited,2003.(Its Chinese edition is published by Chemical Industry Press,Beijing,China,2006)

    [10]Coté F,Deshpande V S,Fleck N A,Evans A G.The out-of-plane compressive behavior of metallic honeycombs[J].Materials Science and Engineering A,2004,380:272-280.

    [11]Zarei Mahmoudabadi M,Sadighi M.A study on metal hexagonal honeycomb crushing under quasi-static loading[J].World Academy of Science,Engineering and Technology,2009,53:677-681.

    [12]Hong S T,Pan J,Tyan T,Prasad P.Quasi-static crush behavior of aluminum honeycomb specimens under compression dominant combined loads[J].International Journal of Plasticity,2006,22(1):73-109.

    [13]Carolan M E,Jeong D Y,Benjamin Perlman A,Tang Y H.Deformation behavior of welded steel sandwich panels under quasi-static loading[C]//Proceedings of the ASME/ASCE/IEEE Joint Rail Conference,March 16-18,2011.Pueblo,Colorado,USA,2011.

    [14]Radford D D,McShane G J,Deshpande V S,Fleck N A.Dynamic compressive response of stainless steel square-honeycombs[J].Journal of Applied Mechanics,2007,74:658-667.

    [15]Ferri E,Antinucci E,He M Y,Hutchinson J W,Zok F W,Evans A G.Dynamic buckling of impulsively loaded prismatic cores[J].Journal of the Mechanics of Materials and Structures,2007,1(8):1345-1365.

    [16]Lee S,Barthelat F,Hutchinson J W,Espinosa H D.Dynamic failure of metallic pyramidal truss core materials-experiments and modeling[J].International Journal of Plasticity,2006,22(11):2118-2145.

    [17]Zhang Yanchang,Wang Zili,Zhang Shilian.Simulation analysis of folded core structure under dynamic load[J].Journal of Ship Mechanics,2010,14(1-2):114-120.(in Chinese)

    [18]Roland F,Reinert T,Meyer GmbH Jos L.Laser welded sandwich panels for the shipbuilding industry[J].RINA-Bericht-ENDV,2000.

    [19]Caccese,Yorulmaz V,Serdar.Laser welded steel sandwich panel bridge deck development:Finite element analysis and stake weld strength tests[R].University of Maine,Orono,2009.

    18禁裸乳无遮挡动漫免费视频| 久久精品夜色国产| 精品一区二区三区四区五区乱码 | 国产麻豆69| 人人妻人人澡人人爽人人夜夜| 另类精品久久| 中文乱码字字幕精品一区二区三区| 成人国语在线视频| 满18在线观看网站| 国产午夜精品一二区理论片| 女性被躁到高潮视频| 777米奇影视久久| 成人毛片a级毛片在线播放| 久久久精品免费免费高清| 国产日韩欧美视频二区| 国产成人av激情在线播放| 久久精品国产自在天天线| 老司机影院毛片| 在线观看一区二区三区激情| 国产 精品1| 黑人欧美特级aaaaaa片| av福利片在线| 在线天堂最新版资源| 巨乳人妻的诱惑在线观看| 亚洲精品第二区| 久久久久久久精品精品| 少妇人妻 视频| 免费女性裸体啪啪无遮挡网站| 国产淫语在线视频| 三级国产精品片| 免费观看无遮挡的男女| 国产成人91sexporn| 午夜福利网站1000一区二区三区| 赤兔流量卡办理| 久久97久久精品| 菩萨蛮人人尽说江南好唐韦庄| av.在线天堂| 少妇的逼水好多| 999精品在线视频| 午夜91福利影院| 男女国产视频网站| 婷婷色综合大香蕉| 欧美xxⅹ黑人| 免费看不卡的av| 男人舔女人的私密视频| 久久 成人 亚洲| 免费在线观看黄色视频的| 狠狠婷婷综合久久久久久88av| 久久精品aⅴ一区二区三区四区 | 精品久久蜜臀av无| 最近最新中文字幕大全免费视频 | 国产av一区二区精品久久| 丝瓜视频免费看黄片| 午夜91福利影院| 男女高潮啪啪啪动态图| 亚洲色图 男人天堂 中文字幕 | 汤姆久久久久久久影院中文字幕| 男人操女人黄网站| 免费av不卡在线播放| 日本欧美视频一区| 蜜桃国产av成人99| 亚洲欧美清纯卡通| 搡老乐熟女国产| 成人国产麻豆网| 22中文网久久字幕| 成人免费观看视频高清| 精品视频人人做人人爽| 欧美 日韩 精品 国产| 色婷婷久久久亚洲欧美| 国产精品女同一区二区软件| 精品久久久久久电影网| 22中文网久久字幕| 女性生殖器流出的白浆| 在线观看免费视频网站a站| 免费看av在线观看网站| 精品久久久精品久久久| 精品少妇久久久久久888优播| 亚洲综合色惰| 蜜臀久久99精品久久宅男| 成人亚洲精品一区在线观看| 人妻 亚洲 视频| 丝瓜视频免费看黄片| 亚洲精品第二区| 18禁在线无遮挡免费观看视频| 久久久精品94久久精品| 少妇人妻 视频| 2022亚洲国产成人精品| 色网站视频免费| 国产不卡av网站在线观看| 精品亚洲乱码少妇综合久久| 下体分泌物呈黄色| 毛片一级片免费看久久久久| 午夜久久久在线观看| 亚洲美女视频黄频| 日韩人妻精品一区2区三区| 日本黄色日本黄色录像| 夜夜爽夜夜爽视频| 国产一级毛片在线| 99久久精品国产国产毛片| 免费大片18禁| 一级片'在线观看视频| 国产一区二区在线观看日韩| 亚洲一码二码三码区别大吗| 精品酒店卫生间| 80岁老熟妇乱子伦牲交| 自线自在国产av| 国产乱来视频区| 欧美 亚洲 国产 日韩一| 国产综合精华液| 久久久国产一区二区| 看非洲黑人一级黄片| 精品人妻偷拍中文字幕| 大香蕉久久网| 赤兔流量卡办理| tube8黄色片| 热re99久久精品国产66热6| 最后的刺客免费高清国语| 看免费av毛片| 少妇的丰满在线观看| 国产日韩一区二区三区精品不卡| 美女主播在线视频| 欧美精品一区二区大全| 国产精品一区二区在线观看99| 午夜视频国产福利| 男人舔女人的私密视频| 国产精品久久久久久精品电影小说| 免费观看无遮挡的男女| 国产视频首页在线观看| 极品人妻少妇av视频| 国产精品国产三级专区第一集| 国产av精品麻豆| 国产探花极品一区二区| 亚洲三级黄色毛片| 免费黄网站久久成人精品| 成人二区视频| 欧美日韩av久久| 美国免费a级毛片| 啦啦啦视频在线资源免费观看| 欧美少妇被猛烈插入视频| 亚洲av男天堂| 免费播放大片免费观看视频在线观看| 欧美xxⅹ黑人| 成人亚洲精品一区在线观看| 国产成人一区二区在线| 精品一品国产午夜福利视频| 亚洲av在线观看美女高潮| 国产精品一二三区在线看| 最近手机中文字幕大全| 9191精品国产免费久久| 国产综合精华液| 男女边吃奶边做爰视频| 精品一区二区免费观看| 国产精品一国产av| 这个男人来自地球电影免费观看 | 男女边吃奶边做爰视频| 免费在线观看黄色视频的| 两性夫妻黄色片 | 女人精品久久久久毛片| 国产国语露脸激情在线看| 亚洲天堂av无毛| 超色免费av| 婷婷色麻豆天堂久久| 午夜福利网站1000一区二区三区| 免费观看av网站的网址| 五月开心婷婷网| 高清视频免费观看一区二区| 秋霞伦理黄片| 涩涩av久久男人的天堂| 国产深夜福利视频在线观看| 国产精品蜜桃在线观看| 性色av一级| 欧美丝袜亚洲另类| 麻豆乱淫一区二区| 欧美日韩av久久| 亚洲国产色片| 99久国产av精品国产电影| 99九九在线精品视频| 久久国产亚洲av麻豆专区| 久久久久久久精品精品| xxxhd国产人妻xxx| 成人漫画全彩无遮挡| 丰满乱子伦码专区| 丰满乱子伦码专区| 国产亚洲最大av| 狂野欧美激情性xxxx在线观看| 免费av中文字幕在线| 国产精品欧美亚洲77777| 日日爽夜夜爽网站| 国精品久久久久久国模美| 一区二区三区四区激情视频| 亚洲精品av麻豆狂野| 国产精品久久久久久av不卡| 18禁在线无遮挡免费观看视频| 成人无遮挡网站| 欧美日韩国产mv在线观看视频| videossex国产| 一级毛片我不卡| 久久午夜福利片| 美女福利国产在线| 精品一区二区免费观看| 亚洲一区二区三区欧美精品| 黑丝袜美女国产一区| 大陆偷拍与自拍| 精品熟女少妇av免费看| 天堂中文最新版在线下载| 波野结衣二区三区在线| 老司机影院毛片| 精品国产一区二区三区久久久樱花| 亚洲欧美一区二区三区黑人 | av网站免费在线观看视频| 久久免费观看电影| 成人国语在线视频| 亚洲精品av麻豆狂野| av一本久久久久| 国产成人欧美| 国产精品.久久久| 久久精品国产自在天天线| 美女xxoo啪啪120秒动态图| 夜夜骑夜夜射夜夜干| 黄网站色视频无遮挡免费观看| 午夜免费观看性视频| 男女下面插进去视频免费观看 | 伊人久久国产一区二区| 在线天堂最新版资源| 亚洲成国产人片在线观看| 欧美国产精品一级二级三级| 女的被弄到高潮叫床怎么办| videosex国产| 在线观看三级黄色| 一本大道久久a久久精品| 亚洲av在线观看美女高潮| 熟女av电影| 五月伊人婷婷丁香| 国产精品久久久久久av不卡| 亚洲第一av免费看| 欧美日韩一区二区视频在线观看视频在线| 一级片'在线观看视频| 美女国产高潮福利片在线看| 尾随美女入室| 精品国产乱码久久久久久小说| 9191精品国产免费久久| 国产精品蜜桃在线观看| 午夜福利视频在线观看免费| 精品国产露脸久久av麻豆| 少妇的逼好多水| 秋霞在线观看毛片| 亚洲久久久国产精品| 久久精品久久久久久噜噜老黄| 精品一区在线观看国产| 中文乱码字字幕精品一区二区三区| 免费人成在线观看视频色| 久久国产精品大桥未久av| 亚洲熟女精品中文字幕| 国产免费视频播放在线视频| 国产精品一二三区在线看| 日韩精品免费视频一区二区三区 | 大片电影免费在线观看免费| 国产精品国产三级国产专区5o| 捣出白浆h1v1| 日本色播在线视频| 亚洲成人手机| 黄色视频在线播放观看不卡| 亚洲精品一区蜜桃| 天堂中文最新版在线下载| 色哟哟·www| 在线观看www视频免费| 久久久欧美国产精品| 一区在线观看完整版| 中文字幕最新亚洲高清| 秋霞在线观看毛片| 欧美+日韩+精品| 欧美人与性动交α欧美精品济南到 | av在线app专区| 国产在线免费精品| 只有这里有精品99| 国产免费视频播放在线视频| 国产在线一区二区三区精| 制服丝袜香蕉在线| 国产精品秋霞免费鲁丝片| 美国免费a级毛片| 日韩制服丝袜自拍偷拍| 国产精品久久久久久久电影| 菩萨蛮人人尽说江南好唐韦庄| 美女内射精品一级片tv| 乱码一卡2卡4卡精品| 国产精品 国内视频| 国产成人av激情在线播放| 蜜桃国产av成人99| 国产成人一区二区在线| 人人妻人人澡人人看| 一边亲一边摸免费视频| 欧美3d第一页| 日韩熟女老妇一区二区性免费视频| 欧美日韩精品成人综合77777| 热re99久久国产66热| 国产xxxxx性猛交| 欧美精品人与动牲交sv欧美| 亚洲伊人久久精品综合| 2021少妇久久久久久久久久久| 丝袜喷水一区| 日韩av在线免费看完整版不卡| 国产av国产精品国产| 伊人久久国产一区二区| 寂寞人妻少妇视频99o| 成人手机av| 精品第一国产精品| 18禁动态无遮挡网站| 最近最新中文字幕大全免费视频 | 最近中文字幕高清免费大全6| 国产爽快片一区二区三区| 夫妻性生交免费视频一级片| 亚洲一级一片aⅴ在线观看| 亚洲人与动物交配视频| 九草在线视频观看| 各种免费的搞黄视频| 啦啦啦中文免费视频观看日本| 国产一级毛片在线| 色5月婷婷丁香| 久久久久精品久久久久真实原创| 欧美精品亚洲一区二区| 亚洲成av片中文字幕在线观看 | 国产又色又爽无遮挡免| 午夜av观看不卡| 美女国产视频在线观看| 一二三四中文在线观看免费高清| 国产免费视频播放在线视频| 韩国高清视频一区二区三区| 午夜影院在线不卡| 日本av免费视频播放| 十八禁高潮呻吟视频| 青春草视频在线免费观看| 亚洲天堂av无毛| 欧美 亚洲 国产 日韩一| 免费人成在线观看视频色| 国产精品无大码| 精品少妇内射三级| 热99久久久久精品小说推荐| 亚洲伊人久久精品综合| 狂野欧美激情性bbbbbb| 成年人免费黄色播放视频| 亚洲精品乱久久久久久| 999精品在线视频| 男女下面插进去视频免费观看 | 亚洲国产毛片av蜜桃av| 国产福利在线免费观看视频| 国产精品人妻久久久影院| 妹子高潮喷水视频| 日本黄大片高清| 丰满迷人的少妇在线观看| 三上悠亚av全集在线观看| 精品酒店卫生间| 亚洲av国产av综合av卡| 91久久精品国产一区二区三区| 黄网站色视频无遮挡免费观看| 精品人妻熟女毛片av久久网站| 国产一区亚洲一区在线观看| 色婷婷久久久亚洲欧美| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精华国产精华液的使用体验| 日韩精品有码人妻一区| 热99国产精品久久久久久7| kizo精华| 边亲边吃奶的免费视频| 欧美日韩视频高清一区二区三区二| 国产色爽女视频免费观看| 免费高清在线观看视频在线观看| 亚洲国产最新在线播放| 又黄又爽又刺激的免费视频.| 免费高清在线观看视频在线观看| 97在线视频观看| 中文字幕免费在线视频6| 精品酒店卫生间| 国产欧美日韩综合在线一区二区| 国产老妇伦熟女老妇高清| 亚洲国产精品999| 精品国产一区二区久久| 久久久久网色| 人妻 亚洲 视频| 99热网站在线观看| 丰满迷人的少妇在线观看| 熟妇人妻不卡中文字幕| 久久99一区二区三区| 在线观看国产h片| 一边摸一边做爽爽视频免费| 香蕉丝袜av| 国产精品三级大全| 亚洲av综合色区一区| 国产色爽女视频免费观看| 中文欧美无线码| 精品第一国产精品| 国产乱人偷精品视频| 交换朋友夫妻互换小说| 亚洲,一卡二卡三卡| 秋霞伦理黄片| 成人手机av| 国产av国产精品国产| 精品人妻一区二区三区麻豆| 伊人亚洲综合成人网| 最后的刺客免费高清国语| 亚洲国产看品久久| 91午夜精品亚洲一区二区三区| 丰满乱子伦码专区| 欧美精品亚洲一区二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲中文av在线| 亚洲国产欧美在线一区| 国产欧美日韩一区二区三区在线| 香蕉丝袜av| 国产精品女同一区二区软件| 欧美成人精品欧美一级黄| 女人久久www免费人成看片| 午夜激情久久久久久久| 国产精品久久久久久精品古装| 九九在线视频观看精品| 激情五月婷婷亚洲| 国产亚洲精品第一综合不卡 | 亚洲国产av影院在线观看| 久久99热6这里只有精品| 大香蕉久久网| 色视频在线一区二区三区| 女人被躁到高潮嗷嗷叫费观| 久久亚洲国产成人精品v| 国产亚洲午夜精品一区二区久久| 男人舔女人的私密视频| 亚洲色图 男人天堂 中文字幕 | 99久久人妻综合| 男人操女人黄网站| av不卡在线播放| videosex国产| 国产精品人妻久久久影院| 啦啦啦啦在线视频资源| 国产极品天堂在线| 日本av手机在线免费观看| 乱人伦中国视频| 免费观看a级毛片全部| 99久久精品国产国产毛片| 亚洲经典国产精华液单| 菩萨蛮人人尽说江南好唐韦庄| 国产精品久久久久久久久免| 日韩熟女老妇一区二区性免费视频| 免费久久久久久久精品成人欧美视频 | 国产成人av激情在线播放| 97在线人人人人妻| 熟女电影av网| 久久久精品94久久精品| h视频一区二区三区| 亚洲综合色惰| 亚洲美女搞黄在线观看| 国产精品国产三级专区第一集| 久久青草综合色| 亚洲精品一二三| 大码成人一级视频| 免费少妇av软件| 欧美日韩精品成人综合77777| 成年人午夜在线观看视频| 熟女av电影| 精品国产一区二区久久| 亚洲精品456在线播放app| 国产日韩欧美在线精品| 精品人妻熟女毛片av久久网站| 国产片内射在线| 国产日韩欧美亚洲二区| 中文天堂在线官网| av免费在线看不卡| 在线免费观看不下载黄p国产| 深夜精品福利| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲av在线观看美女高潮| 最近最新中文字幕大全免费视频 | 国产福利在线免费观看视频| 亚洲国产欧美在线一区| 亚洲欧美一区二区三区国产| 色5月婷婷丁香| 少妇的丰满在线观看| 999精品在线视频| 男女下面插进去视频免费观看 | 亚洲国产看品久久| 国产黄频视频在线观看| 老司机亚洲免费影院| 国产男女超爽视频在线观看| 亚洲一级一片aⅴ在线观看| 成年av动漫网址| 美女大奶头黄色视频| 久久午夜综合久久蜜桃| 青春草国产在线视频| 欧美激情国产日韩精品一区| 777米奇影视久久| 久久久久国产精品人妻一区二区| 国产淫语在线视频| 久久精品久久久久久噜噜老黄| 亚洲五月色婷婷综合| 欧美激情国产日韩精品一区| 国产高清国产精品国产三级| 亚洲国产成人一精品久久久| av有码第一页| 五月玫瑰六月丁香| 999精品在线视频| 18在线观看网站| www日本在线高清视频| 色94色欧美一区二区| √禁漫天堂资源中文www| 久久狼人影院| 亚洲av.av天堂| 韩国高清视频一区二区三区| 精品国产一区二区三区久久久樱花| 日韩成人av中文字幕在线观看| 国产成人精品一,二区| 一区在线观看完整版| 麻豆乱淫一区二区| 国产成人精品久久久久久| 一区二区三区四区激情视频| 捣出白浆h1v1| 男女高潮啪啪啪动态图| 久久精品aⅴ一区二区三区四区 | 国产午夜精品一二区理论片| 街头女战士在线观看网站| 啦啦啦中文免费视频观看日本| 精品少妇黑人巨大在线播放| 精品久久蜜臀av无| 午夜激情av网站| 国产成人精品在线电影| 丰满迷人的少妇在线观看| 亚洲精品中文字幕在线视频| 午夜福利网站1000一区二区三区| av在线播放精品| 中国美白少妇内射xxxbb| 精品国产一区二区久久| 亚洲五月色婷婷综合| 中文字幕人妻丝袜制服| 国产黄色视频一区二区在线观看| 超色免费av| 精品亚洲成国产av| 亚洲精品色激情综合| 人妻 亚洲 视频| 久久97久久精品| 夫妻性生交免费视频一级片| 99热全是精品| 亚洲天堂av无毛| 久久久久久人人人人人| 亚洲伊人久久精品综合| av在线老鸭窝| 久久人人爽av亚洲精品天堂| 精品一品国产午夜福利视频| 日日摸夜夜添夜夜爱| 久久久久久久久久久久大奶| 亚洲国产成人一精品久久久| 欧美人与性动交α欧美精品济南到 | 黄片播放在线免费| 午夜福利视频在线观看免费| 超色免费av| 亚洲av综合色区一区| 五月玫瑰六月丁香| 宅男免费午夜| 亚洲国产最新在线播放| 亚洲国产精品一区二区三区在线| 热re99久久精品国产66热6| 超色免费av| 精品99又大又爽又粗少妇毛片| 日韩av免费高清视频| 免费看不卡的av| 亚洲综合精品二区| 久久国产精品男人的天堂亚洲 | 亚洲精品一区蜜桃| 精品久久国产蜜桃| 日韩成人伦理影院| 男男h啪啪无遮挡| 成年美女黄网站色视频大全免费| 秋霞在线观看毛片| 免费在线观看黄色视频的| 狠狠精品人妻久久久久久综合| 七月丁香在线播放| 亚洲在久久综合| 亚洲av国产av综合av卡| videos熟女内射| 欧美日韩视频高清一区二区三区二| 97在线人人人人妻| 中文精品一卡2卡3卡4更新| 亚洲精品一二三| 狂野欧美激情性xxxx在线观看| 少妇高潮的动态图| 秋霞在线观看毛片| 亚洲欧洲国产日韩| 极品少妇高潮喷水抽搐| 日韩成人av中文字幕在线观看| 丁香六月天网| 9色porny在线观看| 亚洲欧美色中文字幕在线| 国产精品欧美亚洲77777| 99精国产麻豆久久婷婷| 99九九在线精品视频| 制服丝袜香蕉在线| 成年人午夜在线观看视频| 中文欧美无线码| 成年动漫av网址| 王馨瑶露胸无遮挡在线观看| 成年美女黄网站色视频大全免费| 成人二区视频| 国国产精品蜜臀av免费| 欧美最新免费一区二区三区| 国产黄色视频一区二区在线观看| 国产成人免费观看mmmm| 伦精品一区二区三区| 亚洲综合精品二区| 国产一区二区在线观看日韩| 精品亚洲成a人片在线观看| 亚洲欧洲日产国产| 在线天堂最新版资源| 国产亚洲午夜精品一区二区久久| 成年人免费黄色播放视频| 国产黄色视频一区二区在线观看| 欧美日韩一区二区视频在线观看视频在线| 黄色 视频免费看| 精品国产一区二区久久| 两个人免费观看高清视频| 欧美国产精品一级二级三级|