• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fuzzy stochastic damage mechanics (FSDM) based on fuzzy auto-adaptive control theory

    2012-08-11 15:01:38YajunWANGWohuaZHANGChuhanZHANGFengJIN
    Water Science and Engineering 2012年2期

    Ya-jun WANG*, Wo-hua ZHANG, Chu-han ZHANG Feng JIN

    1. School of Naval Architecture and Civil Engineering, Zhejiang Ocean University, Zhoushan 316000, P. R. China

    2. State Key Laboratory of Hydroscience and Hydraulic Engineering, Tsinghua University, Beijing 100084, P. R. China

    3. Key Laboratory of Soft Soils and Geoenvironmental Engineering, Ministry of Education, Zhejiang University, Hangzhou 310027, P. R. China

    4.College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, P. R. China

    Fuzzy stochastic damage mechanics (FSDM) based on fuzzy auto-adaptive control theory

    Ya-jun WANG*1,2,3,4, Wo-hua ZHANG3,4, Chu-han ZHANG2, Feng JIN2

    1. School of Naval Architecture and Civil Engineering, Zhejiang Ocean University, Zhoushan 316000, P. R. China

    2. State Key Laboratory of Hydroscience and Hydraulic Engineering, Tsinghua University, Beijing 100084, P. R. China

    3. Key Laboratory of Soft Soils and Geoenvironmental Engineering, Ministry of Education, Zhejiang University, Hangzhou 310027, P. R. China

    4.College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, P. R. China

    In order to fully interpret and describe damage mechanics, the origin and development of fuzzy stochastic damage mechanics were introduced based on the analysis of the harmony of damage, probability, and fuzzy membership in the interval of [0,1]. In a complete normed linear space, it was proven that a generalized damage field can be simulated throughβprobability distribution. Three kinds of fuzzy behaviors of damage variables were formulated and explained through analysis of the generalized uncertainty of damage variables and the establishment of a fuzzy functional expression. Corresponding fuzzy mapping distributions, namely, the half-depressed distribution, swing distribution, and combined swing distribution, which can simulate varying fuzzy evolution in diverse stochastic damage situations, were set up. Furthermore, through demonstration of the generalized probabilistic characteristics of damage variables, the cumulative distribution function and probability density function of fuzzy stochastic damage variables, which showβprobability distribution, were modified according to the expansion principle. The three-dimensional fuzzy stochastic damage mechanical behaviors of the Longtan rolled-concrete dam were examined with the self-developed fuzzy stochastic damage finite element program. The statistical correlation and non-normality of random field parameters were considered comprehensively in the fuzzy stochastic damage model described in this paper. The results show that an initial damage field based on the comprehensive statistical evaluation helps to avoid many difficulties in the establishment of experiments and numerical algorithms for damage mechanics analysis.

    β probability distribution; fuzzy membership of damage variable; fuzzy auto-adaptive theory; fuzzy stochastic finite element method; fuzzy stochastic damage

    1 Introduction

    Nowadays, research on damage mechanics is broadening and deepening with the help ofuncertain theoretical models originally conceptualized by Zhang and Valliappan (1990a, 1990b), who initiated stochastic damage models. Since then, conventional damage mechanics studies have been further developed based on the probabilistic theory. Based on a micro-mechanics model, damage evolution equations of a solid structure under random loading conditions were set up by Silberschmidt and Chaboche (1994). The damage-rupture development mechanism of discontinuous stochastic composite material reinforced by fibers was analyzed with statistics by Wu and Li (1995). Mechanical characteristics of solid brittle material with plane grain cracks showing correlated random distribution were investigated by Ju and Tseng (1995), who, on the basis of micro-mechanics and the mean-volume theory, introduced a Legedre-Tchebycheff orthogonal polynomial algorithm. With the help of flat noise generator simulation of random factors influencing the medium damage mechanism from both external and internal aspects, continuous damage mechanics were further explored by Silberschmidt (1998), based on his earlier studies. A semi-empirical calculation model, based on the statistical theory of extreme values, was developed by Rinaldi et al. (2007) for statistical analyses of damage simulation. With consideration of hydrochemical effects, Feng et al. (2002) and Qiao et al. (2007) carried out theoretical research on rock damage evolution mechanisms. Finally, some probabilistic conclusions were made by Wang et al. (2006), who applied the damage concepts to rock slope stability analysis.

    Dual math coverage implements, including fuzzy-stochastic ones, are still difficult to apply to the engineering domain. Nowadays, most international uncertainty studies on geo-mechanics give more attention to the single math model (Ihara and Tanaka 2000; Dzenis et al. 1993; Dzenis 1996; Bulleit 2004; Wang et al. 2009). Moreover, most uncertain mathematical models use linear coverage that can only simulate irreversible processes from the constitutive model to math coverage. These constitutive models, after the initial simulation of material damage evolution, have to divorce themselves from the uncertain mathematical model and the simulation ends.

    It is important to determine uncertain math coverage, i.e., an adaptive mathematical model which, coupled with constitutive functions over a whole time domain for the entire model space, can carry out simulation in accordance with the physical model (e.g., damage mechanics model) all the time. The adaptive mathematical model can identify field distribution of an engineering case to establish objective functional. The output obtained by the functional in generalized space is transformed into a common mechanical field through mathematically certain techniques (e.g., de-fuzzification).

    The predominant characteristic of damage measurement is the distance in topological space. The distance interval should be [0,1], in order to guarantee that the damage space is enclosed. The damage in different engineering problems is characterized by fuzzy elasticity (Pierpaolo and Elizabeth 2009; Rigatos and Zhang 2009; Rezaei et al. 2011). With fuzzy elasticity, damage development of the structure and material shows a dynamic nature in itsmapping model, which is not taken into account by conventional damage mechanics theory with static mapping definition. Thus, a fuzzy-stochastic damage mechanical model was developed in this study.

    2 Fundamentals of fuzzy stochastic damage mechanics (FSDM)

    2.1 Randomness and fuzziness of damage variables

    Primary concepts of the stochastic damage variable and stochastic damage mechanics were originally established by Zhang and Valliappan (1990a, 1990b, 1998a, 1998b), and the essential hypothesis was verified through Monte-Carlo statistical simulations, based on which the stochastic damage variable shows aβprobability distribution. Furthermore, theβprobability density function is the only classical probability model whose independent variable spans the interval [0,1], which is in accordance with the characteristics of the damage variable’s interval of [0,1] in topological structure and measurement. Moreover, the probability value and fuzzy membership are consistent and both range between [0,1], which enlightens advanced studies on damage mechanics. The original FSDM model is established here based on related work by Zhang et al. (2005).

    2.2 Probability distribution of random damage variables

    Micro-defects, the cause of material damage, show stochastic distribution. Thus, a damage variableΩalso has a stochastic nature and the stochastic damage variable can be established in random spaceΨ:

    whereα′ is a stochastic subset of a stochastic vectorX=(x1,x2,…,xn)T, andΛα′is a probabilistic set derived fromα′, consisting of a probabilistic nodal displacement vectorUα′, probabilistic body force vectorfα′, stochastic stress tensorσα′, and stochastic strain tensoreα′.

    The crucial propositions are as follows:

    Proposition 1:Ψ1is defined as a probability space of independentβdistribution, and [0,1] is defined as the domain of a stochastic vectorxinΨ1; that is,whereβ(p,q)is theβdistribution function, andpandqare the parameters for theβdistribution function. Therefore,Ψ1is a Banach space under the ∞ norm, or a complete normed linear space. The proof of this proposition was described by Wang and Zhang (2012).

    Meanwhile, theβprobabilistic cumulative distribution function vector can be defined asy1.Ψ2is defined as a probability space of the damage variableΩ, which shows independentBdistribution over [0,1], i.e.,. Following the same rule, it can be proven under the ∞ norm thatΨ2is a Banach space, which can be expressed as. Meanwhile, theBprobabilistic cumulative distribution function vector can be defined asy2.

    Proposition 2: The necessary and sufficient condition for coincidence of the probability spacesΨ1andΨ2is that vectory2converges to vectory1with the same definition domain [0,1] under the ∞ norm. The proposition has been proved by Wang and Zhang (2012).

    Based on this proposition,βprobability distribution can be used to simulateBprobability distribution of damage variableΩ, and this procedure can be applied to engineering through the law of averages over [0,1].

    2.3 Fuzzy membership constitution of damage variable

    Mechanical definition of damage is the macro-effect produced by micro-crack expansion as well as evolution and the development of material deformation. The damage is a physical-mechanical process from micro-defect to macro-behavior (the safety status of working conditions). A quantitative indexthat can quantify the material’s micro-defect is called a damage measuring index (DMI).Γis a fuzzy analytical domain for, i.e.,∈Γ.Γmust be defined in a fuzzy spacewhere, andare the fuzziness of physical parameters (includingΩ), loading conditions, and constraint conditions, respectively. The key technological question for damage simulation is which scale ofmeans the material’s damage or howrates damage. The fuzzy mechanism of macro-working behavior has been discussed in many studies. Micro-defects, however, inevitably induce macro-deformation, and this essential mechanism describes the fuzziness ofevolution.Ω, as a fuzzy functional over DMI, represents the magnitude of the membership value ofin domainΓ, and can analyze damage variable development as in Eq. (2):

    whereis a fuzzy membership function, namely,is the fuzzy subset in domainΓand includes three kinds of fuzziness, represented byand;ωis the probabilistic integral of; andωΓis the function of the generalized probabilistic integral variable.

    The key for damage simulation is how to establish themodel and fuzzy functionalΩmodel. After that,ωandωΓcan be obtained .through probabilistic integration. As for most geo-material with elasto-plastic constitution, a structure’s damage is the result of volumetric deformation and deviation deformation. Based on these facts, this study defined DMI as follows:

    where?andcare the internal friction angle and cohesive stress, respectively, andσmandJ3are the hydrostatic pressure and the third invariable of the deviation stress tensor, respectively (Qian 1980).represents the ratio of the volumetric deformation (tan?+c) to the deviation deformation ().

    Three cases were considered in the fuzzification process for-forming fuzzy functional memberships: (1) the deviation deformation is superior to volumetric deformation inmagnitude when material damage is developing; (2) whenvalue reaches 0.5 (gray space of the fuzzy domain), the damage evolution can be revealed by the functional distribution figure. The damage evolution has a decreasing tendency during the early stage due to the neutralization effect, and the increase in the volumetric deformation during the later stage causes damage accumulation; and (3) the damage evolution is almost consistent with the second case, and the primary characteristics are that gray space can be established from decision analysis based on the measured data during the de-fuzzification process for a fuzzy output, and thereby the result of magnitude comparison of two kinds of deformation is always effective over the whole fuzzy span [0,1]. For the three cases, the corresponding fuzzy functional memberships were established: half-depressed distribution (Eq. (4) and Fig. 1(a)), swing distribution (Eq. (5) and Fig. 1(b)), and combined swing distribution (Eq. (6) and Fig. 1(c)):

    Fig. 1 Fuzzy functional memberships

    2.4 Generalized damage variable under double mathematics coverage

    When randomness and fuzziness simultaneously exist in the structure damage evolution process, according to the expansion principle, the single fuzzy spaceand stochastic spaceΨ∶∪α∈XΛα?Ψ(α∈X=(x1,x2,…,xn)T)of the damage variable need to be expanded to a generalized uncertain spaceO:ξ(s,f),Us,f,es,f,σs,f,fs,f?O:ξ(s,f), wheresandfare the stochastic coverage and fuzzy coverage, respectively;ξ(s,f)is the sub-group of generalized uncertain space;Us,fis a global fuzzy-stochastic displacement column matrix;es,fis a generalized uncertain strain tensor;σs,fis a fuzzy-stochastic stress tensor; andfs,fis a generalized body force vector (Wang et al. 2007).

    The cumulative distribution function (CDF) and probability density function (PDF) obtained by the expansion principle and fuzzy-probabilistic integration are functions of fuzzy functional memberships of the generalized damage variableΩ. Taking the combined swing distribution as an example, the generalized CDF and PDF for the classical damage fuzzy set can be established based on the definition of DMI:

    With these governing functions, the fuzzy stochastic damage reliability (FSDR) can be computed using the equivalent-normal differential checking-point theorem (Wang 2004; Wang et al. 2008; Zhu 1993).

    3 Fuzzy stochastic damage finite element method

    The key methodology for FSDM realization is the establishment of the fuzzy stochastic damage finite element method (FSD-FEM). The FSD constitution model was assimilated into FSD-FEM. The constitutional component for the methodology is the damage function gradient?gα*, which can be expressed as follows:

    whereY*is the independent standard normal vector with its element(i= 1, 2, …,n);T–1is the inverse matrix ofT, which is a diagonal matrix of stochastic characteristics; andYis the independent non-standard normal vector.

    Based on the studies in Section 2.4, the checking-point iterative direction, namely, the unit vector in the negative gradient directionα, can be computed by Eq. (10):

    αis the direction cosine of the reliability index along axis. Thus,αis perpendicular to the ultimate status surface against the coordinate system origin.(Y*) will descend the fastest when the checking-point is computed iteratively along this directional cosine.

    Then, the iterative step size of the checking-point,d, can be determined by Eq. (12):

    In order to ensure the line connecting the origin ofthekth iterative (Y*)kand the new iterativecoordinate(Y*)k+1along thegradientdirection of the curve, on which(Y*)kis distributed, modification of (Y*)kis the crucial technology for this algorithm and can be expressed as

    where (Y*)k′is the modified (Y*)k.

    Therefore, the controlling iterative function can be deduced as follows:

    Then, the updated checking-point vector1k+Yand the status vector of object system (X*)k+1for the numerical back-substitution algorithm are established:

    Based on Eq. (9), the damage reliability indexβ*, and damage failure probabilitycan be calculated eventually with Eq. (16):

    whereΦis the cumulative distribution function of standard normal distribution.

    The three-dimensional fuzzy stochastic damage (3DFSD) computation program was developed in a Digital Visual Fortran workspace.

    4 Verification and application to engineering project

    The Longtan Dam is one of the great hydraulic rolled-concrete structures in China. Most zones of the dam body are composed of rolled concrete (Wang and Zhang 2008). The numerical model and material zoning are shown in Fig. 2 and Fig. 3.

    Fig. 2 Numerical model of Longtan rolled-concrete dam

    Fig. 3 Material zoning of Longtan rolled-concrete dam

    The four-parameter failure criterion was used for the rolled-concrete dam to simulate damage development of materials (Wang et al. 2011). The four primary parameters during simulation were constant:A= 2.010 8,B= 0.971 4,C= 9.141 2, andD= 0.231 2. This study took into account six random parameters: the Young’s modulus, Poisson ratio, cohesive stress, friction angle, bulk specific gravity, and ultimate compressive strength. The expectation values and variation values of the six random parameters of diverse materials are shown in Table 1 andTable 2. There remains one fuzzy-stochastic parameter, the statistic independent index, i.e., damage variable?.

    Table 1 Expected values of material parameters of Longtan rolled-concrete dam

    Table 2 Variation of material parameters of Longtan rolled-concrete dam

    The development and distribution of a generalized damage field in the Longtan rolled-concrete gravity dam, under gravity conditions, were studied with FSD-FEM.

    Figs. 4 through 6 show the displacement contours of the dam without damage development under gravity conditions. Concrete structures, due to their rigid plastic mechanisms, can easily fail at discontinuous places or transition locations where stress concentration and corresponding damage development occur. Contour distributions of the displacement field and strain field can uncover these failure conditions of structures.

    Fig. 4 Contour ofx-displacement at cross-section before damage (unit: m)

    The concentration of displacement growth occurs more at the dam top than in other places. The maximum magnitude of displacement in thexdirection stays at the dam top where the displacement level reaches 10–2m. Owing to the high compressive strength of concrete, the displacement in theydirection shows gradual diffusion from top to bottom through the wholedam body. The dam abutment is generally not an area of the gravity dam vulnerable to failure. Thus, the magnitude of displacement in thezdirection is not high. It reaches 10–3m. The characteristics described above are in agreement with the objective phenomena, which show that the results of the 3DFSD program are reliable for engineering application.

    Fig. 5 Contour ofy-displacement at cross-section before damage (unit: m)

    Fig. 6 Contour ofz-displacement at cross-section before damage (unit: m)

    According to Fig. 7 and Fig. 8, the expected values of the damage variable diminished evidently after the random parameters were normalized equivalently. Meanwhile, the expected value of the damage variable increased significantly at some sites, including the connecting segment of the dam crest, the upstream dam ankle, the downstream dam toe, and the connecting segments of the dam foundation. These characteristics have been described in previous studies for rigid-plastic concrete structures with discontinuous outlines, where loading accumulated and concentrated (Liu 2007). The studies show that the stress level at these discontinuous sites increases quickly, by which it can be proven that the material is inclined to fracture there and these zones experience abundant damage.

    Fig. 7 Contour of expectation of damage variable at cross-section before equivalent normalization

    Fig. 8 Contour of expectation of damage variable at cross-section after equivalent normalization

    Fig. 9 shows that the level of the mean square deviation of the damage variable is high at the upstream dam ankle, the downstream dam toe, and the connecting segments of the dam foundation, and these zones tend to converge densely. These facts demonstrate that materialsof these zones are vulnerable to yield and fracture due to the development of a generalized damage field (Wang et al. 2011). Based on previous studies (Zhang and Cai 2010), the media would be simulated as macro-homogeneous while the crack evolution showed wide variation during damage field development. It is vitally important, however, that the generalized damage field is heterogeneous (Wang and Zhang 2010).

    Fig. 9 Contour of mean square deviation of damage variable at cross-section after equivalent normalization

    According to Fig. 10, the level of the reliability index at the sites with concentrated damage development decreases, showing that the failure probability of material at these sites is high (Wang and Zhang 2008, 2009a, 2009b).

    Fig. 11 shows that the variance ofσxreaches 20 kPa2at dam ankle zones and dam toe zones, whereσxis the component of generalized stress tensor in thexdirection of principal axes. Thus, the degree of dispersion of the stress level was significant at these sites and the corresponding safety degree was inclined to be out of control (Qiu et al. 2004).

    Fig. 11 Contour of variance ofxσat cross-section equivalent normalization (unit: kPa2)

    5 Conclusions

    (1) With some primary concepts of FSDM, three primary distributions of the fuzzystochastic damage variable, the half-depressed distribution, swing distribution, and combined swing distribution, were developed based on fuzzy functional memberships.

    (2) The numerical method, FSD-FEM, was developed and applied to the Longtan rolled-concrete dam. The primary output fields, i.e., displacement, stress, damage variable, and damage reliability index, were examined through spatial distribution of their statistical characteristics, and the results conformed to those from previous research.

    (3) Crucial characteristics of FSDM such as statistical correlation, non-normal distribution, and fuzzy extensionality were assimilated into FSD-FEM. The uncertainty of damage variable was improved, and two primary uncertain characteristics, fuzziness and randomness of damage, were incorporated into the fuzzy stochastic damage mechanics theorem.

    Bulleit, W. M. 2004. Stochastic damage models for wood structural elements.Proceedings of the 2001 Structures Congress and Exposition. Washington, D.C.: ASCE. [doi:10.1061/40558(2001)183]

    Dzenis, Y. A., Bogdanovich, A. E., and Pastore, C. M. 1993. Stochastic damage evolution in textile laminates.Composites Manufacturing, 4(4), 187-193. [doi:10.1016/0956-7143(93)90003-Q]

    Dzenis, Y. A. 1996. Stochastic damage evolution modeling in laminates.Journal of Thermoplastic Composite Materials, 9(1), 21-34. [doi:10.1177/089270579600900103]

    Feng, X. T., Wang, C. Y., and Chen, S. L. 2002. Testing study and real-time observation of rock meso-cracking process under chemical erosion.Chinese Journal of Rock Mechanics and Engineering, 21(7), 935-939. (in Chinese)

    Ihara, C., and Tanaka, T. 2000. A stochastic damage accumulation model for crack initiation in high-cycle fatigue.Fatigue and Fracture of Engineering Materials and Structures, 23(5), 375-380. [doi:10.1046/ j.1460-2695.2000.00308.x]

    Ju, J. W., and Tseng, K. H. 1995. An improved two-dimensional micromechanical theory for brittle solids with randomly located interacting microcracks.International Journal of Damage Mechanics, 4(1), 23-57. [doi: 10.1177/105678959500400103]

    Liu, Y. W. 2007. Improving the abrasion resistance of hydraulic-concrete containing surface crack by adding silica fume.Construction and Building Materials, 21(5), 972-977. [doi:10.1016/j.conbuildmat. 2006.03.001]

    Pierpaolo, D. U., and Elizabeth, A. M. 2009. Autocorrelation-based fuzzy clustering of time series.Fuzzy Sets and Systems, 160(24), 3565-3589. [doi:10.1016/j.fss.2009.04.013]

    Qian, W. C. 1980.Variation Method and Finite Element Method. Beijing: Scientific Press. (in Chinese)

    Qiao, L. P., Liu, J., and Feng, X. T. 2007. Study on damage mechanism of sandstone under hydro-physico-chemical effects.Chinese Journal of Rock Mechanics and Engineering, 26(10), 2117-2124. (in Chinese)

    Qiu, Z. H., Zhang, W. H., and Ren, T. H. 2004. Nonlinear dynamic damage analysis of dam and rock foundation under the action of earthquake.Chinese Journal of Rock Mechanics and Hydraulic Engineering, 36(5), 629-636. (in Chinese)

    Rezaei, M., Monjezi, M., and Varjani, A. Y. 2011. Development of a fuzzy model to predict flyrock in surface mining.Safety Science, 49(2), 298-305. [doi:10.1016/j.ssci.2010.09.004]

    Rigatos, G., and Zhang, Q. 2009. Fuzzy model validation using the local statistical approach.Fuzzy Sets and Systems, 160(7), 882-904. [doi:10.1016/j.fss.2008.07.008]

    Rinaldi, A., Krajcinovic, D., and Mastilovic, S. 2007. Statistical damage mechanics and extreme value theory.International Journal of Damage Mechanics, 16(1), 57-76. [doi:10.1177/1056789507060779]

    Silberschmidt, V. V., and Chaboche, J. L. 1994. Effect of stochasticity on the damage accumulation in solids.International Journal of Damage Mechanics, 3(1), 57-70. [doi:10.1177/105678959400300103]

    Silberschmidt, V. V. 1998. Dynamics of stochastic damage evolution.International Journal of Damage Mechanics, 7(1), 84-98. [doi:10.1177/105678959800700104]

    Wang, J. C., Chang, L. S., and Chen, Y. J. 2006. Study on probability damage evolutionary rule of joined rock mass slope.Chinese Journal of Rock Mechanics and Engineering, 25(7), 1396-1401. (in Chinese)

    Wang, Y. J. 2004.Fuzzy-random Theory Application on Geo-engineering Uncertain Analysis. M. E. Dissertation. Wuhan: Yangtze River Scientific Research Institute. (in Chinese)

    Wang, Y. J., Zhang, W. H., and Jin, W. L. 2007. Stochastic finite element analysis for fuzzy probability of embankment system failure by first-order approximation theorem.Journal of Zhejiang University(Engineering Science), 41(1), 52-56. (in Chinese)

    Wang, Y. J., and Zhang, W. H. 2008. Research on fuzzy self-adapting finite element in stochastic damage mechanics analysis for Longtan rolled-concrete dam.Chinese Journal of Rock Mechanics and Engineering, 27(6), 1251-1259. (in Chinese)

    Wang, Y. J., Zhang, W. H., Jin, W. L., Wu, C. Y., and Ren, D. C. 2008. Fuzzy stochastic generalized reliability studies on embankment systems based on first-order approximation theorem.Water Science and Engineering, 1(4), 36-46. [doi:10.3882/j.issn.1674-2370.2008.04.004]

    Wang, Y. J., and Zhang, W. H. 2009a. Rock slope reliability studies based on fuzzy stochastic damage theory.Journal of Shengyang Jianzhu University(Natural Science), 25(3), 421-425. (in Chinese)

    Wang, Y. J., and Zhang, W. H. 2009b. Fuzzy self-adapting stochastic damage mechanism for Jingnan main dike of Yangtse Rive.Journal of Zhejiang University(Engineering Science), 43(4), 743-749, 776. (in Chinese) [doi:10.3785/j.issn.1008-973X.2009.04.026]

    Wang, Y. J., Zhang, W. H., Wu, C. Y., and Ren, D. C. 2009. Three-dimensional stochastic seepage field for embankment engineering.Water Science and Engineering, 2(1), 58-71. [doi:10.3882/j.issn.1674-2370. 2009.01.006]

    Wang, Y. J., and Zhang, W. H. 2010. Studies on non-linear fuzzy stochastic damage field.Journal of Hydraulic Engineering, 41(2), 189-197. (in Chinese)

    Wang, Y. J., Zhang, W. H., Zhang, C. H., and Jin, F. 2011. Generalized damage reliability and sensitivity analysis on rolled-concrete gravity dam.Journal of Civil,Architectural and Environmental Engineering, 33(1), 77-86. (in Chinese)

    Wang, Y. J., and Zhang, W. H. 2012. Super gravity dam generalized damage study.Advanced Materials Research, 479-481, 421-425. [doi:10.4028/www.scientific.net/AMR.479-481.421]

    Wu, H. C., and Li, V. C. 1995. Stochastic process of multiple cracking in discontinuous random fiber reinforced brittle matrix composites.International Journal of Damage Mechanics, 4(1), 83-102. [doi: 10.1177/105678959500400105]

    Zhang, W. H., and Valliappan, S. 1990a. Analysis of random anisotropic damage mechanics problems of rock mass, part I: Probabilistic simulation.Rock Mechanics and Rock Engineering, 23(2), 91-112. [doi: 10.1007/BF01020395]

    Zhang, W. H., and Valliappan, S. 1990b. Analysis of random anisotropic damage mechanics problems of rock mass, part II: Statistical estimation.Rock Mechanics and Rock Engineering, 23(4), 241-259. [doi: 10.1007/BF01043306]

    Zhang, W. H., and Valliappan, S. 1998a. Continuum damage mechanics theory and application, part I: Theory.International Journal of Damage Mechanics, 7(3), 250-273. [doi:10.1177/105678959800700303]

    Zhang, W. H., and Valliappan, S. 1998b. Continuum damage mechanics theory and application, part II: Application.International Journal of Damage Mechanics, 7(3), 274-297. [doi:10.1177/ 105678959800700304]

    Zhang, W. H., Jin, W. L., and Li, H. B. 2005. Stability analysis of rock slope based on random damage mechanics.Journal of Hydraulic Engineering, 36(4), 413-419. (in Chinese)

    Zhang, W. H., and Cai, Y. Q. 2010.Continuum Damage Mechanics and Numerical Applications (Advanced Topics in Science and Technology in China). Hangzhou: Zhejiang University Press. (in Chinese)

    Zhu, Y. X. 1993.Slope Reliability Analysis. Beijing: China Metallurgical Industry Press. (in Chinese)

    (Edited by Yan LEI)

    This work was supported by the National Natural Science Foundation of China (Grant No. 51109118), the China Postdoctoral Science Foundation (Grant No. 20100470344), the Fundamental Project Fund of Zhejiang Ocean University (Grant No. 21045032610), and the Initiating Project Fund for Doctors of Zhejiang Ocean University (Grant No. 21045011909).

    *Corresponding author (e-mail:aegis68004@yahoo.com.cn)

    Received May 24, 2011; accepted Jul. 7, 2011

    日本av手机在线免费观看| 久久久久久久久大av| 国产真实伦视频高清在线观看| 精品久久久久久久久亚洲| 国产精品人妻久久久影院| 91久久精品国产一区二区三区| 一级二级三级毛片免费看| 青春草亚洲视频在线观看| 中国美女看黄片| 麻豆乱淫一区二区| 亚洲图色成人| 午夜视频国产福利| 看十八女毛片水多多多| 精品人妻偷拍中文字幕| 久久精品久久久久久噜噜老黄 | 欧美人与善性xxx| 啦啦啦韩国在线观看视频| 成人欧美大片| 国产精品.久久久| ponron亚洲| 搡女人真爽免费视频火全软件| 黑人高潮一二区| 一个人免费在线观看电影| 亚洲精品久久国产高清桃花| 中文字幕精品亚洲无线码一区| 亚洲国产精品国产精品| 久久久欧美国产精品| 亚洲经典国产精华液单| 久久热精品热| 国产伦精品一区二区三区视频9| 丰满人妻一区二区三区视频av| 亚洲精品日韩av片在线观看| 国产伦在线观看视频一区| 国产午夜精品论理片| 如何舔出高潮| 韩国av在线不卡| 好男人视频免费观看在线| 国产成人福利小说| 国产国拍精品亚洲av在线观看| 色综合亚洲欧美另类图片| 人体艺术视频欧美日本| 99热全是精品| 老司机影院成人| 岛国在线免费视频观看| 国产一区二区亚洲精品在线观看| 国产不卡一卡二| 少妇人妻一区二区三区视频| 最新中文字幕久久久久| 久久久久久久久久黄片| 国产一区二区激情短视频| 久久中文看片网| 国产一区二区激情短视频| 欧美zozozo另类| 中文字幕精品亚洲无线码一区| 久久久精品大字幕| 老熟妇乱子伦视频在线观看| 亚洲精品日韩在线中文字幕 | 美女 人体艺术 gogo| 国产乱人偷精品视频| 欧美人与善性xxx| 大型黄色视频在线免费观看| 美女黄网站色视频| 综合色丁香网| 国产麻豆成人av免费视频| 最近最新中文字幕大全电影3| 久久鲁丝午夜福利片| 亚洲精品久久久久久婷婷小说 | 日本色播在线视频| 亚洲欧洲日产国产| 国模一区二区三区四区视频| 欧美丝袜亚洲另类| 99精品在免费线老司机午夜| 美女脱内裤让男人舔精品视频 | 国产精华一区二区三区| 亚洲美女搞黄在线观看| 国产伦一二天堂av在线观看| 永久网站在线| 久久这里只有精品中国| 最近中文字幕高清免费大全6| 国产黄色视频一区二区在线观看 | 欧美日本视频| 精品一区二区三区人妻视频| 亚洲综合色惰| 国产黄片视频在线免费观看| 国产美女午夜福利| 国产在线精品亚洲第一网站| h日本视频在线播放| 欧美日韩在线观看h| 综合色av麻豆| 国产真实乱freesex| 国产高清三级在线| 成人亚洲欧美一区二区av| av国产免费在线观看| 国产视频首页在线观看| 人妻少妇偷人精品九色| 午夜精品一区二区三区免费看| 亚洲在久久综合| 变态另类成人亚洲欧美熟女| 中文字幕av成人在线电影| 国产亚洲5aaaaa淫片| avwww免费| 在线观看一区二区三区| 有码 亚洲区| 99国产精品一区二区蜜桃av| 欧美xxxx性猛交bbbb| 国产av一区在线观看免费| 亚洲国产精品合色在线| 黄片无遮挡物在线观看| 亚洲精品国产成人久久av| 老司机影院成人| 蜜桃久久精品国产亚洲av| 色5月婷婷丁香| 亚洲精品自拍成人| 国产一区亚洲一区在线观看| 女人十人毛片免费观看3o分钟| 国产日本99.免费观看| 国产色爽女视频免费观看| 欧美最新免费一区二区三区| 97人妻精品一区二区三区麻豆| 日韩强制内射视频| 亚洲va在线va天堂va国产| 欧洲精品卡2卡3卡4卡5卡区| 日韩国内少妇激情av| 神马国产精品三级电影在线观看| 有码 亚洲区| 一边摸一边抽搐一进一小说| 亚洲不卡免费看| 91狼人影院| 亚洲精品亚洲一区二区| 少妇的逼好多水| 毛片女人毛片| 国产大屁股一区二区在线视频| 成年版毛片免费区| 深夜a级毛片| 亚洲无线在线观看| 国产人妻一区二区三区在| 国产高清三级在线| 九九在线视频观看精品| www日本黄色视频网| 成人特级av手机在线观看| 久久九九热精品免费| 欧洲精品卡2卡3卡4卡5卡区| 久久鲁丝午夜福利片| 亚洲真实伦在线观看| 国产一区二区亚洲精品在线观看| 精品欧美国产一区二区三| 久久久久久久久久久丰满| 日韩国内少妇激情av| av天堂在线播放| 国产精品日韩av在线免费观看| 久久国内精品自在自线图片| 日本在线视频免费播放| 久久精品国产亚洲av涩爱 | 国产日本99.免费观看| 啦啦啦观看免费观看视频高清| 久久中文看片网| 91aial.com中文字幕在线观看| 搡女人真爽免费视频火全软件| 成人三级黄色视频| 亚洲欧美成人综合另类久久久 | 国产免费一级a男人的天堂| 在线a可以看的网站| 日本成人三级电影网站| 高清午夜精品一区二区三区 | 免费观看人在逋| a级毛片a级免费在线| av免费在线看不卡| 99久久精品热视频| 高清日韩中文字幕在线| 成人漫画全彩无遮挡| 毛片女人毛片| 丝袜喷水一区| 国产成人一区二区在线| 国产免费一级a男人的天堂| 免费av毛片视频| 青青草视频在线视频观看| 欧美xxxx黑人xx丫x性爽| 中出人妻视频一区二区| 内射极品少妇av片p| 2022亚洲国产成人精品| 国产成人福利小说| 能在线免费观看的黄片| 国产色婷婷99| 在线观看免费视频日本深夜| 国产成人91sexporn| 久久午夜福利片| 别揉我奶头 嗯啊视频| 国产毛片a区久久久久| 精品人妻视频免费看| 美女xxoo啪啪120秒动态图| 久久久久性生活片| 小蜜桃在线观看免费完整版高清| 国产精品综合久久久久久久免费| 国产成年人精品一区二区| 久久久久九九精品影院| av黄色大香蕉| 女同久久另类99精品国产91| 国产高清激情床上av| 日日干狠狠操夜夜爽| 欧美成人精品欧美一级黄| 麻豆成人av视频| 欧美日韩在线观看h| 观看美女的网站| 久久人人爽人人片av| 97超碰精品成人国产| 国产极品天堂在线| 免费看美女性在线毛片视频| 成人二区视频| 亚洲欧美日韩东京热| 亚洲欧美日韩无卡精品| 一夜夜www| 国产精品伦人一区二区| 色5月婷婷丁香| 国产一区二区三区av在线 | 国产在视频线在精品| 三级男女做爰猛烈吃奶摸视频| 日韩欧美一区二区三区在线观看| 最后的刺客免费高清国语| 欧美高清性xxxxhd video| 日韩,欧美,国产一区二区三区 | 丰满人妻一区二区三区视频av| 午夜免费激情av| 丝袜喷水一区| 欧美精品一区二区大全| 美女黄网站色视频| 一级毛片电影观看 | 美女黄网站色视频| 亚洲综合色惰| 噜噜噜噜噜久久久久久91| 国产高清有码在线观看视频| 一本一本综合久久| 丝袜喷水一区| 在线天堂最新版资源| 国产精品免费一区二区三区在线| 国内精品宾馆在线| 可以在线观看毛片的网站| 欧美+亚洲+日韩+国产| 精品久久国产蜜桃| 夜夜夜夜夜久久久久| 久久久久国产网址| 成人国产麻豆网| 中国美女看黄片| 久久久精品大字幕| 日韩精品青青久久久久久| 国产精品精品国产色婷婷| 国产69精品久久久久777片| 搞女人的毛片| 国产精品久久久久久精品电影| 久久午夜亚洲精品久久| 日韩一区二区视频免费看| 2021天堂中文幕一二区在线观| 69人妻影院| 国产91av在线免费观看| 成人特级黄色片久久久久久久| 亚洲欧洲日产国产| 如何舔出高潮| 亚洲中文字幕日韩| 一级毛片电影观看 | 老司机影院成人| 97超碰精品成人国产| 国产一区二区在线观看日韩| 国产成人影院久久av| 麻豆一二三区av精品| 少妇人妻一区二区三区视频| 亚洲高清免费不卡视频| 亚洲av成人精品一区久久| 亚洲精品自拍成人| 日本爱情动作片www.在线观看| 国产乱人偷精品视频| 1000部很黄的大片| 淫秽高清视频在线观看| 性欧美人与动物交配| 三级经典国产精品| 九色成人免费人妻av| 99热这里只有是精品在线观看| 白带黄色成豆腐渣| 国产男人的电影天堂91| 成人av在线播放网站| 中国国产av一级| 熟女人妻精品中文字幕| 欧美日韩国产亚洲二区| 精品一区二区免费观看| 国产精品久久久久久精品电影小说 | 久久草成人影院| 国产91av在线免费观看| 久久久欧美国产精品| 日本免费一区二区三区高清不卡| 亚洲国产欧洲综合997久久,| 免费看美女性在线毛片视频| 性欧美人与动物交配| 成人午夜精彩视频在线观看| 亚洲成人久久性| 久久精品久久久久久噜噜老黄 | 国产私拍福利视频在线观看| 卡戴珊不雅视频在线播放| 如何舔出高潮| 免费无遮挡裸体视频| 色吧在线观看| 最近2019中文字幕mv第一页| 亚洲,欧美,日韩| 深夜a级毛片| 欧美xxxx黑人xx丫x性爽| 久久这里有精品视频免费| 深夜a级毛片| 春色校园在线视频观看| 午夜免费男女啪啪视频观看| 一区福利在线观看| 日韩 亚洲 欧美在线| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品一及| 麻豆国产av国片精品| 欧美+日韩+精品| 免费电影在线观看免费观看| 少妇人妻精品综合一区二区 | 日韩欧美一区二区三区在线观看| 简卡轻食公司| 国产精品.久久久| 麻豆国产97在线/欧美| 成人亚洲精品av一区二区| 免费观看在线日韩| 听说在线观看完整版免费高清| 久久精品国产亚洲av天美| 99久久久亚洲精品蜜臀av| 我要搜黄色片| 国产大屁股一区二区在线视频| 亚洲精品久久久久久婷婷小说 | 色综合站精品国产| 久久99热6这里只有精品| 变态另类成人亚洲欧美熟女| 国产精品爽爽va在线观看网站| 日本三级黄在线观看| 亚洲中文字幕一区二区三区有码在线看| 嫩草影院精品99| 天堂影院成人在线观看| 22中文网久久字幕| 一个人观看的视频www高清免费观看| 大又大粗又爽又黄少妇毛片口| 最好的美女福利视频网| 男插女下体视频免费在线播放| 久久久久免费精品人妻一区二区| 免费电影在线观看免费观看| 一进一出抽搐动态| 岛国毛片在线播放| 精品午夜福利在线看| 成人二区视频| 国产精品久久久久久久电影| 黄色视频,在线免费观看| 日本在线视频免费播放| 久久99精品国语久久久| 国产精品久久久久久av不卡| 免费av观看视频| 国产成人91sexporn| 国产黄色视频一区二区在线观看 | 亚洲欧美精品自产自拍| 美女xxoo啪啪120秒动态图| 乱码一卡2卡4卡精品| 亚洲精品乱码久久久久久按摩| 亚洲av熟女| 国产探花在线观看一区二区| 国产一区二区在线观看日韩| 精品久久久久久久末码| 亚洲欧美精品综合久久99| 国产精品久久久久久久电影| 丰满乱子伦码专区| 亚洲国产色片| 亚洲精华国产精华液的使用体验 | 久久午夜亚洲精品久久| 国产亚洲av片在线观看秒播厂 | 少妇猛男粗大的猛烈进出视频 | 午夜福利在线观看免费完整高清在 | 美女黄网站色视频| 人妻系列 视频| .国产精品久久| 亚洲精品国产成人久久av| 亚洲第一电影网av| 欧美又色又爽又黄视频| 午夜老司机福利剧场| 亚洲人成网站在线观看播放| 我的女老师完整版在线观看| 亚洲成a人片在线一区二区| 人体艺术视频欧美日本| 激情 狠狠 欧美| 精品久久久久久久久久免费视频| 美女大奶头视频| 免费观看的影片在线观看| 日韩国内少妇激情av| 丰满人妻一区二区三区视频av| 麻豆精品久久久久久蜜桃| 人体艺术视频欧美日本| av在线天堂中文字幕| 精品久久久噜噜| 日韩精品有码人妻一区| 可以在线观看的亚洲视频| h日本视频在线播放| 亚洲最大成人av| av黄色大香蕉| av在线观看视频网站免费| 久久九九热精品免费| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区在线av高清观看| 女的被弄到高潮叫床怎么办| 91午夜精品亚洲一区二区三区| 性插视频无遮挡在线免费观看| 国产精品人妻久久久久久| 免费电影在线观看免费观看| 一卡2卡三卡四卡精品乱码亚洲| ponron亚洲| 男插女下体视频免费在线播放| 国产精品一区二区三区四区免费观看| 九九热线精品视视频播放| 国产精品电影一区二区三区| 日韩欧美精品v在线| 国产精品嫩草影院av在线观看| 成人高潮视频无遮挡免费网站| 丰满乱子伦码专区| av黄色大香蕉| 少妇被粗大猛烈的视频| 乱系列少妇在线播放| 熟女电影av网| 日日摸夜夜添夜夜爱| 日日摸夜夜添夜夜添av毛片| 亚洲18禁久久av| 蜜桃久久精品国产亚洲av| 亚洲真实伦在线观看| 精品一区二区三区视频在线| 亚洲经典国产精华液单| 午夜亚洲福利在线播放| 成人午夜精彩视频在线观看| 日韩三级伦理在线观看| 久久精品国产99精品国产亚洲性色| 网址你懂的国产日韩在线| 99热只有精品国产| 美女 人体艺术 gogo| 国产黄片美女视频| 五月玫瑰六月丁香| 中文字幕制服av| 女同久久另类99精品国产91| 波多野结衣高清作品| 精品人妻熟女av久视频| 欧美日本视频| 色噜噜av男人的天堂激情| 国产真实乱freesex| 国产精品99久久久久久久久| 99久久中文字幕三级久久日本| 春色校园在线视频观看| 赤兔流量卡办理| 国产 一区精品| 天天躁日日操中文字幕| 欧美一级a爱片免费观看看| 91av网一区二区| 国产老妇伦熟女老妇高清| 欧美最新免费一区二区三区| 男女边吃奶边做爰视频| 日韩视频在线欧美| 男女做爰动态图高潮gif福利片| 亚洲欧美日韩高清专用| 三级男女做爰猛烈吃奶摸视频| 国产黄片视频在线免费观看| 久久这里有精品视频免费| 我的女老师完整版在线观看| 人妻久久中文字幕网| 日韩欧美国产在线观看| 国产精品无大码| 国产中年淑女户外野战色| 国产极品精品免费视频能看的| 久久韩国三级中文字幕| 天天一区二区日本电影三级| 听说在线观看完整版免费高清| 免费观看精品视频网站| 99久久中文字幕三级久久日本| 国产久久久一区二区三区| www日本黄色视频网| 免费看av在线观看网站| 国产爱豆传媒在线观看| 亚洲欧美清纯卡通| 人人妻人人澡人人爽人人夜夜 | 一级黄片播放器| 国产女主播在线喷水免费视频网站 | 久久久久久久久大av| 老司机福利观看| 少妇人妻一区二区三区视频| 韩国av在线不卡| 国产精品综合久久久久久久免费| 性色avwww在线观看| 黄色日韩在线| 国产黄色小视频在线观看| 91狼人影院| 我要看日韩黄色一级片| 午夜免费男女啪啪视频观看| 男女边吃奶边做爰视频| 国产探花在线观看一区二区| 国产精品,欧美在线| 99久久成人亚洲精品观看| 男女做爰动态图高潮gif福利片| 亚洲av电影不卡..在线观看| 国产一区二区三区av在线 | 91aial.com中文字幕在线观看| 欧美3d第一页| 久久人人精品亚洲av| 久久精品久久久久久久性| av天堂在线播放| 亚洲人与动物交配视频| 国产乱人视频| 国产麻豆成人av免费视频| 日本免费一区二区三区高清不卡| 亚洲高清免费不卡视频| 国产av麻豆久久久久久久| 国产精品一及| 亚洲国产精品国产精品| 亚洲精品成人久久久久久| 一区二区三区免费毛片| 免费av观看视频| 亚洲自偷自拍三级| 国产一级毛片在线| 悠悠久久av| 少妇猛男粗大的猛烈进出视频 | 男人舔奶头视频| 久久精品夜色国产| 亚洲精品乱码久久久久久按摩| 三级毛片av免费| 91午夜精品亚洲一区二区三区| 国产麻豆成人av免费视频| 亚洲第一区二区三区不卡| 性色avwww在线观看| 亚洲第一区二区三区不卡| 美女cb高潮喷水在线观看| 国产亚洲精品久久久久久毛片| 能在线免费看毛片的网站| 99久久九九国产精品国产免费| 亚洲国产精品成人综合色| 色综合色国产| 色播亚洲综合网| 欧美不卡视频在线免费观看| 成人午夜高清在线视频| 少妇高潮的动态图| 国产精品久久久久久av不卡| 婷婷精品国产亚洲av| 欧美zozozo另类| 国产黄片美女视频| 国产成人a∨麻豆精品| 亚洲经典国产精华液单| 18禁在线无遮挡免费观看视频| 网址你懂的国产日韩在线| 好男人视频免费观看在线| 女同久久另类99精品国产91| 97热精品久久久久久| 国产亚洲精品久久久久久毛片| 国产亚洲av嫩草精品影院| 高清午夜精品一区二区三区 | 不卡一级毛片| 亚洲人与动物交配视频| 日日啪夜夜撸| 夜夜夜夜夜久久久久| 精品一区二区免费观看| 日韩欧美国产在线观看| 国产私拍福利视频在线观看| 99热这里只有是精品50| 精品久久久久久久久av| av专区在线播放| a级毛片a级免费在线| 久久精品国产亚洲av涩爱 | 99久久九九国产精品国产免费| 99久久无色码亚洲精品果冻| 国产精品1区2区在线观看.| 国产精品久久视频播放| 国产亚洲精品久久久久久毛片| 毛片女人毛片| 99久久久亚洲精品蜜臀av| 三级毛片av免费| 亚洲真实伦在线观看| 校园春色视频在线观看| 国产精品,欧美在线| 久久这里有精品视频免费| 一夜夜www| 国产老妇女一区| 国产人妻一区二区三区在| 国产极品天堂在线| 欧美极品一区二区三区四区| 国产精品一及| 99久久精品一区二区三区| 欧美性猛交╳xxx乱大交人| 少妇高潮的动态图| 日本一二三区视频观看| 在线观看av片永久免费下载| 亚洲欧美精品综合久久99| 国产精品一及| 天堂av国产一区二区熟女人妻| 校园人妻丝袜中文字幕| 精品不卡国产一区二区三区| 国产老妇伦熟女老妇高清| 免费看a级黄色片| 高清毛片免费看| 亚洲18禁久久av| 亚洲成av人片在线播放无| 亚洲五月天丁香| 精品熟女少妇av免费看| 国产中年淑女户外野战色| 人人妻人人澡欧美一区二区| 非洲黑人性xxxx精品又粗又长| 99久久久亚洲精品蜜臀av| 能在线免费观看的黄片| 亚洲精品乱码久久久久久按摩| 美女 人体艺术 gogo| 日韩av不卡免费在线播放| 最近的中文字幕免费完整| 此物有八面人人有两片| 熟女人妻精品中文字幕| av.在线天堂| 欧美xxxx黑人xx丫x性爽| 99视频精品全部免费 在线| 99在线视频只有这里精品首页| 1000部很黄的大片| 国产老妇伦熟女老妇高清| 精品一区二区三区人妻视频| 高清毛片免费观看视频网站|