• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Typical Cell Signaling Response to Ionizing Radiation:DNA Damage and Extranuclear Damage

    2012-08-02 07:22:12HuiYu
    Chinese Journal of Cancer Research 2012年2期

    Hui Yu

    Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas78229, USA

    Introduction

    Radiation-induced bystander-type biological responses were first described in overlooked literature in the late 1940s.At that time, most radiobiologists still believed that only the directly irradiated cells suffered the effects of radiation exposure through direct ionization or the action of water radiolysis products.Recently, the finding of Nagasawa and Little[1]in 1992 sparked people’s interest in radiation-induced bystander effect.Their results showed that when the monolayer cells were exposed to low-dose α-particles, some cells (30% of the cells) showed biological damage in sister chromatid exchanges (SCEs), and less than 1% of the cells were estimated to undergo a nuclear traversal based on the microdosimetric principle.Though not recognized initially, in the past 17 years, the significance of radiationinduced bystander effects has been widely accepted.Occurrences of the bystander effect after various qualities,doses, and dose-rates of radiation have been recently demonstrated in studies of bothin vitroand a fewin vivomodels.Bystander communication has been shown both in the systems where irradiated cells are in contact with each other through gap junction pathways and in the systems where the cells are at considerable distances apart from each other via secreted factors[2].It i compelling to speculate that, when cells are in clos contact, signaling processes mediated through solubl factors in the medium may play a predominant rol Several soluble factors have been considered as potenti candidates in the bystander response.However, ver little is known about the nature of the signalin mediators, their targets in non-irradiated cells, the mechanism of maintaining sustained communication, o the duration of the communication after irradiation.

    Overall, bystander effects are manifested as th expression of a wide range of endpoints, such a mutagenesis, chromosomal aberrations, micronucleatio neoplastic transformation, proliferation, and different ation.Radiation-induced bystander effects refer to th responses of cells that were not subjected to ionizin radiation (IR) exposure.In other words, the damage caused by radiation in irradiated cells are augmented b subsequent damage to non-irradiated bystander cell These bystander cells may have been neighbors o irradiated cells or may have been physically separate but subject to soluble secreted signals from irradiate cells.

    Surviving tumor cells at the treatment site afte radiation therapy may elicit signaling mechanisms tha may be responsible for clonal selection, tumor ce proliferation/tumor growth, and metastasis.Hence, it i imperative to understand the relationship between tumo re-growth and those altered responses following radiation exposure.If this was to occur, either the cells hit by radiation should be viable and non-responsive to radiation, which is very unlikely, or a sub group of tumor cells should develop resistance and maintain functional integrity to elicit communication in both irradiated and non-targeted bystander neighboring cells.This might allow the cancer cells that are surviving the radiation exposure to develop a clone (clonal selection), re-grow(tumor cell proliferation and growth), and cause tumor relapse at the treatment site.Simultaneous angiogenic support through intercellular communication between the surviving tumor cells and the surrounding endothelium would further augment the tumor growth and increase the risk of distant metastasis.

    DNA Damage and Activation of Nuclear Sensory Protein

    There are many types of DNA damage induced by radiation, such as single-strand breaks (SSBs) and doublestrand breaks (DSBs), sugar and base modifications, and DNA-protein cross-links[3].The damaged DNA can be not only recognized by the sensory proteins, leading to recruitment of DNA repair enzymes, but also generate signals to delay cell cycle progression until the DNA damage is repaired.Some important proteins implicated in the surveillance to DNA damage and the activation of the damage checkpoint and cell cycle arrest are phosphatidylinositol 3-kinase Family (PI3K-like kinase),like ataxia telangiectasia mutated (ATM), and ATM,Rad3-related protein (ATR).ATM, a serine/threonine-specific protein kinase, is named for the disease, ataxia telangiectasia, caused by mutations of ATM[4].Activated ATM can phosphorylate and regulate various downstream target proteins, including tumor suppressor proteins P53 and breast cancer type 1 susceptibility protein (BRCA1), checkpoint kinase 2(CHK2), checkpoint proteins RAD17 and RAD9, and DNA repair protein Nibrin (NBS1), leading to cell cycle arrest, DNA repair or apoptosis[5].ATR is also a serine/threonine-specific protein kinase, and mutations in ATR are responsible for a rare human disease, Seckel syndrome.ATR has a similar function to ATM that once it is activated, it can phosphorylate downstream proteins like serine/threonine-protein kinase (CHK1), initiating a signal transduction cascade that culminates in cell cycle arrest[6,7].However, there is difference between ATM and ATR on the kinetics of activation and the types of damage to which they respond best.ATM is preferred in response to DSBs, while ATR is activated in response to persistent single-stranded DNA, which usually occur at stalled replication forks as an intermediate in DNA detection and repair pathways such as nucleotide excision repair(NER) and homologous recombination[8].Recent studies also support that ATM is the main determinant of the early cell cycle checkpoint response to IR-induced damage, whereas ATR responds later to processed damage induced by IR[9,10].P53 is a tumor suppressor protein, and is usually called as "the guardian of the genome" to describe its important role in conserving stability by preventing genome mutation.In normal cells,P53 is highly unstable due to the fact that Mdm2 (Hdm2 in humans) binds to P53 to promote its ubiquitylation and destruction in proteasomes, so P53 usually presents at very low concentration.DNA damage activates the protein kinases that cause the phosphorylation of P53,then reduce its binding to Mdm2 and decrease the P53 degradation.As a result, P53 accumulates to high concentration level and stimulate the gene transcription.The P53 functions through two main mechanisms: It can activate DNA repair protein and/or promote transcription of genes that induce cell cycle arrest(especiallyp21, it is transcriptionally activated by P53,and can suppress G1/S-Cdk and S-Cdk complexes, and keep the cell cycle arrest in G1).Alternatively, if the DNA damage cannot be reparable any more, it can initiate apoptosis, the programmed cell death (Figure 1)[11].

    It is not limited that, ATR, ATM, CHk1, CHk2 as we mentioned above, are implicated in the genome integrity checkpoint or other responses to several forms of DNA damage (induced by either ultraviolet (UV), IR or chemical agents, such as hydrogen peroxide)[12,13], another group of protein kinase, mitogen-activated protein kinase(MAPK), including c-Jun N-terminal kinases (JNK1/3), extracellular-signal-regulated kinases (ERK1/2),ERK5 and P38 mitogen-activated protein kinases (p38 MAPK), can also respond to several types of stress, such as membrane damage, oxidative stress, osmotic shock,and heat shock, through transcriptionally activatingp53.

    Extranuclear Damage and Activation

    IR can directly interact with water, then generate small amounts of reactive oxygen species (ROS), which are amplified by mitochondria, generating large amount of ROS and reactive nitrogen species (RNS).ROS and RNS can inhibit protein tyrosine phosphatase (PTPase)activities.PTPase can remove phosphate groups from phosphorylated tyrosine residues on proteins.PTPase and tyrosine kinase work together to regulate the phosphorylation state balance of many important tyrosine phosphorylation signaling molecules.Hence, the inhibition of PTPase induced by radiation through the ROS and RNS increase the potential of tyrosine phosphorylation of the downstream proteins.Recent data also showed that the epidermal growth factor receptor(EGFR; ErbB-1; HER1 in humans) can be rapidly activated by IR in many tumor cellsin vitro[14,15].EGFR, a family of four structurally related receptor tyrosine kinases, is high affinity cell surface receptors for various growth factors, cytokines and hormones.Insufficient EGFR signaling in humans is associated with the development of neurodegenerative diseases[16], while somatic mutant EGFR are associated with aggressive tumor growth in a number of cancers[17].

    The signals can be broadcasted from the cell surface EGFR to the other parts of the cell through the transducer proteins, among which a very important one is Ras protein.Ras proteins belong to the Ras superfamily of monomeric GTPase.Like other guanosine-5'-triphosphate (GTP)-binding proteins, Ras functions as a cycling transition between two conformations, activated and inactivated forms, respectively RAS-GTP and RAS-GDP.The inactivated Ras is tightly bound to guanosine diphosphate (GDP), and guanine nucleotide exchange factors (GEFs) can activate Ras by stimulating it to give up GDP, and uptake GTP from the cytosol at the same time.GTPase-activating proteins (GAPs) can inactivate Ras by increasing the rate of hydrolysis of its bound GTP.Overactive mutant Ras can be found in about 30% human tumors, because it is resistant to GAPs to avoid the hydrolysis of bound GTP, and keep the active state which can promote the development of tumor cells.Active Ras can in turn activate many downstream signaling pathways.One of novel types is MAPK serine/threonine phosphorylation pathway.Multiple pathways involving many proteins structurally and functionally function differently (Figure 1).The active Ras activates MAP-kinase-kianse-kianse (MAPKKK), which is a serine/threonine protein kinase.It is recruited from the cytosol as inactivated state to the cytosolic face of the plasma membrane as activated state, which then activates the MAP-kinase-kianse (MAPKK).MAPKK is a dual function kianse that can phosphorylate both tyrosine and threonine residues on its substrate MAPK, and this unusual feature can make sure MAPK is specifically activated by MAPKK.Activated MAPK in turn phosphorylates lots of downstream proteins including other gene kinases and gene regulatory proteins resulting in protein activitation and gene expression change(Figure 2).

    Figure 1.Signaling pathways involving many proteins structurally and functionally induced by IR.

    Bystander Effect

    Immense advances have been made in cancer treatment by radiotherapy.Currently, one of the major problems that still remain is the recurrent tumor relapse after treatment of primary tumor.A newly emerging phenomenon called “bystander effect” is responsible for tumor relapse after treatment.Tissue/cells at treatment site (including tumor-associated endothelial cells, normal tissue and remnant cancer cells) that initially survive irradiation may elicit factors.These factor(s) may transduce and alter the physiology of the neighboring bystander cells[18-22]by paracrine feedback signaling that may pre-dispose the cells to carcinogenic processes[23]in normal tissue, and tumor cell growth in surviving cancer cells leading to tumor recurrence at later time.Reports from our laboratory demonstrated that radiation at doses used in fractionated radiotherapy could selectively induce the DNA-binding activity of nuclear factor kappa-light-chain-enhancer of activated B cells(NF-κB)[24-26]and the occurrence of a positive feedback loop between tumor necrosis factor-alpha (TNF-α) and NF-κB.Other published reports also revealed the possible occurrence of autocrine loop mechanisms upon radiation exposure[27-29].NF-κB-dependent cellular functions include cytoprotection, oxidative stress response,anti-apoptosis, and transformation[30-33], so occurrence of processes such as signal amplification through cytokine mediator and NF-κB upon radiation exposure may ultimately cause cells at the treatment site to undergo tumor cell proliferation.

    Figure 2.Typical MAPK signaling pathway.

    TNF-α Stimulates NF-κB Activation

    Depending upon cell type/strain, TNF-α exerts its function through two different pathways with opposite effects[34]: promotion or attenuation of apoptosis in target cells.Attenuation of the apoptotic pathway may largely be attributed to the capacity of TNF-α to initiate a preferred NF-κB-dependent signaling.Recently this mechanism has been demonstrated bothin vitrousing human primary cells[35]andin vivoin hepatic ischemiareperfusion[36].The initial steps in TNF-α pathway to activate NF-κB are fairly well understood[37].Interaction of TNF-α with one of the two distinct surface receptors TNFR1 (also called P55;)[38]leads to the recruitment of tumor necrosis factor receptor type 1-associated death domain protein (TRADD) [but not Fas-associated protein with death domain (FADD)] to the intracellular portion of the receptor[39].Receptor-bound TRADD now recruits both protein kinase designated receptor-interacting protein (RIP) and the ring/zinc finger protein TNF receptor associated factor 2 (TRAF2)[40,41].These two adaptor proteins are thought to interact with NF-κB-inducing kinase (NIK)[42]which can directly phophorylate and activate IκB kinases[42-44].IκB kinases then phosphorylate IκB Family members, which dissociate and undergo proteolytic degradation and release active NF-κB complex.Concurrently,TNF-α-generated free radicals[45]could also be involved in activating NF-κB directly through other mechanisms.

    NF-κB is an inducible transcriptional regulator,ubiquitously expressed by human and other mammalian cells[46-49].Our group[24-26]and others[50]have demonstrated that radiation at doses ranging from 0.1 to 2 Gy could activate NF-κB.Of several transcription factors evaluated in different mammalian cells, NF-κB is the one that is profoundly activated in irradiated cell population[51,52].This pathway once is induced, it will proceed via phosphorylation of the inhibitor subunits IκB-α and IκB-β[29,53,54].The phosphorylation of inhibitor subunits is followed by ubiquitination and degradation,resulting in the release of active NF-κB.Upon activation,NF-κB translocates into the nucleus, binds sequence-specifically to the promoter/enhancer region of various target genes and transactivates their expression[55-60].Recent progress in molecular cloning analysis has disclosed the presence of one or more NF-κB binding site in the promoter/ enhancer region of TNF-α[31,55,57].NF-κB-mediated TNF-α expression by several inducers has been clearly demonstrated by several laboratories.Also, a recent study has shown a positive autocrine loop in human mast cells stimulated with anti-IgE that augments the activation of NF-κB and initiates the NF-κB-TNF-α feedback cycle[27].In addition,a study demonstrating autocrine effects of fibroblast growth factor (bFGF) in repair of radiation damage of endothelial cells and a study showing an increased mRNA and protein levels of TNF-α that remain in elevated levels as long as 5 days post-exposure clearly indicated the possibility of a feedback mechanism in which TNF-α induces activation of NF-κB, which in turn regulates TNF-α expression.

    NF-κB Regulates Survival Advantage

    The active form of NF-κB could induce transcription of antiapoptotic gene products[61-65]and initiate transcriptional activation of telomerase.The antiapoptotic pathway, in conjunction with telomerase activation through TNF-α-mediated NF-κB activation in response to radiation could thus impart survival advantage in the bystander cells.

    NF-κB induces activation of apoptosis inhibitor protein family.Transfection studies as well as embryonic lethality of NF-κB p65 knockout mice, as a consequence of extensive apoptosis in the liver, strongly support the anti-apoptotic role of NF-κB[66].Further cells lacking the p65 subunit of NF-κB or cells over-expressing an IκB-α mutant showed enhanced susceptibility to apoptosis[67].Activation of NF-κB and the duration of the activation are likely to dictate the anti-apoptotic pathway through several downstream effectors/mediators including cellular inhibitors of apoptosis (cIAPs)[61-63,67]and bcl family proteins[68,69].cIAPs, in general, can inhibit apoptosis induced by both death receptors and a mitochondria-dependent pathway.cIAP such as surviving expressed in a cell cycle-dependent manner at the G2/M phase of the cell cycle[70,71].Surviving thus inhibits the normal apoptotic pathway at this check point[72,73]and allows the cells to progress through mitosis and continue cell division.NF-κB also controls the B-cell lymphoma (bcl) family of proteins that inhibit apoptosis through B-cell lymphoma-extra large (bcl-xL) proteins.Substantial evidence indicated that NF-κB could regulate these proteins at the transcriptional level by binding to their promoter/enhancer region[74,75]or indirectly through CRE/SP-1 cooperative regulation[74].Studies have indicated that, NF-κB- mediated BCL-2 expression may be initiated through TNF-α signaling[76].Since these factors must act in concert, studying the alterations in a single protein may not yield complete information.Mice lacking single apoptotic factor fail to exhibit massive apoptosis and often are believed to function through compensatory mechanism[77].Accumulating evidence points out that upregulation of telomerase allows cells to escape from senescence and proliferate indefinitely.Ectopic expression of telomerase catalytic subunit telomerase reverse transcriptase (hTERT) in telomerase-negative cells is sufficient to restore telomerase activity and extend their life span[78].On the other hand, introduction of dominant-negative hTERT into immortalized cells limits their growth.In addition,the relationship between telomerase activation and apoptosis is apparent and an inverse relationship of telomerase activity and programmed cell death has been well documented[79-82].Recently, it was shown that activation of NF-κB by phorbol 12-myristate 13-acetate(PMA) enhanced the activity of the native TERT promoter in mouse hepatoma cells[83].Thus, it is evident that NF-κB regulates transcription of the telomerase catalytic subunit.Other than direct transactivation of hTERT, it is possible that NF-κB may also regulate telomerase activity through several other mechanisms; for example, NF-κB activation of Myc expression may lead to subsequent increase in TERT expression[84].Alternatively, by interfering with the repressors of TERT activity (Wilm’s tumor 1 suppressor gene), Mad, and histone deacetylase, NF-κB may maintain persistent telomerase activity[84].

    Collectively, these studies strongly support the positive feedback loop.However, there has been no study undertaken to correlate the activation of NF-κB, induction of TNF-α that leads to bystander effect resulting in genomic instability, and survival advantage after exposure to clinically relevant doses of radiation.

    Disclosure of Potential Conflicts of Interest

    No potential conflicts of interest were disclosed.

    1.Nagasawa H, Little JB.Induction of sister chromatid exchanges by extremely low doses of alpha-particles.Cancer Res 2002; 52:6394-6.

    2.Azzam EI, de Toledo SM, Gooding T, et al.Intercellular communication is involved in the bystander regulation of gene expression in human cells exposed to very low fluences of alpha particles.Radiat Res 1998;150:497-504.

    3.Bourguignon MH, Gisone PA, Perez MR, et al.Genetic and epigenetic features in radiation sensitivity part I: Cell signalling in radiation response.Eur J Nucl Med Mol Imaging 2005; 32:229-46.

    4.Shiloh Y.ATM.From phenotype to functional genomics--and back.Ernst Schering Res found Workshop 2002; 36:51-70.

    5.Kastan MB, Lim DS.The many substrates and functions of ATM.Nat Rev Mol Cell Biol 2000; 1:179-86.

    6.Brown EJ, Baltimore D.Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance.Genes Dev 2003; 17:615-28.

    7.Cha RS, Kleckner N.ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones.Science 2002; 297:602-6.

    8.Zou L, Elledge SJ.Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes.Science 2003; 300:1542-8.

    9.Nyberg KA, Michelson RJ, Putnam CW.Toward maintaining the genome:DNA damage and replication checkpoints.Annu Rev Genet 2002;36:617-56.

    10.Zhou BB, Elledge SJ.The DNA damage response: Putting checkpoints in perspective.Nature 2000; 408:433-9.

    11.Hehnly H, Doxsey S.Polarity sets the stage for cytokinesis.Mol Biol Cell 2012; 23:7-11.

    12.Bell S, Klein C, Muller L, et al.P53 contains large unstructured regions in its native state.J Mol Biol 2002; 322:917-27.

    13.Bates S, Phillips AC, Clark PA, et al.p14ARF links the tumor suppressors RB and p53.Nature 1998; 395:124-5.

    14.Tombes RM, Auer KL, Mikkelsen R, et al.The mitogen-activated protein(MAP) kinase cascade can either stimulate or inhibit DNA synthesis in primary cultures of rat hepatocytes depending upon whether its activation is acute/phasic or chronic.Biochem J 1998; 330:1451-60.

    15.Kavanagh BD, Lin PS, Chen P, et al.Radiation-induced enhanced proliferation of human squamous cancer cells in vitro: A release from inhibition by epidermal growth factor.Clin Cancer Res 1995; 1:1557-62.

    16.Bublil EM, Yarden Y.The EGF receptor family: Spearheading a merger of signaling and therapeutics.Curr Opin Cell Biol 2007; 19:124-34.

    17.Paez JG, Janne PA, Lee JC, et al.EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy.Science 2004; 304:1497-500.

    18.Clutton SM, Townsend KM, Walker C, et al.Radiation-induced genomic instability and persisting oxidative stress in primary bone marrow cultures.Carcinogenesis 1996; 17:1633-9.

    19.Azzam EI, De Toledo SM, Spitz DR, et al.Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from alpha-particle-irradiated normal human fibroblast cultures.Cancer Res 2002; 62:5436-42.

    20.Nagar S, Smith LE, Morgan WF.Characterization of a novel epigenetic effect of ionizing radiation: The death-inducing effect.Cancer Res 2003;63:324-8.

    21.Munro AJ.Bystander effects and their implications for clinical radiotherapy.J Radiol Prot 2009; 29:A133-42.

    22.Nagasawa H, Cremesti A, Kolesnick R, et al.Involvement of membrane signaling in the bystander effect in irradiated cells.Cancer Res 2002;62:2531-4.

    23.Boothman DA, Meyers M, Odegaard E, et al.Altered G1 checkpoint control determines adaptive survival responses to ionizing radiation.Mutat Res 1996; 358:143-53.

    24.Mohan N, Meltz ML.Induction of nuclear factor kappa B after low-dose ionizing radiation involves a reactive oxygen intermediate signaling pathway.Radiat Res 1994;140:97-104.

    25.Prasad AV, Mohan N, Chandrasekar B,.Activation of nuclear factor kappa B in human lymphoblastoid cells by low-dose ionizing radiation.Radiat Res 1994; 138:367-72.

    26.Mohan N, Sadeghi K, Reiter RJ, et al.The neurohormone melatonin inhibits cytokine, mitogen and ionizing radiation induced NF-kappa B.Biochem Mol Biol Int 1995; 37:1063-70.

    27.Coward WR, Okayama Y, Sagara H, et al.NF-kappa B and TNF-alpha: A positive autocrine loop in human lung mast cells? J Immunol 2002;169:5287-93.

    28.Haimovitz-Friedman A, Vlodavsky I, Chaudhuri A.Autocrine effects of fibroblast growth factor in repair of radiation damage in endothelial cells.Cancer Res 1991; 51:2552-8.

    29.Grilli M, Chiu JJ, Lenardo MJ.NF-kappa B and rel: Participants in a multiform transcriptional regulatory system.Int Rev Cytol 1993; 143:1-62.

    30.Wu J, Dent P, Jelinek T, et al.Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3',5'-monophosphate.Science 1993;262:1065-9.

    31.Wang CY, Mayo MW, Baldwin AS Jr.TNF- and cancer therapy-induced apoptosis: Potentiation by inhibition of NF-kappaB.Science 1996;274:784-7.

    32.Lenardo MJ, Baltimore D.NF-kappa B: A pleiotropic mediator of inducible and tissue-specific gene control.Cell 1989; 58:227-9.

    33.Szarek E, Cheah PS, Schwartz J, et al.Molecular genetics of the developing neuroendocrine hypothalamus.Mol Cell Endocrinol 2010; 323:115-23.

    34.Chen Q, Casali B, Pattacini L, et al.Tumor necrosis factor-alpha protects synovial cells from nitric oxide induced apoptosis through phosphoinositide 3-kinase akt signal transduction.J Rheumatol 2006; 33:1061-8.

    35.Relic B, Bentires-Alj M, Ribbens C, et al.TNF-alpha protects human primary articular chondrocytes from nitric oxide-induced apoptosis via nuclear factor-kappaB.Lab Invest 2002; 82:1661-72.

    36.Teoh N, Leclercq I, Pena AD, et al.Low-dose TNF-alpha protects against hepatic ischemia-reperfusion injury in mice: Implications for preconditioning.Hepatology 2003; 37:118-28.

    37.Liu ZG, Hsu H, Goeddel DV, et al.Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death.Cell 1996; 87:565-76.

    38.Tartaglia LA, Goeddel DV.Two TNF receptors.Immunol Today 1992;13:151-3.

    39.Hsu H, Xiong J, Goeddel DV.The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation.Cell 1995; 81:495-504.

    40.Hsu H, Shu HB, Pan MG, et al.TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways.Cell 1996;84:299-308.

    41.Hsu H, Huang J, Shu HB, et al.TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex.Immunity 1996;4:387-96.

    42.Lee FS, Hagler J, Chen ZJ, et al.Activation of the IkappaB alpha kinase complex by MEKK1, a kinase of the JNK pathway.Cell 1997; 88:213-22.

    43.Karin M, Delhase M.JNK or IKK, AP-1 or NF-kappaB, which are the targets for MEK kinase 1 action? Proc Natl Acad Sci USA 1998; 95:9067-9.

    44.Malinin NL, Boldin MP, Kovalenko AV, et al.MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1.Nature 1997; 385:540-4.

    45.Singh N, Khanna N, Sharma H, et al.Insights into the molecular mechanism of apoptosis induced by TNF-alpha in mouse epidermal JB6-derived RT-101 cells.Biochem Biophys Res Commun 2002; 295:24-30.

    46.Yang JQ, Zhao W, Duan H, et al.v-ha-RaS oncogene upregulates the 92-kDa type IV collagenase (MMP-9) gene by increasing cellular superoxide production and activating NF-kappaB.Free Radic Biol Med 2001; 31:520-9.

    47.Baeuerle PA, Baltimore D.I kappa B: A specific inhibitor of the NF-kappa B transcription factor.Science 1988; 242:540-6.

    48.Schreck R, Rieber P, Baeuerle PA.Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1.EMBO J 1991; 10:2247-58.

    49.Baeuerle PA, Baltimore D.Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-kappa B transcription factor.Cell 1988; 53:211-7.

    50.McBride WH, Pajonk F, Chiang CS, et al.NF-kappa B, cytokines,proteasomes, and low-dose radiation exposure.Mil Med 2002; 167:66-7.

    51.Brach MA, Hass R, Sherman ML, et al.Ionizing radiation induces expression and binding activity of the nuclear factor kappa B.J Clin Invest 1991;88:691-5.

    52.Sahijdak WM, Yang CR, Zuckerman JS, et al.Alterations in transcription factor binding in radioresistant human melanoma cells after ionizing radiation.Radiat Res 1994; 138:S47-51.

    53.Ghosh S, Baltimore D.Activation in vitro of NF-kappa B by phosphorylation of its inhibitor I kappa B.Nature 1990; 344:678-82.

    54.Libermann TA, Baltimore D.Activation of interleukin-6 gene expression through the NF-kappa B transcription factor.Mol Cell Biol 1990;10:2327-34.

    55.Osborn L, Kunkel S, Nabel GJ.Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B.Proc Natl Acad Sci USA 1989; 86:2336-40.

    56.Cogswell JP, Godlevski MM, Wisely GB, et al.NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site.J Immunol 1994; 153:712-23.

    57.Collart MA, Baeuerle P, Vassalli P.Regulation of tumor necrosis factor alpha transcription in macrophages: Involvement of four kappa B-like motifs and of constitutive and inducible forms of NF-kappa B.Mol Cell Biol 1990;10:1498-506.

    58.Shakhov AN, Collart MA, Vassalli P, et al.Kappa B-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor alpha gene in primary macrophages.J Exp Med 1990;171: 35-47.

    59.Ho YS, Howard AJ, Crapo JD.Molecular structure of a functional rat gene for manganese-containing superoxide dismutase.Am J Respir Cell Mol Biol 1991; 4:278-86.

    60.Wu H, Lozano G.NF-kappa B activation of p53.A potential mechanism for suppressing cell growth in response to stress.J Biol Chem 1994; 269:20067-74.

    61.Chu ZL, McKinsey TA, Liu L, et al.Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control.Proc Natl Acad Sci USA 1997; 94:10057-62.

    62.Stehlik C, de Martin R, Kumabashiri I, et al.Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis.J Exp Med 1998;188:211-6.

    63.Messadi DV, Doung HS, Zhang Q, et al.Activation of NFkappaB signal pathways in keloid fibroblasts.Arch Dermatol Res 2004; 296: 125-33.

    64.Heckman CA, Mehew JW, Boxer LM.NF-kappaB activates bcl-2 expression in t(14;18) lymphoma cells.Oncogene 2002; 21:3898-908.

    65.Opipari AW Jr, Hu HM, Yabkowitz R, et al.The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity.J Biol Chem 1992;267:12424-7.

    66.Sonenshein GE.Rel/NF-kappa B transcription factors and the control of apoptosis.Semin Cancer Biol 1997; 8:113-9.

    67.Wang CY, Mayo MW, Korneluk RG, et al.NF-kappaB antiapoptosis:Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation.Science 1998; 281:1680-3.

    68.Sumitomo M, Tachibana M, Nakashima J, et al.An essential role for nuclear factor kappa B in preventing TNF-alpha-induced cell death in prostate cancer cells.J Urol 1999; 161:674-9.

    69.Beg AA, Baltimore D.An essential role for NF-kappaB in preventing TNF-alpha-induced cell death.Science 1996; 274:782-4.

    70.Kato K, Takeuchi H, Miyahara N, et al.Distinct orders of GalNAc incorporation into a peptide with consecutive threonines.Biochem Biophys Res Commun 2001; 287:110-5.

    71.Li F, Ambrosini G, Chu EY, et al.Control of apoptosis and mitotic spindle checkpoint by survivin.Nature 1998; 396:580-4.

    72.Ambrosini G, Adida C, Altieri DC.A novel anti-apoptosis gene, survivin,expressed in cancer and lymphoma.Nat Med 1997; 3:917-21.

    73.Grossman D, Kim PJ, Schechner JS, et al.Inhibition of melanoma tumor growth in vivo by survivin targeting.Proc Natl Acad Sci USA 2001;98:635-40.

    74.Ciuffreda L, Del Bufalo D, Desideri M, et al.Growth-inhibitory and antiangiogenic activity of the MEK inhibitor PD0325901 in malignant melanoma with or without BRAF mutations.Neoplasia 2009; 11:720-31.

    75.Dong QG, Sclabas GM, Fujioka S, et al.The function of multiple IkappaB :NF-kappaB complexes in the resistance of cancer cells to taxol-induced apoptosis.Oncogene 2002; 21:6510-9.

    76.Tamatani M, Che YH, Matsuzaki H, et al.Tumor necrosis factor induces bcl-2 and bcl-x expression through NFkappaB activation in primary hippocampal neurons.J Biol Chem 1999; 274:8531-8.

    77.Karin M, Lin A.NF-kappaB at the crossroads of life and death.Nat Immunol 2002; 3:221-7.

    78.Wang Z, Yi J, Li H, et al.Extension of life-span of normal human fibroblasts by reconstitution of telomerase activity.Shi Yan Sheng Wu Xue Bao 2000;33:129-40.

    79.Burger AM, Double JA, Newell DR.Inhibition of telomerase activity by cisplatin in human testicular cancer cells.Eur J Cancer 1997; 33:638-44.

    80.Kondo S, Tanaka Y, Kondo Y, et al.Antisense telomerase treatment:Induction of two distinct pathways, apoptosis and differentiation.FASEB J 1998; 12:801-11.

    81.Mandal M, Kumar R.Bcl-2 modulates telomerase activity.J Biol Chem 1997; 272:14183-7.

    82.Fu W, Begley JG, Killen MW, et al.Anti-apoptotic role of telomerase in pheochromocytoma cells.J Biol Chem 1999; 274:7264-71.

    83.Yin L, Hubbard AK, Giardina C.NF-kappa B regulates transcription of the mouse telomerase catalytic subunit.J Biol Chem 2000; 275:36671-5.

    84.Wang J, Xie LY, Allan S, et al.Myc activates telomerase.Genes Dev 1998;12:1769-74.

    亚洲男人天堂网一区| 日本撒尿小便嘘嘘汇集6| 国产激情久久老熟女| 好看av亚洲va欧美ⅴa在| 身体一侧抽搐| 啦啦啦 在线观看视频| 午夜福利视频1000在线观看 | 女人被躁到高潮嗷嗷叫费观| 亚洲视频免费观看视频| 丝袜人妻中文字幕| 黑人欧美特级aaaaaa片| 久热爱精品视频在线9| 国产一区在线观看成人免费| 满18在线观看网站| 成人国语在线视频| 欧美国产精品va在线观看不卡| 人人妻,人人澡人人爽秒播| 欧美日本中文国产一区发布| 欧美日韩福利视频一区二区| 波多野结衣巨乳人妻| 亚洲五月色婷婷综合| 国产一区在线观看成人免费| 久久精品91无色码中文字幕| 最新美女视频免费是黄的| 成年版毛片免费区| 欧美午夜高清在线| 香蕉国产在线看| 久久影院123| 一二三四在线观看免费中文在| 亚洲国产精品999在线| 免费高清在线观看日韩| x7x7x7水蜜桃| 国产免费男女视频| 天天躁狠狠躁夜夜躁狠狠躁| 高清黄色对白视频在线免费看| 亚洲成国产人片在线观看| 国产亚洲精品综合一区在线观看 | 人妻久久中文字幕网| 国产精品久久电影中文字幕| 亚洲五月色婷婷综合| 国产精品久久久人人做人人爽| 日韩av在线大香蕉| 天堂影院成人在线观看| 999精品在线视频| 88av欧美| 欧美日韩福利视频一区二区| 女人爽到高潮嗷嗷叫在线视频| 神马国产精品三级电影在线观看 | 男女床上黄色一级片免费看| 国产极品粉嫩免费观看在线| 好看av亚洲va欧美ⅴa在| 人人妻人人澡欧美一区二区 | 国语自产精品视频在线第100页| 一级毛片高清免费大全| 国产av在哪里看| 免费高清在线观看日韩| 欧美色欧美亚洲另类二区 | 电影成人av| 熟女少妇亚洲综合色aaa.| 超碰成人久久| 丁香欧美五月| 免费看十八禁软件| 黄色丝袜av网址大全| 在线观看66精品国产| 一进一出好大好爽视频| 制服诱惑二区| 在线观看舔阴道视频| 精品人妻1区二区| 国产成人精品在线电影| 桃色一区二区三区在线观看| www日本在线高清视频| 99re在线观看精品视频| 日韩高清综合在线| 日日夜夜操网爽| 午夜视频精品福利| 黄色视频,在线免费观看| 日本撒尿小便嘘嘘汇集6| 国产成+人综合+亚洲专区| 亚洲自拍偷在线| 久久人妻熟女aⅴ| 十分钟在线观看高清视频www| 美国免费a级毛片| 在线视频色国产色| 亚洲五月天丁香| 伦理电影免费视频| 日本免费一区二区三区高清不卡 | 欧美激情久久久久久爽电影 | 啦啦啦韩国在线观看视频| 纯流量卡能插随身wifi吗| 久久久久久国产a免费观看| 中文字幕人妻熟女乱码| 中文字幕精品免费在线观看视频| 在线永久观看黄色视频| 波多野结衣一区麻豆| 国产精品电影一区二区三区| 亚洲成人精品中文字幕电影| 国产精品久久视频播放| 国产激情欧美一区二区| 精品久久久久久,| 日日干狠狠操夜夜爽| 国产亚洲欧美精品永久| 亚洲国产高清在线一区二区三 | 免费观看人在逋| 99久久综合精品五月天人人| 免费无遮挡裸体视频| 丰满的人妻完整版| 精品欧美国产一区二区三| 欧美最黄视频在线播放免费| 亚洲成人精品中文字幕电影| 一级,二级,三级黄色视频| 制服人妻中文乱码| www.自偷自拍.com| 黄频高清免费视频| 亚洲国产精品久久男人天堂| 成人av一区二区三区在线看| 少妇裸体淫交视频免费看高清 | 一级片免费观看大全| 国产片内射在线| 精品一区二区三区视频在线观看免费| 亚洲狠狠婷婷综合久久图片| 国产亚洲欧美精品永久| 老汉色∧v一级毛片| 国产精品影院久久| 久久中文字幕一级| 亚洲国产精品久久男人天堂| 日本黄色视频三级网站网址| 天天添夜夜摸| 国产片内射在线| 色哟哟哟哟哟哟| 亚洲无线在线观看| 免费久久久久久久精品成人欧美视频| 亚洲 欧美 日韩 在线 免费| 在线观看免费视频网站a站| 亚洲精品国产精品久久久不卡| 亚洲电影在线观看av| 涩涩av久久男人的天堂| 国产av一区二区精品久久| 国产真人三级小视频在线观看| 长腿黑丝高跟| 18禁美女被吸乳视频| 欧美人与性动交α欧美精品济南到| 成年女人毛片免费观看观看9| 日日摸夜夜添夜夜添小说| 欧美激情久久久久久爽电影 | 久久亚洲真实| 午夜久久久在线观看| 波多野结衣巨乳人妻| 亚洲人成网站在线播放欧美日韩| 日韩成人在线观看一区二区三区| 免费在线观看完整版高清| 欧美在线一区亚洲| e午夜精品久久久久久久| 免费观看精品视频网站| 亚洲欧美精品综合一区二区三区| 欧美在线黄色| 国产亚洲精品久久久久5区| 一本久久中文字幕| 中文字幕色久视频| 亚洲欧洲精品一区二区精品久久久| 中文字幕av电影在线播放| 少妇熟女aⅴ在线视频| 侵犯人妻中文字幕一二三四区| 国产男靠女视频免费网站| 啦啦啦 在线观看视频| 国产精华一区二区三区| 久久影院123| 欧美日韩精品网址| 91成人精品电影| av在线天堂中文字幕| 亚洲人成伊人成综合网2020| 熟女少妇亚洲综合色aaa.| 色综合婷婷激情| 国产免费男女视频| 亚洲自拍偷在线| 久久婷婷人人爽人人干人人爱 | 久久久久久久久免费视频了| 色老头精品视频在线观看| 久久久久久国产a免费观看| 午夜福利在线观看吧| 一卡2卡三卡四卡精品乱码亚洲| 看黄色毛片网站| 12—13女人毛片做爰片一| 国产精品,欧美在线| 久久天躁狠狠躁夜夜2o2o| 成年女人毛片免费观看观看9| 国产亚洲精品av在线| 老熟妇仑乱视频hdxx| 琪琪午夜伦伦电影理论片6080| 欧美色视频一区免费| 久久青草综合色| 动漫黄色视频在线观看| 国产又爽黄色视频| 亚洲中文日韩欧美视频| 亚洲最大成人中文| 国产在线观看jvid| 精品久久久久久久毛片微露脸| 日本一区二区免费在线视频| 一级毛片高清免费大全| 国产精品久久久av美女十八| 欧美日韩乱码在线| 国产亚洲欧美精品永久| 国产视频一区二区在线看| 亚洲片人在线观看| 丝袜美腿诱惑在线| 99久久精品国产亚洲精品| 久久久久久久午夜电影| 国产精品久久久久久人妻精品电影| 久久久久久亚洲精品国产蜜桃av| 久久久国产成人精品二区| 一级毛片精品| 又紧又爽又黄一区二区| 精品国产一区二区三区四区第35| 女性生殖器流出的白浆| 如日韩欧美国产精品一区二区三区| 日本三级黄在线观看| 天天一区二区日本电影三级 | 又大又爽又粗| www.精华液| 又黄又粗又硬又大视频| 韩国精品一区二区三区| 国产精品一区二区三区四区久久 | 99国产精品免费福利视频| 最近最新免费中文字幕在线| 自拍欧美九色日韩亚洲蝌蚪91| 免费在线观看视频国产中文字幕亚洲| 国产精品久久久久久亚洲av鲁大| 国产一区二区激情短视频| av福利片在线| 99精品在免费线老司机午夜| 精品一区二区三区视频在线观看免费| 99热只有精品国产| 在线观看免费日韩欧美大片| 亚洲情色 制服丝袜| 日本黄色视频三级网站网址| 欧美激情 高清一区二区三区| 视频在线观看一区二区三区| 成人18禁高潮啪啪吃奶动态图| 精品一区二区三区视频在线观看免费| 国产一区二区三区综合在线观看| 波多野结衣一区麻豆| 香蕉久久夜色| 国产三级黄色录像| 久久草成人影院| 少妇 在线观看| 国产蜜桃级精品一区二区三区| av超薄肉色丝袜交足视频| 久久这里只有精品19| 人妻丰满熟妇av一区二区三区| 国产精品99久久99久久久不卡| 欧美在线黄色| 久久久久久久久久久久大奶| 美女扒开内裤让男人捅视频| 欧美激情久久久久久爽电影 | 免费在线观看亚洲国产| 99久久99久久久精品蜜桃| 日本五十路高清| 国产精品精品国产色婷婷| 国产精品亚洲av一区麻豆| 两性午夜刺激爽爽歪歪视频在线观看 | 国产亚洲欧美在线一区二区| 热99re8久久精品国产| 一本综合久久免费| 国产精品久久久av美女十八| 久久亚洲真实| 成人亚洲精品av一区二区| 亚洲国产精品合色在线| 久久人人97超碰香蕉20202| 亚洲av成人av| 青草久久国产| 久久国产精品人妻蜜桃| 亚洲熟女毛片儿| 男女床上黄色一级片免费看| 男人操女人黄网站| 看免费av毛片| 女人被躁到高潮嗷嗷叫费观| 国产成人精品在线电影| 久久草成人影院| 麻豆成人av在线观看| 精品一品国产午夜福利视频| 1024视频免费在线观看| 国产区一区二久久| 搡老熟女国产l中国老女人| 欧美亚洲日本最大视频资源| 亚洲久久久国产精品| 久久精品成人免费网站| 亚洲欧美日韩高清在线视频| 悠悠久久av| 久久久久久国产a免费观看| 亚洲欧美激情综合另类| 午夜福利影视在线免费观看| 国产不卡一卡二| 免费搜索国产男女视频| 成人18禁高潮啪啪吃奶动态图| 999久久久精品免费观看国产| 黄色视频不卡| 欧美丝袜亚洲另类 | 丝袜美足系列| av中文乱码字幕在线| 午夜成年电影在线免费观看| 欧美成人午夜精品| 悠悠久久av| 一二三四在线观看免费中文在| 久久中文看片网| 欧美乱妇无乱码| www日本在线高清视频| 亚洲男人天堂网一区| 女人被狂操c到高潮| 亚洲欧美日韩另类电影网站| 国产精品,欧美在线| 欧美色欧美亚洲另类二区 | 天天添夜夜摸| 夜夜躁狠狠躁天天躁| 色在线成人网| 一级片免费观看大全| 在线播放国产精品三级| 亚洲三区欧美一区| 久久香蕉国产精品| 成人手机av| 亚洲av熟女| 午夜成年电影在线免费观看| 99久久久亚洲精品蜜臀av| 欧美激情极品国产一区二区三区| 久99久视频精品免费| 咕卡用的链子| 村上凉子中文字幕在线| 国产精品久久久久久人妻精品电影| 少妇的丰满在线观看| 在线观看舔阴道视频| 国产真人三级小视频在线观看| 又大又爽又粗| 成人精品一区二区免费| 亚洲少妇的诱惑av| 免费搜索国产男女视频| 欧美中文综合在线视频| 麻豆久久精品国产亚洲av| 美女高潮喷水抽搐中文字幕| 18禁黄网站禁片午夜丰满| 欧美国产精品va在线观看不卡| 99热只有精品国产| 女人精品久久久久毛片| 国产精品一区二区精品视频观看| 男女做爰动态图高潮gif福利片 | 视频区欧美日本亚洲| 一卡2卡三卡四卡精品乱码亚洲| 老司机在亚洲福利影院| 在线免费观看的www视频| 亚洲免费av在线视频| 97碰自拍视频| 亚洲欧美激情综合另类| 国产男靠女视频免费网站| 精品无人区乱码1区二区| 亚洲 国产 在线| av福利片在线| 日韩欧美国产一区二区入口| 成年人黄色毛片网站| 欧美绝顶高潮抽搐喷水| 国产免费av片在线观看野外av| 69精品国产乱码久久久| 高潮久久久久久久久久久不卡| 麻豆久久精品国产亚洲av| 亚洲性夜色夜夜综合| 熟女少妇亚洲综合色aaa.| 午夜精品国产一区二区电影| 99香蕉大伊视频| 亚洲成人久久性| 一区在线观看完整版| 999久久久精品免费观看国产| 桃红色精品国产亚洲av| 欧美亚洲日本最大视频资源| 中文字幕人妻熟女乱码| 嫩草影视91久久| 欧美日韩福利视频一区二区| 神马国产精品三级电影在线观看 | 国产精华一区二区三区| 12—13女人毛片做爰片一| 国产精华一区二区三区| 亚洲最大成人中文| 亚洲第一青青草原| 黄色片一级片一级黄色片| 一边摸一边抽搐一进一出视频| 美女免费视频网站| 中亚洲国语对白在线视频| 成人18禁高潮啪啪吃奶动态图| 黑人巨大精品欧美一区二区蜜桃| 精品国产乱码久久久久久男人| 最新美女视频免费是黄的| 亚洲成人精品中文字幕电影| 日韩大码丰满熟妇| 熟妇人妻久久中文字幕3abv| 亚洲精品美女久久av网站| 成年女人毛片免费观看观看9| 亚洲一区二区三区色噜噜| 黄色视频,在线免费观看| 欧美大码av| 亚洲欧美激情在线| 亚洲成av片中文字幕在线观看| 欧美成狂野欧美在线观看| 99国产精品99久久久久| 国产精品香港三级国产av潘金莲| 国产色视频综合| 国产成+人综合+亚洲专区| 亚洲第一青青草原| 精品欧美一区二区三区在线| 国产高清视频在线播放一区| 1024视频免费在线观看| 亚洲专区字幕在线| 色综合亚洲欧美另类图片| 无人区码免费观看不卡| 又紧又爽又黄一区二区| 日本精品一区二区三区蜜桃| 99精品久久久久人妻精品| 搞女人的毛片| 天堂√8在线中文| 色综合欧美亚洲国产小说| 此物有八面人人有两片| 十八禁人妻一区二区| 一本大道久久a久久精品| 亚洲av成人av| 欧美国产日韩亚洲一区| 午夜影院日韩av| 高清毛片免费观看视频网站| 成人永久免费在线观看视频| 丰满的人妻完整版| 女人被狂操c到高潮| 午夜精品国产一区二区电影| 久久久久国内视频| 超碰成人久久| 在线天堂中文资源库| www.熟女人妻精品国产| 国产野战对白在线观看| 久9热在线精品视频| 亚洲中文字幕日韩| 日本 欧美在线| 亚洲自偷自拍图片 自拍| 久久久国产精品麻豆| 91老司机精品| 欧美av亚洲av综合av国产av| 欧美色视频一区免费| 曰老女人黄片| 天堂√8在线中文| 日本在线视频免费播放| 韩国精品一区二区三区| 最近最新免费中文字幕在线| 国产成人精品久久二区二区免费| 深夜精品福利| 国产片内射在线| 国产在线观看jvid| 国产成人av教育| 国产一区二区三区视频了| 人成视频在线观看免费观看| 午夜福利影视在线免费观看| av视频在线观看入口| 狂野欧美激情性xxxx| 男人舔女人的私密视频| 91国产中文字幕| 搡老熟女国产l中国老女人| 亚洲中文av在线| 精品国产乱子伦一区二区三区| 国产精品香港三级国产av潘金莲| 免费不卡黄色视频| 少妇粗大呻吟视频| 久久性视频一级片| 黑人巨大精品欧美一区二区mp4| 欧美成人性av电影在线观看| 国产亚洲精品一区二区www| 国产一区二区激情短视频| 夜夜躁狠狠躁天天躁| 国产精品免费一区二区三区在线| 欧美另类亚洲清纯唯美| 村上凉子中文字幕在线| 亚洲人成伊人成综合网2020| 999久久久国产精品视频| 国产欧美日韩一区二区精品| 亚洲 欧美 日韩 在线 免费| 免费看十八禁软件| 9热在线视频观看99| 99国产精品一区二区蜜桃av| 又黄又爽又免费观看的视频| 亚洲av熟女| 国产精品国产高清国产av| 国产高清有码在线观看视频 | 亚洲成人精品中文字幕电影| 精品熟女少妇八av免费久了| 757午夜福利合集在线观看| 久久久精品欧美日韩精品| 久久热在线av| 久热这里只有精品99| 国产成人啪精品午夜网站| 国产xxxxx性猛交| 大码成人一级视频| 成人三级黄色视频| 精品无人区乱码1区二区| 成人国产一区最新在线观看| 国产精品美女特级片免费视频播放器 | 国产亚洲精品av在线| 19禁男女啪啪无遮挡网站| 多毛熟女@视频| 日韩成人在线观看一区二区三区| av福利片在线| 999精品在线视频| 一区二区三区精品91| 久久精品91蜜桃| 亚洲人成电影观看| 亚洲三区欧美一区| 在线观看免费日韩欧美大片| 日韩中文字幕欧美一区二区| a在线观看视频网站| 777久久人妻少妇嫩草av网站| 免费看美女性在线毛片视频| 中文字幕高清在线视频| 国产精品二区激情视频| 色综合欧美亚洲国产小说| 久久久国产欧美日韩av| 免费在线观看黄色视频的| 欧美亚洲日本最大视频资源| 三级毛片av免费| 国产不卡一卡二| 免费观看精品视频网站| 日日干狠狠操夜夜爽| 亚洲精品中文字幕在线视频| 精品久久蜜臀av无| 男女床上黄色一级片免费看| 老司机深夜福利视频在线观看| 在线观看免费日韩欧美大片| 久久久国产欧美日韩av| 人人澡人人妻人| 天堂动漫精品| 欧美最黄视频在线播放免费| 欧美老熟妇乱子伦牲交| 久久影院123| 国产精品,欧美在线| 成人三级做爰电影| 欧美日本亚洲视频在线播放| e午夜精品久久久久久久| 人人妻,人人澡人人爽秒播| 在线观看免费午夜福利视频| 悠悠久久av| 在线观看免费午夜福利视频| 久久人人97超碰香蕉20202| 精品国产一区二区久久| 女人高潮潮喷娇喘18禁视频| 首页视频小说图片口味搜索| 欧美av亚洲av综合av国产av| 人妻久久中文字幕网| 一进一出好大好爽视频| 亚洲国产日韩欧美精品在线观看 | 波多野结衣av一区二区av| 午夜久久久在线观看| 国产精品日韩av在线免费观看 | 欧美人与性动交α欧美精品济南到| 免费少妇av软件| 国产99久久九九免费精品| 日本a在线网址| 少妇粗大呻吟视频| 国产成人啪精品午夜网站| 午夜福利免费观看在线| 国产视频一区二区在线看| 国产97色在线日韩免费| 99精品欧美一区二区三区四区| 熟妇人妻久久中文字幕3abv| 一区在线观看完整版| 在线观看一区二区三区| 99国产精品99久久久久| 亚洲精品久久国产高清桃花| 村上凉子中文字幕在线| 日韩大尺度精品在线看网址 | 国产成人欧美| 国产亚洲欧美精品永久| 视频区欧美日本亚洲| 在线观看免费视频日本深夜| 在线av久久热| 丰满的人妻完整版| 高潮久久久久久久久久久不卡| videosex国产| 天天一区二区日本电影三级 | 国产xxxxx性猛交| 久久 成人 亚洲| 久久久久国内视频| 精品久久久久久,| svipshipincom国产片| 亚洲成av片中文字幕在线观看| 精品久久久久久久人妻蜜臀av | 欧美一级毛片孕妇| 亚洲自拍偷在线| 女人被狂操c到高潮| 国产真人三级小视频在线观看| 国产精品 欧美亚洲| 国产私拍福利视频在线观看| 免费一级毛片在线播放高清视频 | 国产成人精品久久二区二区免费| 日本免费a在线| 又黄又爽又免费观看的视频| 午夜免费激情av| 自线自在国产av| 精品久久蜜臀av无| 1024香蕉在线观看| 可以在线观看毛片的网站| 欧美日韩乱码在线| av免费在线观看网站| 亚洲人成电影观看| 色哟哟哟哟哟哟| 亚洲人成电影观看| 妹子高潮喷水视频| 国产麻豆69| 久久精品aⅴ一区二区三区四区| 国产在线精品亚洲第一网站| 欧美黑人精品巨大| 成人18禁在线播放| 欧美激情 高清一区二区三区| 免费一级毛片在线播放高清视频 | 亚洲午夜理论影院| 免费人成视频x8x8入口观看| 国产精品98久久久久久宅男小说| 国产av又大| 精品久久久久久,|