• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Kernel for Least Squares Support Vector Machine

    2012-07-25 06:22:22FENGWei馮偉ZHAOYongping趙永平DUZhonghua杜忠華LIDecai李德才WANGLifeng王立峰
    Defence Technology 2012年4期
    關(guān)鍵詞:永平

    FENG Wei(馮偉),ZHAO Yong-ping(趙永平),DU Zhong-h(huán)ua(杜忠華),LI De-cai(李德才),WANG Li-feng(王立峰)

    (1.School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China;2.Xi'an Modern Chemistry Research Institute,Xi'an 710065,Shaanxi,China;3.Heilongjiang North Tool Co.Ltd.,Mudanjiang 157013,Heilongjiang,China)

    Introduction

    Recently,as an emergent machine learning method,ELM proposed by HUANG,et al in 2004[1-2]has shown the good performances in regression application as well as in the large classification problems.Unlike the traditional slow gradient-descent based methods of which the parameters are all tuned iteratively,ELM with arbitrarily assigned input weights and almost any nonzero activation function boils down to solve the minimum norm least squares solutions of a general system of linear equations set.Hence,ELM has an extreme fast convergence speed.In this case,it is supported by the experiments on the real-world benchmark function approximations and classification problems.Additionally,it has been proved that ELM can universally approximate any continuous functions on any compact input sets and achieve the comparable performance with SVM in regression and classification[3].

    Similar to ELM,least squares support vector machine(LSSVM)[4-5],a variant of SVM,needs to solve a linear equation set,after replacing the hinge loss function in SVM with the squared errors,as well as the equality constraints instead of the inequality ones. However, according to the theory no free lunch[6],an algorithm does not always has an advantage over another in every respect.Extensive empirical comparison[7]conveyed that LSSVM can obtain good performance on various classification problems and function approximations,but there exist both obvious limitations.First,the final training problem of LSSVM comes down to solve a set of linear equations.Although this linear equation set is,in principle,solvable,in practice,it is intractable for a large data set by the classical techniques like the Gaussian elimination,because their arithmetic complexity usually scales cubically with the size of training samples,viz.O(N3)operations,whereNis the size of training set.Second,the solution of LSSVM lacks the sparseness[8],thus significantly affecting its test speed.

    As ELM learning algorithm emerges,the trend of combining ELM with SVM appears gradually.LIU,et al[9]explicitly constructed a mapping based on ELM so that the data transformation from the input space to the feature space is realized,which leads to an extreme simple and fast nonlinear SVM algorithm.Frénay,et al[10]merged both ELM and SVM by defining a new kernel,viz.ELM based kernel.This kernel is computed by the first layer of an ELM and used to train SVM.HUANG,et al[3]further studied ELM for classification in the aspect of the standard optimization method and extended ELM to a specific type of generalized SLFNs,named support vector network.Recently,a new parameter-insensitive kernel[11]was proposed and used for nonlinear support vector regression(SVR),and the experiments showed that this approach reduces the computational complexity significantly and yields the performance that is very close to that of the state-ofthe-art SVR.In Ref.[10]and [11],the ELM based kernel(the ELM kernel for short)is explicitly constructed using the first layer of an ELM and extended to LSSVR,i.e.,ELM kernel based LSSVR proposed in this paper,named ELM-LSSVR.To validate the effectiveness and feasibility of the proposed ELM-LSSVR,the experiments on four data sets are performed.From these reports,it is supported that ELM-LSSVR can simultaneously reduce the training computational and the test complexity,meantime keeping the comparable accuracy to the existent learning algorithms with the commonly used kernels such as the Gaussian kernel.

    The least squares support vector regression is briefly introduced in section 2.the brief theory of extreme learning machine is given in section 3.The ELM kernel is applied to the least squares support vector regression,and the ELM-LSSVR algorithm is proposed in section 4.The experiments implemented in section 5 show that the proposed ELM-LSSVR has the advantages over other algorithms in the training and test time.

    1 Brief Description of Least Squares Support Vector Regression

    wherewcan control the model complexity,bis the bias,e=[e1,…,eN]Trepresents the training errors,Cis the regularization parameter adjusting the tradeoff between the model flatness and the fitness,φ(·)is called the feature map realizing the transformation from the finite-dimensional input space to the high-dimensional feature space.Eq.(1)can be solved by constructing the Lagrangian function

    whereα=[α1,…,αN]Tis the Lagrangian multiplier vector.From the dual theorem,Eq.(2)can be solved by

    whereR=K+I/C,Iis an identity matrix of appropriate dimension;d=[d1,…,dN]T,Kij=k(xi,xj)=φ(xi)Tφ(xj);1 is a column vector of all ones of appropriate dimension;k(·,·)is the kernel function im-plicitly computing the inner product of two vectors in the feature space.In theory,Eq.(3)is solvable.However,it is intractable for a large data set by the classical techniques, e.g., Gaussian elimination,scaling cubically with the size of training samples.If Eq.(3)can be solved successfully,for a new input samplex,its target can be predicted by the following regression machine

    whereαandbare from Eq.(3).Besides the difficulty of solving Eq.(3),there is another bottleneck which blocks LSSVR to obtain the widespread application.That is to say,the solution of LSSVR is not sparse,i.e.,every training sample is support vector,which hampers its use in those practical applications demanding fast responses.The main reason is that the required cost of LSSVR in the test phase consists ofO(N·#teNum)time as well asO(N ·#teNum)space.

    2 Brief Description of Extreme Learning Machine

    In this section,the essence of ELM is briefly depicted.The ELM algorithm was originally proposed by HUANG,et al[1,12-13]. The main concept behind ELM lies in the random initialization of the SLFN weights and biases not only independent of the training samples but also of each other,and the input weights and biases do not need to be adjusted during the process of calculating the output weights.The ELM network is obtained with very few steps and very low computational cost.

    Assume that a training set consisting ofNdistinct samples(xi,yi)(1≤i≤N)is given,wherexi∈1×nis the input vector,andyi∈1×mis the desired output vector.The output of an SLFN withLhidden nodes can be represented by

    whereaiandbiare the randomly generated parameters of hidden nodes,βi,a row vector,is the learning weight connecting thei-th hidden node to the output nodes,g(ai,bi,x)is the output of thei-th hidden node with respect to the inputx.The commonly used hidden nodes include additive hidden node(e.g.,sigmoid),radial basis function node,etc.In the case of which SLFN perfectly approximates the data,the error between the estimated output^yiand the desired ouputyiis zero

    Rewrite Eq.(6)as

    where

    Generally,L<N.That is,Eq.(7)is an overdetermined linear equation set.It can be easily seen from Eq.(7)that the training of an SLFN in ELM is simply equivalent to finding a least squares solution of the linear system,which can be analytically determined by the following expression,

    whereH?is a Moore-Penrose generalized inverse of the matrixH.

    3 ELM Kernel Based LSSVR

    From Eq.(5),we can regard the hidden layer in the ELM algorithm as a mappingφfrom the input spacento a feature spaceL,where we need to solve a linear problem instead of the nonlinear one in the input space.This is very similar to the idea behind the use of kernel.In the kernel based algorithms,the data in the input space is easy to be classified correctly for classification problems or predicted precisely in regression domain in the feature space spanned by a nonlinear mapping induced by the kernel function.Hence,the hidden layer of an ELM can be thought of as defi-ning some kind of randomized kernel,which is temporarily called the ELM kernel.Considering two data pointsxiandxjand an ELM withLhidden nodes defining a mappingφfromntoL,the corresponding ELM kernel function is defined as

    whereφ(xi)= [g(a1,b1,xi),…,g(aL,bL,xi)]T.From Eq.(10),based on the training samples set,the kernel matrix,viz.the Gram matrix,corresponding to this ELM kernel is given as

    Firstly,Eq.(3)is rearranged as

    and

    Defining

    and

    hence Eq.(12)and(13)are reformulated,respectively,

    and

    The crucial key to solve Eq.(12)to(15)is to calculate the inverse of the matrixR.If this problem is solved,those equations are out of question.Here,we rewrite the matrixR,

    After applying the ELM kernel to LSSVR and plugging the kernel matrixKin Eq.(11)into Eq.(18),it becomes

    To reduce the computational burden of Eq.(19),the inverse of the matrixRis given via the Woodbury formula[14]

    Substituting Eq.(20)into Eq.(14)and(15),the computational cost of calculatingηandνis cut down fromO(N3)toO(N·#FS2).In practice,the inverse ofI/C+HTHdoes not need to be given explicitly.The Cholesky factorization technique can be used to calculate(HTd)/(I/C+HTH)and(HT1)/(I/C+HTH)because the matrixI/C+HTHis positively definite.Especially in the MATLAB environment,the Cholesky factorization is realized with a simple backslash operator,viz.,instead of the direct use of the inv command,thus saving the training time.In sum,after applying the ELM kernel to LSSVR,the training cost is cut down fromO(N3)toO(N·#FS2).In the testing phase,for the Gaussian kernel,normal LSSVR needs the computational burden ofO(N·#teNum),nevertheless the ELM kernel based LSSVR only needs a cost of max{O(N·#FS),O(#teNum·#FS)}.In general,#FS is far less thanNand#teNum,so the computational complexity in the testing phase is reduced.As for the memory space,we only needO(N·#FS)instead ofO(N2)in the training phase.Likewise,the testing space is reduced fromO(N·#teNum)to max{O(N·#FS),O(#teNum·#FS)}.From the discussion above,it is known that the ELM kernel based LSSVR reduces not only the training burden but also the testing cost without extra training tools or additional pruning mechanisms apart from the use of the Woodbury formula.This case is also suitable for memory space,which is the essence of exploring and exploiting the ELM kernel.

    4 Experiments

    Four data sets drawn from the classical mathematical functions defined in Tab.1 are used for experiment.The dependent relations between input and output data for these functions,viz.their curves,are shown in Fig.1.For each function,10 000 data points generated uniformly with the Gaussian noise(the mean of the noise is zero,and the ratio of the standard deviation of the noise to the mean of signal is 0.1)are used as training data,and 1 000 noiseless data points drawn from the same function are utilized as testing data.As for detailed specifications about these experiments,they are listed in Tab.2.From Tab.2,it is very easily known that ELM-LSSVR has the advantages over other algorithms in both the training time and the testing time with the comparable accuracy.Naturally,the total time of ELM-LSSVR,viz.the training time(trTime)plus the testing time(teTime),is favorable among all the algorithms. MVP-SMO-LSSVR, FG-SMO-LSSVR,CG-LSSVR,and ICG-LSSVR were proposed to alleviate the training burden of LSSVR for medium or large problems.However,their solutions are not sparse,i.e., every training sample is a support vector.Hence,in Tab.2,the number of support vectors(#SV)is equal toNfor the four algorithms.According to CHU,et al's viewpoint[16],ICG-LSSVR accelerates CG-LSSVR,whereas the training burden of ICG-LSSVR is still larger than ELM-LSSVR's,which was validated by our experiments.Though MVP-SMO-LSSVR and FG-SMO-LSSVR are SMO-type algorithms,for most experiments, FG-SMO-LSSVR is superiorto MVP-SMO-LSSVR in terms of the training time.Howbeit,their training costs are more expensive than that needed by ELM-LSSVR.As a pruning method,JIAO,et al[19]proposed FSA-LSSVR to realize the sparse solution.It can be seen from Tab.2 that FSA-LSSVR indeed prunes the solution of LSSVR and shortens the predicted training time,but its testing time is still longer than that of ELM-LSSVR.All in all,compared with other algorithms,ELM-LSSVR needs less computational burdens in both the training and testing phases,which is the main purpose of ELM-LSSVR proposed in the paper.

    Fig.1 Curves of the four classical functions

    Tab.1 Four defined classical functions

    5 Conclusions

    In this paper,we apply the ELM kernel to LSSVR,so the ELM-LSSVR algorithm is proposed.ELMLSSVR can mitigate the training burden of normal LSSVR obviously.Meantime,ELM-LSSVR can reduce the testing time and enhance the machine response without extra techniques like pruning mechanism.In contrast to the algorithms accelerating the training of LSSVR,the memory space required by ELM-LSSVR is also saved.To validate the effectiveness of feasibility of the proposed ELM-LSSVR, the experiments show that ELM-LSSVR has the advantages over the other algorithms in terms of the testing and the training time.

    [1]HUANG G B,ZHU Q Y,Siew C K.Extreme learning machine:a new learning scheme of feedforward neural networks[C]∥Proceedings of 2004 IEEE International Joint Conference on Neural Network,Budapest,Hungary,2004.

    [2]HUANG G B,Slew C K.Extreme learning machine:RBF network case[C]∥8th International Conference on Control,Automation,Robotics and Vision(ICARCV),Kunming,China,2004.

    [3]HUANG G B,DING X,ZHOU H.Optimization method based extreme learning machine for classification[J].Neurocomputing,2010,74(1-3):155-163.

    [4]Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters,1999,9(3):293-300.

    [5]Suykens J A K,Van Gestel T,De Brabanter J,et al.Least squares support vector machines[M].Singapore:World Scientific,2002.

    [6]Duda R O,Hart P E,Stork D G.Pattern classification[M].UK:Johh Wiley& Sons Inc,2001.

    [7]Van Gestel T,Suykens J A K,Baesens B,et al.Benchmarking least squares support vector machine classifiers[J].Machine Learning,2004,54(1):5-32.

    [8]Suykens J A K,De Brabanter J,Lukas L,et al.Weighted least squares support vector machines:robustness and sparse approximation[J].Neurocomputing,2002,48(1-4):85-105.

    [9]LIU Q,HE Q,SHI Z.Extreme support vector machine classifier[C]∥12th Pacific-Asia Conference on Knowledge Discovery and Data Mining,Osaka,Japan,2008.

    [10]Frenay B,Verleysen M.Using SVMs with randomized feature spaces:an extreme learning approach[C]∥Proceedings of the 18-th European Symposium on Artificial Neural Networks,2010.

    [11]Frenay B,Verleysen M.Parameter-insensitive kernel in extreme learning for non-linear support vector regression[J].Neurocomputing,2011,74(16):2526-2531.

    [12]HUANG G B,ZHU Q,Siew C.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70(1-3):489-501.

    [13]HUANG G B,CHEN L,Siew C K.Universal approximation using incremental constructive feedforward networks with random hidden nodes[J].IEEE Transactions on Neural Networks,2006,17(4):879 -892.

    [14]ZHANG X.Matrix analysis and applications[M].New York:Springer,2004.

    [15]Suykens J A K,Lukas L,Vandooren P,et al.Least squares support vector machine classifiers:a large scale algorithm[C]∥Proceedings of European Conference on Circuit Theory and Design,Torino,Italy,1999.

    [16]Chu W,Ong C J,Keerthi S S.An improved conjugate gradient scheme to the solution of least squares SVM[J].IEEE Transactions on Neural Networks,2005,16(2):498-501.

    [17]Keerthi S S,Shevade S K.SMO algorithm for leastsquares SVM formulations[J].Neural Computation,2003,15(2):487-507.

    [18]BO L,JIAO L,WANG L.Working set selection using functional gain for LS-SVM[J].IEEE Transactions on Neural Networks,2007,18(5):1541-1544.

    [19]JIAO L,BO L,WANG L.Fast sparse approximation for least squares support vector machine[J].IEEE Transactions on Neural Networks,2007,18(3):685 -697.

    [20]ZHAO Y P,DU Z H,ZHANG Z A,et al.A fast method of feature extraction for kernel MSE[J].Neurocomputing,2011,74(10):1654-63.

    [21]AN S,LIU W,Venkatesh S.Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression[J].Pattern Recognition,2007,40(8):2154-2162.

    [22]HUANG G B,CHEN L.Convex incremental extreme learning machine[J].Neurocomputing,2007,70(16 -18):3056-3062.

    [23]HUANG G B,CHEN L.Enhanced random search based incremental extreme learning machine[J].Neurocomputing,2008,71(16-18):3460-3468.

    [24]ZHAO Y P,SUN J G,DU Z H,et al.Pruning least objective contribution in KMSE[J].Neurocomputing,2011,74(17):3009-18.

    猜你喜歡
    永平
    教師節(jié)
    老城舊影 永平門
    紅巖春秋(2022年11期)2022-05-30 16:00:02
    例談元素及化合物知識復(fù)習(xí)策略
    踢球
    流蘇樹與美國流蘇樹園林綠化前景探討
    認(rèn)識形近字
    五絕·晚秋晚風(fēng)
    小刺猬的秘密
    段永平:從企業(yè)家到幕后教父
    時代郵刊(2019年18期)2019-07-29 08:49:14
    Effects of Maixuekang Capsules Combined with Edaravone on Serum MMP-9, S-100β Protein Levels and Neurological Functions in Patients with Hemorrhagic Cerebral Infarction
    我要看日韩黄色一级片| 日本三级黄在线观看| 波多野结衣巨乳人妻| 日韩中文字幕欧美一区二区| 亚洲综合色惰| 男人的好看免费观看在线视频| 老司机午夜福利在线观看视频| 小蜜桃在线观看免费完整版高清| 日本黄大片高清| 热99在线观看视频| 91久久精品国产一区二区成人| 亚洲一区高清亚洲精品| 国产激情偷乱视频一区二区| 嫩草影视91久久| 88av欧美| 免费人成视频x8x8入口观看| 一卡2卡三卡四卡精品乱码亚洲| 国产伦一二天堂av在线观看| 少妇人妻一区二区三区视频| 成人午夜高清在线视频| 亚洲男人的天堂狠狠| 伊人久久精品亚洲午夜| 久久精品国产自在天天线| 深爱激情五月婷婷| 99久国产av精品| 91在线观看av| 神马国产精品三级电影在线观看| 亚洲av电影在线进入| 日韩有码中文字幕| 99久久99久久久精品蜜桃| ponron亚洲| 一二三四社区在线视频社区8| 亚洲欧美清纯卡通| 亚洲三级黄色毛片| 大型黄色视频在线免费观看| 亚洲av电影在线进入| 三级毛片av免费| 国产探花在线观看一区二区| 中文字幕av成人在线电影| 国产av不卡久久| 成年人黄色毛片网站| 九色国产91popny在线| 欧美日韩综合久久久久久 | 国产一级毛片七仙女欲春2| 日本 av在线| а√天堂www在线а√下载| 国产成人欧美在线观看| 亚洲色图av天堂| 日本 av在线| 亚洲国产精品成人综合色| 亚洲av不卡在线观看| 日本熟妇午夜| av国产免费在线观看| 我要搜黄色片| 99热这里只有精品一区| 中文亚洲av片在线观看爽| 亚洲激情在线av| 国模一区二区三区四区视频| 亚洲精品乱码久久久v下载方式| 天天一区二区日本电影三级| 精品一区二区免费观看| 在现免费观看毛片| 赤兔流量卡办理| 91午夜精品亚洲一区二区三区 | 一进一出抽搐动态| 91九色精品人成在线观看| 欧美又色又爽又黄视频| 一夜夜www| 99热这里只有是精品在线观看 | 亚洲黑人精品在线| av黄色大香蕉| 12—13女人毛片做爰片一| 欧美精品国产亚洲| 99热这里只有是精品在线观看 | 国产成人影院久久av| 99久久成人亚洲精品观看| 三级男女做爰猛烈吃奶摸视频| 久久这里只有精品中国| 欧美乱妇无乱码| 脱女人内裤的视频| 美女大奶头视频| 成人午夜高清在线视频| 亚洲人成网站高清观看| av在线天堂中文字幕| 久久99热6这里只有精品| 亚洲无线观看免费| 男女做爰动态图高潮gif福利片| 色精品久久人妻99蜜桃| 99热精品在线国产| 久久人人精品亚洲av| 在线观看美女被高潮喷水网站 | 成人毛片a级毛片在线播放| 欧美一区二区国产精品久久精品| 日本黄色片子视频| 真人做人爱边吃奶动态| 亚洲成人中文字幕在线播放| 夜夜爽天天搞| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美性感艳星| 内地一区二区视频在线| 999久久久精品免费观看国产| 欧美黑人欧美精品刺激| 99精品久久久久人妻精品| 可以在线观看毛片的网站| 日韩人妻高清精品专区| 观看美女的网站| 欧美另类亚洲清纯唯美| 999久久久精品免费观看国产| 有码 亚洲区| 亚洲人成伊人成综合网2020| 伊人久久精品亚洲午夜| 亚洲精品色激情综合| 好男人在线观看高清免费视频| a级一级毛片免费在线观看| 97碰自拍视频| 亚洲av熟女| 天堂影院成人在线观看| 在线观看av片永久免费下载| 国内毛片毛片毛片毛片毛片| 99久久成人亚洲精品观看| 动漫黄色视频在线观看| 亚洲内射少妇av| aaaaa片日本免费| 一个人看视频在线观看www免费| 在线观看一区二区三区| 午夜福利视频1000在线观看| 免费av观看视频| 亚洲国产精品sss在线观看| 色播亚洲综合网| 亚洲天堂国产精品一区在线| 欧美+亚洲+日韩+国产| 18禁在线播放成人免费| 亚洲国产精品久久男人天堂| 日韩欧美 国产精品| 最近视频中文字幕2019在线8| 久久草成人影院| 亚洲色图av天堂| 欧美黑人欧美精品刺激| 成年女人毛片免费观看观看9| 婷婷亚洲欧美| 亚洲内射少妇av| 两人在一起打扑克的视频| 又黄又爽又免费观看的视频| 哪里可以看免费的av片| 婷婷丁香在线五月| 悠悠久久av| 欧美一区二区亚洲| 亚洲在线自拍视频| 精品人妻1区二区| 日本a在线网址| av黄色大香蕉| 午夜福利18| 亚洲精华国产精华精| 亚洲三级黄色毛片| 男人舔女人下体高潮全视频| 成人性生交大片免费视频hd| 757午夜福利合集在线观看| 美女黄网站色视频| 简卡轻食公司| 成人国产综合亚洲| 亚洲av日韩精品久久久久久密| 首页视频小说图片口味搜索| 熟女电影av网| 日韩欧美免费精品| 乱码一卡2卡4卡精品| 成人毛片a级毛片在线播放| 天美传媒精品一区二区| 啦啦啦韩国在线观看视频| 色在线成人网| 免费观看的影片在线观看| 亚洲av中文字字幕乱码综合| www.色视频.com| 国产人妻一区二区三区在| 中文资源天堂在线| 亚洲美女视频黄频| 亚洲人成伊人成综合网2020| 三级男女做爰猛烈吃奶摸视频| 有码 亚洲区| 中出人妻视频一区二区| 日韩欧美 国产精品| 国产黄色小视频在线观看| 色尼玛亚洲综合影院| 日韩人妻高清精品专区| a在线观看视频网站| 国产伦精品一区二区三区四那| 村上凉子中文字幕在线| 午夜老司机福利剧场| 美女被艹到高潮喷水动态| 久久国产乱子伦精品免费另类| 亚洲精品久久国产高清桃花| 波多野结衣巨乳人妻| 最新中文字幕久久久久| 狂野欧美白嫩少妇大欣赏| 搡老熟女国产l中国老女人| 久久婷婷人人爽人人干人人爱| 国产淫片久久久久久久久 | 丰满乱子伦码专区| 日韩欧美国产在线观看| 日韩欧美精品v在线| 国产成人影院久久av| 国产亚洲精品综合一区在线观看| 在线免费观看的www视频| 无人区码免费观看不卡| 成人国产综合亚洲| 国产精品自产拍在线观看55亚洲| 久久久精品大字幕| 在线观看一区二区三区| 国产成人aa在线观看| 99国产精品一区二区三区| 久久久久久久久久黄片| 老司机福利观看| 身体一侧抽搐| 老鸭窝网址在线观看| 国产激情偷乱视频一区二区| 丰满人妻一区二区三区视频av| 午夜激情福利司机影院| 麻豆久久精品国产亚洲av| 狠狠狠狠99中文字幕| 精品久久久久久久久久免费视频| 久久人人精品亚洲av| 久久性视频一级片| 白带黄色成豆腐渣| 99国产综合亚洲精品| 国产aⅴ精品一区二区三区波| 99国产极品粉嫩在线观看| 午夜福利在线观看吧| 国产精品人妻久久久久久| 久久久成人免费电影| 一级黄片播放器| 日本成人三级电影网站| 日日干狠狠操夜夜爽| 国产精品电影一区二区三区| 色综合亚洲欧美另类图片| 精品无人区乱码1区二区| 村上凉子中文字幕在线| 可以在线观看的亚洲视频| 少妇高潮的动态图| 欧美性感艳星| 波多野结衣巨乳人妻| 精品一区二区免费观看| 成人亚洲精品av一区二区| 在线观看av片永久免费下载| 亚洲av免费高清在线观看| 亚洲最大成人中文| 偷拍熟女少妇极品色| 久久久久久久亚洲中文字幕 | 久久伊人香网站| 亚洲 国产 在线| 最后的刺客免费高清国语| 国产成+人综合+亚洲专区| 亚洲av美国av| 免费黄网站久久成人精品 | 亚洲精品乱码久久久v下载方式| 此物有八面人人有两片| 好男人在线观看高清免费视频| 黄色一级大片看看| 亚洲av一区综合| 成人一区二区视频在线观看| 国产高清激情床上av| 亚洲人成伊人成综合网2020| 国产爱豆传媒在线观看| 毛片女人毛片| 九九在线视频观看精品| 啪啪无遮挡十八禁网站| 亚洲va日本ⅴa欧美va伊人久久| 国产成人福利小说| 精品久久久久久久久久免费视频| 亚洲av.av天堂| 如何舔出高潮| 人人妻人人澡欧美一区二区| 亚洲人成电影免费在线| 亚洲一区二区三区色噜噜| 男女视频在线观看网站免费| 欧美日本视频| 成年女人永久免费观看视频| 亚洲av成人精品一区久久| 色噜噜av男人的天堂激情| 亚洲欧美激情综合另类| 中文字幕av成人在线电影| 亚洲五月婷婷丁香| 欧美最新免费一区二区三区 | 午夜免费男女啪啪视频观看 | 午夜a级毛片| 麻豆av噜噜一区二区三区| 色哟哟哟哟哟哟| 亚洲黑人精品在线| 激情在线观看视频在线高清| 淫秽高清视频在线观看| 窝窝影院91人妻| 丰满人妻一区二区三区视频av| 99热这里只有精品一区| 色噜噜av男人的天堂激情| xxxwww97欧美| 欧美又色又爽又黄视频| 午夜激情欧美在线| 91午夜精品亚洲一区二区三区 | 欧美最黄视频在线播放免费| 波多野结衣高清作品| 国产精品久久电影中文字幕| 少妇被粗大猛烈的视频| 婷婷丁香在线五月| 丁香欧美五月| 免费在线观看成人毛片| 99国产极品粉嫩在线观看| 久久久国产成人免费| 国产视频一区二区在线看| 国产精品久久久久久人妻精品电影| 91九色精品人成在线观看| 国产一区二区亚洲精品在线观看| 怎么达到女性高潮| 88av欧美| 人妻丰满熟妇av一区二区三区| 国产高清激情床上av| 蜜桃亚洲精品一区二区三区| 亚洲乱码一区二区免费版| 日韩 亚洲 欧美在线| 欧美三级亚洲精品| 18美女黄网站色大片免费观看| 国产精品国产高清国产av| 制服丝袜大香蕉在线| 在线国产一区二区在线| 久久久精品欧美日韩精品| 99热精品在线国产| 床上黄色一级片| 国产精品一区二区免费欧美| 99热只有精品国产| 观看免费一级毛片| 黄片小视频在线播放| 国产av一区在线观看免费| 欧美在线黄色| 精品午夜福利视频在线观看一区| 五月伊人婷婷丁香| 亚洲第一欧美日韩一区二区三区| 亚洲国产精品999在线| 免费在线观看成人毛片| 欧美日本亚洲视频在线播放| 在线看三级毛片| 亚洲精品亚洲一区二区| 欧美xxxx性猛交bbbb| 不卡一级毛片| 国产精品嫩草影院av在线观看 | 国产精品久久久久久亚洲av鲁大| 亚洲人与动物交配视频| 午夜福利在线在线| 欧美色欧美亚洲另类二区| 久久精品人妻少妇| 国内精品久久久久久久电影| av中文乱码字幕在线| 欧美xxxx性猛交bbbb| 欧美一区二区精品小视频在线| 一本一本综合久久| 悠悠久久av| 1024手机看黄色片| 久久久久久九九精品二区国产| 精品一区二区三区视频在线| 91久久精品电影网| 国产成人av教育| 每晚都被弄得嗷嗷叫到高潮| 午夜精品久久久久久毛片777| 人妻夜夜爽99麻豆av| 亚洲欧美日韩高清专用| 91久久精品电影网| 99热6这里只有精品| 国产三级中文精品| 欧美黄色淫秽网站| 亚洲成人精品中文字幕电影| 如何舔出高潮| 国产高清激情床上av| 欧美高清性xxxxhd video| 色噜噜av男人的天堂激情| 成熟少妇高潮喷水视频| 亚洲美女视频黄频| 最近最新中文字幕大全电影3| 91麻豆精品激情在线观看国产| 日韩欧美国产在线观看| www.999成人在线观看| 怎么达到女性高潮| 欧美性猛交黑人性爽| 小蜜桃在线观看免费完整版高清| 黄色视频,在线免费观看| 国产伦精品一区二区三区四那| 天堂动漫精品| 久久久精品大字幕| 国产精品一区二区三区四区久久| 在线播放国产精品三级| 国产伦精品一区二区三区视频9| 国产精品伦人一区二区| 亚洲精品日韩av片在线观看| 成年女人毛片免费观看观看9| 人人妻人人澡欧美一区二区| 免费看日本二区| 久久久久亚洲av毛片大全| 狂野欧美白嫩少妇大欣赏| 两个人的视频大全免费| 18美女黄网站色大片免费观看| 亚洲av五月六月丁香网| 美女xxoo啪啪120秒动态图 | 性色av乱码一区二区三区2| 中文字幕高清在线视频| 久久久精品欧美日韩精品| 人人妻人人看人人澡| 精品久久久久久久久av| 成人欧美大片| 少妇的逼好多水| 亚洲人成网站高清观看| 亚洲18禁久久av| 真实男女啪啪啪动态图| 日韩欧美三级三区| 又黄又爽又刺激的免费视频.| 国产精品,欧美在线| 午夜久久久久精精品| 久久精品夜夜夜夜夜久久蜜豆| 色av中文字幕| 最新中文字幕久久久久| 久久伊人香网站| 男女做爰动态图高潮gif福利片| 亚洲人成网站在线播| 色噜噜av男人的天堂激情| 亚洲成av人片免费观看| 午夜福利在线观看免费完整高清在 | 在线观看午夜福利视频| 永久网站在线| 99在线视频只有这里精品首页| 午夜福利高清视频| 国产亚洲欧美98| 精华霜和精华液先用哪个| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久久黄片| 国内精品久久久久精免费| 色综合站精品国产| 国产精品乱码一区二三区的特点| 国产精品久久视频播放| 每晚都被弄得嗷嗷叫到高潮| 两人在一起打扑克的视频| 亚洲精品成人久久久久久| 久久伊人香网站| 亚洲av免费在线观看| 亚洲三级黄色毛片| 18禁在线播放成人免费| 亚洲av二区三区四区| 欧美zozozo另类| 色5月婷婷丁香| 变态另类丝袜制服| 日日摸夜夜添夜夜添小说| 亚洲狠狠婷婷综合久久图片| 午夜视频国产福利| 床上黄色一级片| 免费一级毛片在线播放高清视频| 一个人免费在线观看电影| 国产白丝娇喘喷水9色精品| 国产成人影院久久av| 国产精品综合久久久久久久免费| 亚洲成a人片在线一区二区| 精品久久久久久久久亚洲 | 麻豆成人av在线观看| 亚洲av免费高清在线观看| 午夜福利在线观看免费完整高清在 | 亚洲第一欧美日韩一区二区三区| 亚洲精品在线美女| 极品教师在线免费播放| 日韩大尺度精品在线看网址| 一区福利在线观看| 51国产日韩欧美| 不卡一级毛片| 在线观看午夜福利视频| 精品国产亚洲在线| 国产精品久久视频播放| 99久久九九国产精品国产免费| 欧美日韩乱码在线| 国产亚洲精品综合一区在线观看| 国产一区二区亚洲精品在线观看| 中文字幕久久专区| 亚洲精品色激情综合| 男女那种视频在线观看| 色吧在线观看| 真实男女啪啪啪动态图| 男女床上黄色一级片免费看| 内地一区二区视频在线| 精华霜和精华液先用哪个| 女人被狂操c到高潮| av天堂在线播放| 成人性生交大片免费视频hd| 成人特级黄色片久久久久久久| 狠狠狠狠99中文字幕| 国产伦一二天堂av在线观看| 亚洲国产欧美人成| 亚洲三级黄色毛片| 男女床上黄色一级片免费看| av在线老鸭窝| 宅男免费午夜| 精品人妻一区二区三区麻豆 | 国产日本99.免费观看| 男人舔奶头视频| 少妇人妻精品综合一区二区 | 村上凉子中文字幕在线| 99热这里只有是精品在线观看 | 99热这里只有是精品在线观看 | 最新在线观看一区二区三区| 日本与韩国留学比较| 亚洲国产色片| 日本免费一区二区三区高清不卡| 精品人妻熟女av久视频| 国产爱豆传媒在线观看| 欧美日韩福利视频一区二区| 日本免费一区二区三区高清不卡| 好男人在线观看高清免费视频| 亚洲国产高清在线一区二区三| 欧美成人a在线观看| 亚洲,欧美,日韩| 噜噜噜噜噜久久久久久91| 精品国内亚洲2022精品成人| 美女高潮喷水抽搐中文字幕| 国产av一区在线观看免费| 久久久成人免费电影| 国产在视频线在精品| 久久中文看片网| 国产aⅴ精品一区二区三区波| 亚州av有码| 国产大屁股一区二区在线视频| 国产精品,欧美在线| 夜夜躁狠狠躁天天躁| 亚洲av美国av| 国产精品电影一区二区三区| 丰满乱子伦码专区| 国产熟女xx| 一夜夜www| 亚洲av五月六月丁香网| 精品久久久久久久末码| 亚洲人成网站在线播放欧美日韩| 亚洲最大成人手机在线| 1000部很黄的大片| 熟女人妻精品中文字幕| 97碰自拍视频| 色视频www国产| 亚洲欧美日韩无卡精品| 成年女人毛片免费观看观看9| 精华霜和精华液先用哪个| 国产精品久久电影中文字幕| 免费av毛片视频| 天堂网av新在线| 亚洲av日韩精品久久久久久密| 国产熟女xx| 久久6这里有精品| 又紧又爽又黄一区二区| 亚洲最大成人手机在线| ponron亚洲| 97超级碰碰碰精品色视频在线观看| 国产真实伦视频高清在线观看 | 日本熟妇午夜| 国产人妻一区二区三区在| 欧美bdsm另类| 国内精品久久久久精免费| 日日干狠狠操夜夜爽| 夜夜看夜夜爽夜夜摸| 精品人妻熟女av久视频| 午夜免费成人在线视频| 国产亚洲欧美98| 深夜a级毛片| 99久国产av精品| 久久精品夜夜夜夜夜久久蜜豆| 亚洲第一电影网av| 亚洲片人在线观看| 十八禁国产超污无遮挡网站| АⅤ资源中文在线天堂| 人人妻人人看人人澡| 亚洲七黄色美女视频| 日本成人三级电影网站| 午夜精品久久久久久毛片777| 99国产极品粉嫩在线观看| 国产精品久久久久久久久免 | 久久午夜福利片| 中文亚洲av片在线观看爽| 久久亚洲精品不卡| 小蜜桃在线观看免费完整版高清| 国产三级黄色录像| 国产伦在线观看视频一区| 亚洲七黄色美女视频| 亚洲精品一卡2卡三卡4卡5卡| 桃红色精品国产亚洲av| 午夜福利高清视频| 成人鲁丝片一二三区免费| 国产人妻一区二区三区在| 国产三级在线视频| 免费黄网站久久成人精品 | 天堂影院成人在线观看| 色综合站精品国产| 又黄又爽又免费观看的视频| 欧美成狂野欧美在线观看| 自拍偷自拍亚洲精品老妇| 又爽又黄无遮挡网站| 婷婷六月久久综合丁香| 国产又黄又爽又无遮挡在线| 国产一区二区在线av高清观看| 国产伦一二天堂av在线观看| 欧美黑人巨大hd| 精品一区二区三区人妻视频| 国产v大片淫在线免费观看| 国产亚洲欧美在线一区二区| 免费无遮挡裸体视频| 两人在一起打扑克的视频| 国产欧美日韩精品亚洲av| 国产精品1区2区在线观看.| 国产中年淑女户外野战色| 在线免费观看的www视频| 黄色一级大片看看| 国产日本99.免费观看| 免费高清视频大片| 一级黄色大片毛片| 亚洲精品456在线播放app | 成人性生交大片免费视频hd| 他把我摸到了高潮在线观看| 国产探花极品一区二区| 三级毛片av免费| 亚洲18禁久久av| 免费av不卡在线播放|